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a b s t r a c t 

We develop an unconditionally stable direct discretization scheme for solving the phase- 

field crystal equation on surfaces. The surface is discretized by using an unstructured 

triangular mesh. Gradient, divergence, and Laplacian operators are defined on triangular 

meshes. The proposed numerical method is second-order accurate in space and time. At 

each time step, the proposed computational scheme results in linear elliptic equations 

to be solved, thus it is easy to implement the algorithm. It is proved that the proposed 

scheme satisfies a discrete energy-dissipation law. Therefore, it is unconditionally stable. 

A fast and efficient biconjugate gradients stabilized solver is used to solve the resulting 

discrete system. Numerical experiments are conducted to demonstrate the performance of 

the proposed algorithm. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

1. Introduction 

In this paper, a second-order accurate scheme in space and time is proposed for the phase-field crystal (PFC) model on

a general surface S [1,2] , namely, 

∂φ

∂t 
( v , t) = M�τμ(v , t) , (1)

μ(v , t) = φ3 (v , t) + (1 − ε) φ(v , t) + �τκ(v , t) , (2)

κ(v , t) = 2 φ(v , t) + �τφ(v , t) , v ∈ S, 0 < t ≤ T , (3)

φ(v , 0) = φ0 (v ) , (4)
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where φ( v , t ) is the density field on the surface, M is the mobility, ε is atom thickness, �τ is the Laplace–Beltrami operator,

μ( