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ABSTRACT
Many researchers have proposed special treatments for outlet boundary conditions owing to lack
of information at the outlet. Among them, the simplest method requires a large enough compu-
tational domain to prevent or reduce numerical errors at the boundaries. However, an efficient
method generally requires special treatment to overcome the problems raised by the outlet bound-
ary condition used. For example, mass flux is not conserved and the fluid field is not divergence-free
at the outlet boundary. Overcoming these problems requires additional computational cost. In
this paper, we present a simple and efficient outflow boundary condition for the incompressible
Navier–Stokes equations, aiming to reduce the computational domain for simulating flow inside a
long channel in the streamwise direction. The proposed outflow boundary condition is based on
the transparent equation, where a weak formulation is used. The pressure boundary condition is
derived by using theNavier–Stokes equations and the outlet flowboundary condition. In the numer-
ical algorithm, a staggered marker-and-cell grid is used and temporal discretization is based on a
projectionmethod. The intermediate velocity boundary condition is consistently adopted to handle
the velocity–pressure coupling. Characteristic numerical experiments are presented to demonstrate
the robustness and accuracy of the proposed numerical scheme. Furthermore, the agreement of
computational results from small and large domains suggests that our proposed outflow boundary
condition can significantly reduce computational domain sizes.
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1. Introduction

Microfluidics, which is mostly in a low Reynolds number
flow regime according to its velocity and length scales,
offers fundamentally new capabilities for the control of
concentrations of molecules in space and time (White-
sides, 2006). There is also much research into sophis-
ticated three-dimensional hydrodynamics and pollutant
modelling (Chau & Jiang, 2001, 2004; Epely-Chauvin,
De Cesare, & Schwindt, 2014; Gholami, Akbar, Mina-
tour, Bonakdari, & Javadi, 2014; Liu & Yang, 2014; Wu &
Chau, 2006). Thus, microfluidics has become important
for many lab-on-a-chip applications such as enzymatic
kinetics (Pabit & Hagen, 2002), protein folding (Gam-
bin, Simonnet, VanDelinder, Deniz, & Groisman, 2010),
single molecule detection (De Mello & Edel, 2007), and
flow cytometry (Mao, Lin, Dong, & Huang, 2009; Wang
et al., 2005; Yun et al., 2010). The aspect ratio of a
typical micro-channel is very large. Therefore, intro-
ducing proper inflow and outflow boundary conditions
in numerical computations allows us to use a reduced

CONTACT Junseok Kim cfdkim@korea.ac.kr. Homepage: http://math.korea.ac.kr/∼ cfdkim

computational domain for simulating flow inside such
a long channel in the streamwise direction. For the
inlet boundary conditions, Han, Lu, and Bao (1994)
performed a comparative study with different types
of boundary conditions at the inlet and found that a
parabolic profile is simple but suitable for describing the
inflow conditions. However, many researchers (Dong,
Karniadakis, & Chryssostomidis, 2014; Guermond &
Shen, 2003; Hagstrom, 1991; Halpern, 1986; Halpern &
Schatzman, 1989; Hasan, Anwer, & Sanghi, 2005; Hed-
strom, 1979; Jin & Braza, 1993; Johansson, 1993; Jor-
dan, 2014; Kim & Moin, 1985; Kirkpatrick & Arm-
field, 2008; Lei, Fedosov, & Karniadakis, 2011; Liu, 2009;
Mateescu, Munoz, & Scholz, 2010; Ol’shanskii &
Staroverov, 2000; Poux, Glockner, Ahusborde, & Aza-
ïez, 2012; Poux, Glockner, & Azaïez, 2011; Regulagadda,
Naterer, & Dincer, 2011; Rudy & Strikwerda, 1980; Sani
& Gresho, 1994; Sani, Shen, Pironneau, & Gresho, 2006;
Sohankar, Norberg, &Davidson, 1998; Thompson, 1987)
have proposed special treatments for outlet boundary
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conditions owing to the lack of information at the outlet.
Four different types of boundary conditions – Dirich-
let (Han et al., 1994), Neumann (Kim & Moin, 1985;
Kirkpatrick & Armfield, 2008), convective (Ol’shanskii &
Staroverov, 2000), and nonreflecting (Jin&Braza, 1993) –
are widely applied to describe flow conditions at the
outlet.

Dirichlet and Neumann boundary conditions have
been widely used for outflow conditions. A Dirich-
let boundary condition with a velocity profile (e.g. the
Poiseuille profile in a channel) requires pre-knowledge
of the flow conditions at the outlet for specifying the
velocity profile explicitly, while this naturally provides
a global mass flux balance. A Neumann boundary con-
dition does not need pre-knowledge of the flow con-
ditions; however, it requires a large enough computa-
tional domain to prevent or reduce numerical errors
at the boundaries. Because of this requirement, addi-
tional computational cost is expected for applying a
Neumann boundary condition. To overcome the limi-
tations of Dirichlet and Neumann boundary conditions
at the outlet, a convective boundary condition is often
used for the outflow boundary condition. Ol’shanskii and
Staroverov (2000) proposed a convective boundary con-
dition that is based on a first-order advection equation
(Halpern & Schatzman, 1989) and a scaling method
(Hagstrom, 1991). Typically, the advection velocity is
assumed to be a constant or have a Poiseuille profile, but
is somewhat arbitrary. Therefore, the advection veloc-
ity should be supplemented by a correction velocity at
each time step to conserve mass flux. Nevertheless, once
mass flux has been kept as a constant, the convective
boundary condition becomes a fixed Dirichlet bound-
ary condition. Another effective method derived from
a wave equation is the nonreflecting boundary method
(Hedstrom, 1979; Jin & Braza, 1993; Johansson, 1993;
Rudy & Strikwerda, 1980; Sani & Gresho, 1994; Thomp-
son, 1987), which performswell tominimize the spurious
artifacts at the outlet. This kind of model is suitable for
wake and jet flowwithmoderate andhighReynolds num-
bers. Recently, Dong et al. (2014) proposed an efficient
outflow boundary condition that can allow for the influx
of kinetic energy into the domain but prevent uncon-
trolled growth in the energy of the domain. To decouple
the pressure and velocity computation, they developed
a rotational velocity-correction type strategy. The pro-
posed method is efficient and can maximize the domain
truncation without adversely affecting the flow physics
and enable simulations even with much higher Reynolds
number.

In this paper, we propose an efficient and simple trans-
parent boundary condition to simulate channel-type
flows efficiently without trivial boundary treatment,

especially for low Reynolds number. A pressure bound-
ary condition is also proposed to match with the
Navier–Stokes equation. In the numerical algorithm, a
staggered marker-and-cell grid is used and temporal dis-
cretization is based on a projectionmethod. The interme-
diate velocity boundary condition is consistently adopted
for handling the velocity–pressure coupling. Character-
istic numerical experiments are presented to demon-
strate the robustness and accuracy of the numerical
scheme. Furthermore, the agreement of computational
results from small and large domains suggests that our
proposed outflow boundary condition can significantly
reduce computational domain sizes.

The paper is organized as follows: in Section 2, velocity
and pressure boundary conditions for an incompressible
Navier–Stokes equation are presented. Section 3 outlines
the numerical method. Section 4 provides a variety of
results. Finally, our conclusions are given in Section 5.

2. Governing equations and boundary
conditions

The non-dimensional Navier–Stokes equation and the
continuity equation for time-dependent incompressible
viscous flows can be written as

∂u
∂t

+ u · ∇u = −∇p + 1
Re

�u, (1)

∇ · u = 0, (2)

where Re = ρUL/μ is the Reynolds number, ρ andμ are
fluid density and viscosity, respectively,U and L are char-
acteristic velocity and length scales, respectively, p(x, t)
is the pressure, u(x, t) = (u(x, t), v(x, t)) is the veloc-
ity, where u and v are its components in the x- and
y-directions, respectively, x = (x, y) are Cartesian coor-
dinates on the domain � ⊂ R2, and t is the temporal
variable. The domain boundary consists of ∂� = ∂�wall⋃

∂�in
⋃

∂�out , where ∂�wall, ∂�in, and ∂�out are the
wall, inlet, and outlet boundaries, respectively. Here, the
velocities on the boundary are defined as

u|∂� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u|∂�wall is zero,
u|∂�in is a given function,
u|∂�out is computed by an outflow

boundary condition.

Figure 1 shows a schematic representation of the
inflow–outflow conditions. For simplicity of exposition,
we shall describe the inlet and outlet in the x-direction.
The other directions can be similarly defined.
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Figure 1. Schematic illustration of inflow–outflow boundary
conditions.

2.1. Velocity boundary conditions

At the inlet, the boundary condition can be chosen based
on the physical problem. In our paper, we consider inflow
parallel to the wall. Thus for ∂�in, we use the following
boundary condition:

u = û(y, t) and v = 0, (3)

where û(y, t) is a given x-directional inflow velocity func-
tion. Jin and Braza (1993) developed a nonreflecting
outlet boundary condition for incompressible unsteady
Navier–Stokes calculations:

ut + uux − 1
Re

uyy = 0 and vt + uvx − 1
Re

vyy = 0.

(4)

Halpern and Schatzman (1989) proposed the convective
boundary conditions

ut + U · ∇u = 0, (5)

where U(x, t) = (U(x, t),V(x, t)) is a known flow.
Ol’shanskii and Staroverov (2000) proposed a simple con-
vective boundary condition:

ut + Uux = 0 and v = 0. (6)

The computed velocityU is supplemented by a correc-
tion velocity to balance the mass flux, i.e.

∫
∂�in

u dy =
∫

∂�out

u dy.

The function U is formally chosen as constant or as a
Poiseuille profile. If the outlet flow is unknown, the veloc-
ityU can be calculated by taking the integral of both sides

of Equation (6):

U =
∫
∂�out

ut dy∫
∂�out

ux dy
=

(∫
∂�out

u dy
)
t∫

∂�out
ux dy

=

(∫
∂�in

u dy
)
t∫

∂�out
ux dy

.

(7)

However, when the inflow is a steady flow, the con-
stant flow rate at the inlet can lead to a zero velocity
U at the outlet. Thus, the outflow boundary condition,
Equation (6), will reduce to a Dirichlet boundary condi-
tion, i.e. ut = 0. It should be noted that, for unsteady flow,
the outflow is clearly not constant. Sohankar et al. (1998)
also proposed to setU as a convective velocity but to add a
correction velocity to guarantee the balance between the
inlet and outlet at each time step. The correction veloc-
ity is a constant over the entire outlet and is zero when
the outflow reaches a steady state. However, the choice of
the convective velocity is somewhat arbitrary. Note that,
in this approach, to compare with other boundary condi-
tions, we will perform several tests by using a convective
boundary condition. The chosen convective velocity U
is a constant Poiseuille profile when the outflow is in
the steady state; otherwise, it will be computed by using
Equation (7).

The fluid flow at low Reynolds number is gener-
ally characterized by smooth and constant fluid motion
because viscous forces are dominant. Therefore, we can
assume that the flow is onlymoved by the convection and
that itsmain direction is normal to the outflow boundary.
The first assumption implies that the transparent bound-
ary condition ut + u · ∇u = 0 is satisfied and the second
assumption implies v=0 because the outflow boundary
is perpendicular to the x-direction in our paper. There-
fore, to simulate the fluid flow at low Reynolds number
without trivial boundary treatment, we propose to use a
simple and efficient transparent boundary condition:

ut + uux = 0 and v = 0. (8)

These conditions are admissible provided that the out-
let boundary is not located quite nearby the downstream.
Note that in solving the incompressible Navier–Stokes
equations at the inflow and outflow boundaries, both
the velocity-divergence and the velocity–pressure forms
should be considered to balance themass flux. This is also
a new aspect of this paper. The form (8) may suffer from
some numerical difficulties, which will be described in
Section 3.1. Thus, by using the divergence-free condition
∇ · u = 0, we can rewrite Equation (8) as

ut + uux = ut + uux + u(ux + vy)

= ut + (u2)x = 0 and v = 0. (9)
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2.2. Pressure boundary conditions

Taking the inner product of both sides of Equation (1)
with n, which is the unit normal vector to the domain
boundary, we obtain

n · ∇p = n ·
(

−ut − u · ∇u + 1
Re

�u
)
. (10)

On ∂�wall, we get

n · ∇p = n · �u
Re

. (11)

Here we have used the no-slip boundary condition, i.e.
u = 0. On ∂�in, by using Equation (10), we get

px = −ut − uux − vuy + 1
Re

(uxx + uyy)

= −ût + 1
Re

ûyy. (12)

Here, we have used the inflow boundary condition (3).
For the outlet boundary, by substituting Equation (8) into
Equation (10), we get

px = 1
Re

(uxx + uyy). (13)

Thus, the pressure boundary condition is directly
derived by using the Navier–Stokes equation and out-
let flow boundary conditions. The pressure condition
is mainly balanced with the viscous stress terms at the
boundary. All the pressure boundary conditions are of
Neumann type. Thus, the method used with the projec-
tion method would be convenient and simple. It is note-
worthy that the present form of the pressure boundary
condition ismore plausible because the flows inmicroflu-
idics are mostly viscous dominated. For high Reynolds
number flows, the pressure boundary condition becomes
a homogeneous Neumann boundary condition. This is
because the viscous term (uxx + uyy)/Re is negligible.

3. Numerical methods

We use a staggered grid, where the pressure field is
stored at cell centres and velocities at cell interfaces (see
Figure 2). Let h be a uniform mesh spacing. The centre
of each cell, �ij, is located at (xi, yj) = ((i − 0.5)h, (j −
0.5)h) on the computational domain � = (0, Lx) ×
(0, Ly), for i = 1, . . . ,Nx and j = 1, . . . ,Ny. Nx and Ny
are the numbers of cells in the x- and y-directions, respec-
tively. The cell edges are located at (xi+ 1

2
, yj) = (ih, (j −

0.5)h) and (xi, yj+ 1
2
) = ((i − 0.5)h, jh).

At the beginning of each time step, given un, we
want to find un+1 and pn+1 by solving the following

Figure 2. Velocities defined at cell boundaries and the pressure
field defined at the cell centres.

discretized equations in time with a projection method
(Chorin, 1968):

un+1 − un

�t
= −(u · ∇du)n − ∇dpn+1 + 1

Re
�dun,

(14)

∇d · un+1 = 0. (15)

Here, ∇d and �d denote the centred difference
approximations for the gradient and Laplacian operators,
respectively:

∇dp =
(
pi+1,j − pi,j

h
,
pi,j+1 − pi,j

h

)
,

�du = (�dui+ 1
2 ,j
,�dvi,j+ 1

2
)

=
(
ui+ 3

2 ,j
+ ui− 1

2 ,j
+ ui+ 1

2 ,j+1 + ui+ 1
2 ,j−1 − 4ui+ 1

2 ,j

h2
,

vi,j+ 3
2

+ vi,j− 1
2

+ vi+1,j+ 1
2

+ vi−1,j+ 1
2

− 4vi,j+ 1
2

h2

)
.

The outline of the main procedure in one time step is
as follows.

Step 1. Initialize u0 to be the divergence-free velocity
field.

Step 2. Update un+1 and n · ∇dpn+1 on the entire
boundaries. The computational details will be
given in Section 3.1.

Step 3. Solve an intermediate velocity field ũwithout the
pressure gradient term,

ũ − un

�t
= −un · ∇dun + 1

Re
�dun. (16)
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Step 4. Solve the Poisson equation for the pressure,

�dpn+1 = 1
�t

∇d · ũ. (17)

The resulting linear system of Equation (17)
is solved using a multigrid method. Note that
Equation (17) is derived by applying the diver-
gence operator to Equation (18):

un+1 − ũ
�t

= −∇dpn+1. (18)

It should be pointed out that, to find the solu-
tion for pressure in Equation (17), we should
know the boundary condition of the intermedi-
ate velocity. Our proposed intermediate velocity
boundary condition is described in Section 3.2.

Step 5. Update the divergence-free velocity,

un+1 = ũ − �t∇dpn+1. (19)

These steps complete one time step. For more detail,
see Li, Jung, Lee, Lee, and Kim (2012). In this study, we
focus on introducing efficient outflow boundary condi-
tions and pressure boundary conditions.

3.1. Boundary conditions for velocity and pressure
gradient

In this section, we will give detailed descriptions of
boundary conditions for the velocity and pressure gra-
dient on the entire boundary. First, we will consider
the velocity boundary condition. The velocities un+1

on ∂�in and ∂�wall are given as a known function
and zero, respectively. The outflow boundary condition
Equation (8) can be discretizedwith anupwind scheme as

un+1
Nx+ 1

2 ,j
= unNx+ 1

2 ,j
− �tunNx+ 1

2 ,j
ūnxNx+ 1

2 ,j
. (20)

Here ūnxi+ 1
2 ,j

is computed using the upwind procedure:

ūnxi+ 1
2 ,j

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

un
i+ 1

2 ,j
− un

i− 1
2 ,j

h
if un

i+ 1
2 ,j

> 0,

un
i+ 3

2 ,j
− un

i+ 1
2 ,j

h
otherwise.

Note that Equation (19) yields un+1
Nx+ 1

2 ,j
= 0 when

un
Nx+ 1

2 ,j
= ūnyNx+ 1

2 ,j
= 0 for every j = 1, ...,Ny. Thismeans

that, once u is zero at the boundary, uwill always be zero.
To avoid this trivial case, we use the conservation form

of the convective terms in Equation (9). The discretized
form can be written as

un+1
Nx+ 1

2 ,j
= unNx+ 1

2 ,j
− �t

h

[
(unNx+ 1

2 ,j
)2 − (unNx− 1

2 ,j
)2
]
,

(21)

where we used v=0 on the outflow boundary condi-
tion. For the pressure boundary condition, we discretize
Equation (12) on ∂�in as

pn+1
x 1
2 ,j

= −
un+1

1
2 ,j

− un1
2 ,j

�t
+

un1
2 ,j+1

+ un1
2 ,j−1

− 2un1
2 ,j

h2Re
. (22)

At the wall, without loss of generality, we only describe
the pressure in the y-direction.DiscretizingEquation (11),
we can get

pn+1
yi, 12

=
vn
i,− 1

2
+ vn

i, 32
− 2vn

i, 12
h2Re

+
vn
i+1, 12

+ vn
i−1, 12

− 2vn
i, 12

h2Re
.

(23)

Since the no-slip boundary condition is used at the wall,
we can get vi,1/2 = 0. Meanwhile, on the staggered grid,
vni,−1/2 can be simply computed as −vni,3/2 to match
the no-slip boundary condition. Thus in our approach,
Equation (11) can be reduced to

n · ∇pn+1 = 0.

For ∂�out , the pressure boundary condition can be
discretized as

pn+1
xNx+ 1

2 ,j
=

un
Nx+ 1

2 ,j+1
+ un

Nx+ 1
2 ,j−1

− 2un
Nx+ 1

2 ,j

h2Re

+
2un

Nx+ 1
2 ,j

− 5un
Nx− 1

2 ,j
+ 4un

Nx− 3
2 ,j

− un
Nx− 5

2 ,j

h2Re
.

(24)

Note that, since there is no information for uNx+ 3
2 ,j
, we

use a second-order one-sided approximation to uxx.

3.2. Boundary condition for intermediate velocity

Since we have used the projection method to discretize
the time-dependent incompressible Navier–Stokes
equation in time, it is necessary to define the bound-
ary condition for the intermediate velocity field. In our
approach, we can directly compute u∗. Since we have cal-
culatedun+1 andn · ∇dp in Step 2 of Section 3, we can use
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them straightforwardly. From Equation (19), we have

ũ = un+1 + �t∇pn+1. (25)

On ∂�wall, we get

n · ũ = n · (un+1 + �t∇dpn+1) = 0. (26)

For the inflow boundary, by recalling Equation (19),
we have

ũ 1
2 ,j

= un+1
1
2 ,j

+ �tpn+1
x 1
2 ,j

= un1
2 ,j

+ �t
h2Re

(
un1

2 ,j+1 + un1
2 ,j−1 − 2un1

2 ,j

)
. (27)

Here, we have used the Dirichlet boundary condition
for velocity and the homogeneous Neumann boundary
condition for pressure. On the outflow boundary, we
obtain

ũNx+ 1
2 ,j

= un+1
Nx+ 1

2 ,j
+ �tpn+1

xNx+ 1
2 ,j

= un+1
Nx+ 1

2 ,j
+ �t

(
unNx+ 1

2 ,j+1 + unNx+ 1
2 ,j−1

−2unNx+ 1
2 ,j

)
/(h2Re) + �t

(
2unNx+ 1

2 ,j

−5unNx− 1
2 ,j

+ 4unNx− 3
2 ,j

− unNx− 5
2 ,j

)
/(h2Re).

(28)

Thus, the intermediate velocity boundary condition is
consistently adopted for the velocity–pressure coupling.
With different projection methods, the gradient pressure
term (∇dp) is added (Kim, 2005; Kim & Moin, 1985;
Poux, Glockner, &Azaïez, 2011; Tseng&Huang, 2014) or
subtracted (Chorin, 1968; Li, Jung, Lee, Lee, &Kim, 2012;
Li, Yun, Lee, Shin, Jeong, & Kim, 2013). Our proposed
method for the intermediate velocity will work well if
∇dp is subtracted. For the other case, the intermediate
velocity boundary condition should be modified and can
be derived by using the intermediate pressure boundary
condition in a similar way. Next, we will briefly describe
the extension of our proposed method to an implicit
scheme for the momentum equation (1):

un+1 − un

�t
= −(u · ∇du)n − ∇dpn+1 + 1

Re
�dun+1.

(29)

Then we decompose Equation (29) into two steps:

ũ − un

�t
= −(u · ∇du)n + 1

Re
�dũ, (30)

un+1 − ũ
�t

= −∇dpn+1. (31)

Since the boundary conditions for velocity and pres-
sure gradient are known in Section 3.2, we can straight-
forwardly compute the intermediate velocity values in the

domain boundary as

n · ũ = n · un+1 + �tn · ∇dpn+1. (32)

However, in that case the time step may be restricted
by numerical stability, since explicit time integration for
the diffusion term is considered on the boundary. One
possible way to improve numerical stability is to replace
�dun by�dũ in Equations (22)–(24) and substitute them
into Equation (32). After that, we can combine Equa-
tions (30) and (32) and find the solutions of the inter-
mediate velocity. Once ũ is known, we can straightfor-
wardly compute pn+1 and un+1 by using Equations (17)
and (19), respectively. Note that, in this paper, we use
Equations (14) and (15) so that we only need to solve
Equation (17 ). However, if the Reynolds number ismuch
smaller, implicit or Crank–Nicolson schemes should be
considered. It should also be noted that the projection
method on staggered grids has the property that an arbi-
trary boundary condition for the pressure gradient can be
used first, and then a corresponding boundary condition
can be provided for the intermediate velocity through
Step 5. The corresponding boundary condition should
certainlymake the outflow satisfy its boundary condition.

3.3. Mass flux correction algorithm

Undesirable mass flux loss in a global or local sense is
possible because of boundary singularities in a finite dif-
ference framework. The proposed outflowconditionswill
leverage for unexpected mass flux loss by addressing the
coupling effect between pressure and velocity at the sin-
gular point (see the circle in Figure 3(a)). The centred dif-
ference approximation for the velocity in Equations (21)
and (28) at the singular point is not a good choice and
may lead to flux loss because of oscillation of the values.
Furthermore, the present boundary conditions require a
transient time to achieve mass balance, which will be dis-
cussed in the next section. Thus, we propose a simple
correction algorithm to maintain the global mass flux.
The idea is summarized as follows.

Step 1. Update the velocity with the outlet boundary
condition, ũ,

ũNx+ 1
2 ,j

= unNx+ 1
2 ,j

− �t
(
(unNx+ 1

2 ,j
)2

−(unNx− 1
2 ,j

)2
)

/h. (33)

Step 2. Set un+1
Nx+ 1

2 ,j
= εũNx+ 1

2 ,j
if ũNx+ 1

2 ,j
> 0, and set

un+1
Nx+ 1

2 ,j
= ũNx+ 1

2 ,j
otherwise. Here, ε can be

determined from the balance of mass flux
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Figure 3. Schematic illustration of channels with (a) and without (b) a singular point in the outlet.

between the inlet and outlet, i.e.
Ny∑
j=1

un+1
1
2 ,j

=
Ny∑
j=1

un+1
Nx+ 1

2 ,j
. (34)

The following should be pointed out.

(1) Our scheme satisfies the divergence-free condition
with the mass flux correction algorithm because
Equations (15) and (18) are used in the projection
method at every time step.

(2) Since the mass correction method also leads to
spurious velocities, our proposed outflow boundary
condition does not require it if the outflow is parallel
to the wall (see Figure 3 (b)), because in this case the
mass flux loss is much smaller, which will be shown
in the next section.

(3) In the case of a singular point at the outlet,
the correction algorithm is applied after sev-
eral flow-through time periods t0, which satisfies
t0
∫
∂�in

u dy = αLxLy. Here, α is the flow-through
time. In our approach, we set α = 3. This is because
transient flow fields may promote numerical insta-
bility.

(4) In the case without a singular point at the out-
let boundary, we can use the mass flux correc-
tion algorithm only once to save transient time, i.e.
α = 1.

4. Numerical results

In this section, to demonstrate the performance of our
proposed scheme we perform several numerical exper-
iments for parabolic flow, convergence testing, unsteady
flow in a channel, backward-facing step flow, and outflow
with a block on the outlet.

4.1. Parabolic flow

The first numerical experiment is performed for para-
bolic flow through a channel. The channel ranges from 0

to 2 in the streamwise (x) direction and from 0 to 1 in the
normal (y) direction. The initial velocity field consists of
random perturbations with a maximum amplitude of 2;
that is, u(x, y, 0) = rand(x, y) and v(x, y, 0) = rand(x, y),
where rand(x,y) is a random number between −1 and
1. The inflow velocity is set as u(0, y, t) = 8(y − y2) and
v(0, y, t) = 0. A no-slip boundary condition is applied
at the top and bottom walls; i.e. (u, v) = (0, 0). It is
well known that, at the beginning of a random veloc-
ity field, the wake gradually attains a steady state for a
low Reynolds number. At steady state, the shape of the
flow is the same as that of the inflow. The evolution is
run up to T=7.813 with a time step of �t = 4h2. Here
h = 1/64 and Re = 100 are used. Note that, although
u0 does not satisfy the divergence-free condition, it con-
verges rather quickly to a divergence-free velocity field in
five time steps. It should be noted that, although when
we begin with u0 the projection method used can obtain
a divergence-free velocity field in one time step, it will
take many more iterations to ensure that the l2 normal
error of divergence of the velocity field is lower than
1E-6. Therefore, to reduce the computational cost, we
divided each time step process into five steps with sev-
eral iterations. Figure 4 shows the evolution of parabolic
flow. The results show that our method performs well
for simulating parabolic flow. To compare the velocity at
the outlet, in Figure 5(a), we show the results obtained
by our proposed models with and without a flux cor-
rection algorithm, along with those of the convective
model and the nonreflecting model. Here U is set as a
Poiseuille profile, since the outlet flow is known in this
test. Furthermore, we calculate the discrete l2-norm of
error, which is√√√√√ Ny∑

j=1
(uNx+ 1

2 ,j
− u 1

2 j
)2/Ny.

The errors are 8.49E-3, 8.48E-3, 1.07E-3, and 2.26E-2 for
our proposed models with and without a flux correction
algorithm, the convective model, and the nonreflecting
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Figure 4. Snapshots of velocity field at times t= 0 (a), t= 0.391 (b), t= 1.563 (c), and t= 7.813 (d).

Figure 5. Comparisons of our proposed models with and without a flux correction algorithm to the convective model and the nonre-
flecting model. (a) Velocity profiles at the outflow boundary position x= 2. (b) Flux loss rate, which is computed as the ratio of inlet to
outlet. Note the reason for the jump in flux rate: after three flow-through time period intervals, the fluid retains mass flux conservation
in our approach. Without a mass flux correction method, the mass flux will be conservative after more flow-through time periods.

model, respectively. These results indicate that the first
three models can efficiently emulate parabolic flow. The
reason for the failure of the nonreflecting model is that
it is derived from a wave equation and not for parabolic
flow. In Figure 5(b), we illustrate the flux loss rate, which
is computed by the ratio of inlet and outlet fluxes. As can
be seen, the convective model and our model satisfy flux
conservation, whereas the nonreflecting model does not.

Note that our correction algorithm is performed after

t0 = αLxLy
/⎛
⎝ Ny∑

j=1
u1/2,jh

⎞
⎠ = 4.5

before α = 3 is introduced. The jump in flux rate as
shown in Figure 5(b) is due to the correction algorithm
after three time periods. The numerical jump disappears
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later. It should be pointed out that, without the mass
correction algorithm, our model also maintains flux con-
servation after more fluid exits the outlet boundary,
because our outflow boundary condition and pressure
boundary conditions are defined by matching with the
Navier–Stokes equation.Unless otherwisementioned,we
will not use our correction algorithm for the channels,
which have no singular points.

4.2. Convergence test

We next perform spatial and temporal convergence tests
of the proposed method. To obtain the spatial conver-
gence rate, we perform a number of simulations with
increasingly fine grids h = 1/2n for n=5, 6, 7, and 8 on
the domain� = (0, 2) × (0, 1). The initial condition and
parameters are the same as in Section 4.1. It is easy to
find that, at equilibrium, the constant pressure gradient
equals uyy/Re, i.e. 16/Re. Thus the equilibrium solution
of parabolic flow is given by

u(x, y) = 8y(1 − y), v(x, y) = 0, and

p(x, y) = 16(1 − x)/Re.

Observing the evolution, which is described in Section
4.1, we can see that the outflow reaches a steady state
after t=7.813. Thus, in this section, we also run the
simulations up to T=7.813. We define the error of the
numerical solution on a grid as the discrete l2-norm of
the difference between the numerical solution uh and the
exact solution, uexact: ehij = uhij − uexactij . The other terms
are defined similarly. The rates of convergence are defined
as the ratio of successive errors: log2(‖eh‖2/‖eh/2‖2) and
log2(‖eh‖∞/‖eh/2‖∞). Here ‖e‖22 is a discrete l2 norm

and is defined as

‖e‖22 =
Nx∑
i=1

Ny∑
j=1

e2ij/(NxNy),

and ‖e‖∞ is a discrete l∞ norm, which is defined as
‖e‖∞ = max(|eij|). Since we refined the spatial and tem-
poral grids by factors of 4 and 2, respectively, the ratio
of successive errors should increase by a factor of 2. The
errors and rates of convergence obtained using these def-
initions are given in Table 1. The results suggest that
the scheme is almost second-order accurate in space, as
expected from the discretization.

To obtain the convergence rate for temporal dis-
cretization, we fix the space step size as h = 1/64 and
choose a set of decreasing time steps �t = 1.953E-3,
9.766E-4, 4.883E-4, and 2.441E-4. The errors and rates
of convergence obtained using these definitions are given
in Table 2. First-order accuracy with respect to time is
observed, as expected from the discretization.

4.3. Backward-facing step flow

To examine the robustness and accuracy of the pro-
posed method, we consider a backward-facing step flow.
We then compare our results with the previous experi-
mental (Armaly, Durst, & Pereira, 1983) and numerical
(Barton, 1997; Kim &Moin, 1985) results.

The backward-facing step geometry with channel
dimensions is shown in Figure 6. To verify the robust-
ness of the proposed numerical scheme, we consider an
initial condition of a random velocity field on the compu-
tational domain� = (0, 12) × (0, 1). The inflow velocity
isu(0, y, t) = max(24(1 − y)(y − 0.5), 0) and v(0, y, t) =
0. These are shown in Figure 7(a). The computations
are performed with Re = 500, h = 1/64, and �t = 5h2.

Table 1. Error and convergence results with various mesh grids.�t = 2h2 is used.

Grid

Case 64 × 32 128 × 64 256 × 128 512 × 256

u l2-error 2.75E-2 7.747E-3 2.75E-3 5.607E-4
Rate 1.88 1.86 1.87

l∞-error 5.900E-2 1.562E-2 4.167E-3 1.150E-3
Rate 1.92 1.91 1.86

v l2-error 1.311E-3 3.147E-4 7.585E-5 2.162E-5
Rate 2.06 2.05 1.81

l∞-error 2.292E-3 5.623E-4 1.399E-4 3.915E-5
Rate 2.03 2.00 1.84

p l2-error 2.424E-2 6.888E-3 1.898E-3 5.163E-4
Rate 1.81 1.86 1.87

l∞-error 4.438E-2 1.273E-3 3.445E-3 9.438E-4
Rate 1.80 1.89 1.87

∇d · u l2-error 4.449E-3 1.212E-3 3.335E-4 9.132E-5
Rate 1.88 1.86 1.87

l∞-error 5.090E-3 1.389E-3 3.827E-4 1.048E-4
Rate 1.87 1.86 1.87
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Table 2. Error and convergence results with various time steps. 64×128 is fixed.

�t

Case 1.953E-3 9.766E-4 4.883E-4 2.441E-4

u l2-error 7.744E-2 3.161E-2 1.598E-2 8.203E-3
Rate 1.29 0.98 0.96

l∞-error 1.700E-1 6.622E-2 3.262E-2 1.667E-2
Rate 1.36 1.02 0.97

v l2-error 3.547E-3 1.254E-3 5.982E-4 3.034E-4
Rate 1.50 1.07 0.98

l∞-error 6.265E-3 2.260E-3 1.094E-3 5.602E-4
Rate 1.47 1.05 0.97

p l2-error 5.003E-2 2.678E-2 1.459E-2 7.568E-3
Rate 0.90 0.88 0.95

l∞-error 9.491E-2 4.829E-2 2.660E-2 1.378E-3
Rate 0.97 0.86 0.95

∇d · u l2-error 6.273E-2 2.571E-2 1.301E-2 6.670E-3
Rate 1.29 0.98 0.96

l∞-error 7.197E-2 2.950E-2 1.493E-2 7.654E-3
Rate 1.29 0.98 0.96

Figure 6. Schematic of a flow over a backward-facing step.

Figures 7(a)–7(d) show snapshots of the velocity field at
times t = 0, 1.465, 2.441, and 48.828, respectively. As can
be seen, our model can simulate backward-facing step
flow well.

Plots of reattachment length at steady states with vari-
ousReynolds numbers Re = 100, 200, . . . , 800 are shown

in Figure 8(b). Typically, wall shear stress can be used
to identify the reattachment location; however, in our
computations, the wall shear stress is calculated very
nearly but not exactly at the wall. To obtain a more accu-
rate result, we numerically compute the reattachment
length Xh

r by using the quadratic polynomial α = aβ2 +
bβ + c with three given points, (xm, y3), (xp, y2), and
(xq, y1) (see Figure 8(a)). Herem ∈ [i, i + 1], which satis-
fies ui−1/2,3 ≤ 0 and ui+1/2,3 > 0 for some integer i. Then
xm is computed by the linear interpolation of nearby two
points, i.e. xm = (xi+1ui−1/2,3 − xiui+1/2,3)/(ui−1/2,3 −
ui+1/2,3). Note that xp and xq are defined in a similar
fashion. Finally, approximating the quadratic polynomial
α = aβ2 + bβ + c, we can get Xh

r = α
∣∣
β=0. To compare

the proposed algorithm to the previous results, we put

Figure 7. Snapshots of the velocity field at times t= 0 (a), t= 1.465 (b), t= 2.441 (c), and t= 48.828 (d).
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Figure 8. (a) Schematic of computing the reattachment length Xhr in the numerical solution. Here, open circle, filled square, and star
indicate the positive, zero, and negative values of u, respectively. (b) Reattachment length at steady statewith various Reynolds numbers.

Figure 9. Snapshots of streamlines with four domain sizes:� = (0, 4) × (0, 1) (a);� = (0, 5) × (0, 1) (b);� = (0, 6) × (0, 1) (c); and
� = (0, 8) × (0, 1) (d). Comparison of velocity with the three cases (e).

them together. From these results, we observe that the
results obtained by using our proposed method are in
good agreement with those from the previous numer-
ical methods (Barton, 1997; Kim & Moin, 1985) and
experiment (Armaly, Durst, & Pereira, 1983).

Figures 9(a)–9(e) are snapshots of streamlines for
various domain sizes � = (0, 4) × (0, 1), (0, 5) × (0, 1),
(0, 6) × (0, 1), and (0, 8) × (0, 1), respectively.HereRe =
400 is used. Figure 9(f) shows a comparison of velocity at
the outflow boundary for different domain sizes.

The agreement in our computational results obtained
from a larger domain and a smaller domain suggests
that our proposed outflow boundary condition is effi-
cient. It should be pointed out that, if the computational

domain is smaller, then the numerical error increases
(see Figure 9(a)). This is because our proposed method
is simple, we have assumed that the flow only moves by
convection, and that its main direction is normal to the
outflow boundary.

4.4. Comparisonwith Neumann boundary
condition

In this section, we will compare the results obtained by
our proposed and Neumann outflow boundary condi-
tions to show the efficiency and accuracy of our pro-
posed method. The backward-facing step flow drawn
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Figure 10. Snapshots of streamlines for the proposed outflow boundary (a) and a Neumann outflow boundary (b). From left to right,
they are results for� = (0, 4) × (0, 1) and� = (0, 7) × (0, 1), respectively.

Table 3. The l2-errors with various domain sizes for the proposed
outflow boundary and the Neumann outflow boundary.

Domain (�)

Case (0, 4) × (0, 1) (0, 5) × (0, 1) (0, 6) × (0, 1) (0, 7) × (0, 1)

u Neumann 9.871E-2 2.566E-2 1.599E-2 1.299E-2
Proposed 3.494E-2 1.012E-2 6.010E-3 2.314E-3

v Neumann 2.315E-2 5.442E-3 3.387E-3 2.796E-3
Proposed 1.745E-2 4.147E-3 2.188E-3 1.051E-3

in Section 4.3 is considered. The parameters and initial
condition are chosen to be the same as in Section 4.3.

The comparisons with the two boundary conditions
are drawn in Figure 10. From left to right, they are results
for � = (0, 4) × (0, 1) and � = (0, 7) × (0, 1), respec-
tively. As can be observed from Figure 10(a), the agree-
ment between the results computed from the larger and
smaller domains is good. This suggests that our proposed
outflow boundary condition is more efficient than the
Neumann boundary condition.

Furthermore, we perform a number of simulations
with increasing domains � = (0, Lx) × (0, 1) for Lx =
4, 5, 6, and 7. Since there is no closed-form analytical
solution for this problem, we consider a reference numer-
ical solution, which is obtained in a large domain � =
(0, 8) × (0, 1). Therefore, we can compute the l2 errors
of velocities directly for each case. These l2 errors are
given in Table 3. The results suggest that, as the domain
size increases, the l2 errors converge. These results also
suggest that our proposed outflow boundary condition
is more accurate than the Neumann outflow boundary
because the l2 errors obtained by our proposed out-
flow boundary condition are much smaller than those
obtained by the Neumann outflow boundary.

4.5. Efficiency of the proposedmethod

To investigate the efficiency of our proposed method, we
measure CPU times needed to solve the following prob-
lem: u(x, y, 0) = rand(x, y), v(x, y, 0) = rand(x, y) on
the domain � = (0, 4) × (0, 1) with 2n+2 × 2n meshes
for n = 4, 5, 6, 7, and 8. The inflow velocities are
u(0, y, t) = max(24(1 − y)(y − 0.5), 0) and v(0, y, t) =
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Figure 11. Logarithm of the total CPU time versus number of
mesh grid (NxNy) in multigrid solver.

0. Here, Re = 500 is fixed. All simulations are run up to
1000�t with the time step �t = h2. Note that each sim-
ulation is run until the maximum error of the residual is
less than 10−7. Since we refined the spatial grids by a fac-
tor of four, computation times should be increased ideally
by a factor of four owing to the discretization (17), which
is solved by using a multigrid method, with no special
computing operators for the inflow and outflow bound-
ary conditions added. Figure 11 shows the total CPU
time versus number of mesh grid (NxNy). The straight
fitting plot implies that the multigrid solver achieves
O(NxNy) efficiency. Furthermore, the computing time for
the boundary conditions can be negligible because our
method updates the boundary velocity explicitly. If an
implicit update for the boundary condition is chosen,
then the computational time is not negligible.

4.6. Three-dimensional flow

Our method can also be straightforwardly extended to
three-dimensional flows. Here, we consider a backward-
facing step flow with an initial condition of a random
velocity field on the computational domain� = (0, 3) ×
(0, 1) × (0, 1). The inflow velocities are u(0, y, z, t) =
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Figure 12. Snapshots of the velocity field inhorizontal (a) andvertical (b) views. From left to right, the computational times are t = 0.098,
0.293, 0.586, and 2.441.

Figure 13. Schematic illustration of inflow–outflow boundary conditions (a). Schematic illustration of inflow–outflow boundary condi-
tions and computing domain for finding the exact solution (b).

max(24(1− y)(y− 0.5)(1− z)(z− 0.5), 0), v(0, y, z, t) =
0, and w(0, y, z, t) = 0. The computations are performed
with Re = 100, h = 1/64, and �t = h2. Figures 12(a)
and 12(b) show snapshots of the velocity field in hor-
izontal and vertical views, respectively. From left to
right, the computational times are t = 0.098, 0.293,
0.586, and 2.441. As can be seen from the figure,
our proposed model can simulate three-dimensional
flows well.

4.7. Block on the outlet

We now consider the flow geometry shown in
Figure 13(a). A fluid enters the upper half of a rectilinear
channel at the left domain boundary and exits the lower
half of the channel at the right boundary. The inflow
velocity is set as u(0, y, 0) = max(24(1 − y)(y − 0.5), 0)
and v(0, y, 0) = 0 on� = (0, Lx) × (0, 1)with h = 1/64,
�t = 4h2, Lx = 4, and Re = 500. A block is set at y>0.5
at the outflow boundary. Note that, in this case, there
is a singularity point on the outflow boundary. Thus we
should use the proposed mass correction method. Since
there is no closed-form analytical solution for this prob-
lem, we consider a reference numerical solution, which is
first obtained in a large domain� = (0, Lx + 2) × (0, 1),
as shown in Figure 13(b), and then in the domain � =
(0, Lx) × (0, 1). The other parameters are chosen to be

the same as in the above initial condition. Figure 14
shows contour plots of the stream functions at t=3.052
and 42.724 for convective, nonreflecting, our proposed
model, and a reference numerical solution, respectively.
Here, U is computed by using Equation (7), since the
outlet flow is unknown in this test. As can be seen,
compared with the convective and proposed models, flu-
ids cannot completely go across the outlet boundary by
using the nonreflecting model. Since its outflow bound-
ary condition is derived from a wave equation with-
out flux correction, unphysical flow appears for lower
Reynolds numbers. Also, the convective model can sim-
ulate inflow and outflow when a block is set on the outlet
boundary, whereas the outlet flow boundary is reduced
to a Dirichlet boundary though the outflow does not
reach a steady flow. This is not a naturally occurring
physical phenomenon. Compared with them, in our pro-
posed model the outflow seems to be a parabolic-type
flow, which is closer to the reference numerical solution.
The reason for this is that our model allows the out-
flow to be adjusted on the basis of the current inflow
and inside fluid, whereas the convective model works
with a given artificial velocity and mass flux correction
method.

Figures 15(a)–15(d) show the contour plot of the
stream function with three domain sizes Lx = 2, 4, and
6 for convective, nonreflecting, our proposed models,
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Figure 14. Evolution of outflow with a block obtained by using our proposed model. From top to bottom, they are for convective, non-
reflecting, our proposed models, and the reference numerical solution, which is obtained in a larger domain as shown in Figure 13(b),
respectively. The computational times are shown for the left and right sides of the figure.

Figure 15. Comparison of three models with different domain sizes at T = 61.035. (a) Convective model, (b) nonreflecting model, (c)
our proposedmodel, and (d) the reference numerical solution. From left to right, the domain sizes are (0, 2) × (0, 1), (0, 4) × (0, 1), and
(0, 6) × (0, 1).

Figure 16. Comparison of the outlet velocity for three models with different domain sizes at T = 61.035. To compare them, we put the
reference numerical solutions together. (a) Lx = 2, (b) Lx = 4, and (c) Lx = 6.

and the reference numerical solutions, respectively. In
Figure 16, we compare the outlet velocity for the four
cases with the three domain sizes.

As can be seen, the outflows obtained by using the
nonreflecting model lead to flux loss with the increase in
the domain size. Meanwhile, with the convective model,

the outflow reaches a similar constant outflow profile for
different domain sizes. Compared with the nonreflect-
ing and convective models, our proposed model reaches
a natural and efficient outflow, which seems to be a
parabolic-type flow, and is closer to the reference numer-
ical solution.
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5. Conclusions

In this paper, we presented a simple and efficient outflow
boundary condition for an incompressibleNavier–Stokes
equation. The proposed outflow boundary condition is
based on the transparent equation, where a weak for-
mulation is used. By matching with the Navier–Stokes
equation adopted inside the domain, we exactly pre-
sented the pressure boundary condition. Furthermore,
we proposed the pressure boundary for convective and
nonreflecting models. In the numerical algorithm, a
staggered marker-and-cell grid was used and tempo-
ral discretization was based on a projection method.
The intermediate velocity boundary condition is con-
sistently adopted to handle the velocity–pressure cou-
pling. Although our numerical scheme is an explicit
scheme in time and has first-order accuracy in time, we
focus on proposing efficient outflow boundary condi-
tions and pressure boundary conditions in this study. The
extensions to implicit and Crank–Nicolson schemes are
straightforward. Characteristic numerical experiments
were presented to demonstrate the accuracy of our pro-
posed model. Although a first-order equation is used
on the outlet boundary, almost second-order accuracy is
observed for our model in the convergence test, because
we use a full second-order scheme to discretize the
Navier–Stokes equation inside the domain. Compared
with the convective model and our proposed model,
the nonreflecting model is not a good choice for low
Reynolds number flow and the outflow when a block is
on the outlet boundary, because the nonreflecting model
cannot maintain mass flux conservation and parabolic
flow is not its solution. The convective model is simple
and effective satisfying mass flux conservation, although
once the mass flux of the inflow becomes constant, the
convectivemodel will be reduced to aDirichlet boundary
condition. Compared with these two methods, our pro-
posedmethod allows the outlet flow to be adjusted on the
basis of the current inflow and fluids inside the domain,
when the Reynolds number is low. Our proposedmethod
is simple compared to that of Dong et al. (2014). How-
ever, this comparison is in some ways unfair, because the
method presented in Dong et al. (2014) can maximize
the domain truncation without adversely affecting the
flow physics even at higher Reynolds numbers, whereas
our approach aims to propose an efficient and simple
transparent boundary condition to simulate channel-
type flows efficiently without trivial boundary treatment
at lower Reynolds numbers. When the Reynolds number
is high, our method requires a much larger computa-
tional domain to reduce numerical errors compared to
that of Dong et al. (2014), owing to the simplicity of
our proposed transparent boundary condition. In future,
we will extend our work to simulate multiphase fluids.

Mass conservation should be satisfied for each fluid sep-
arately if the mass flux is to be conserved. Therefore, the
inflow and outflow boundaries should be coupled with
the phases in that case. In future work, we will investigate
efficient inflow and outflow boundaries to conserve the
total mass of each fluid.
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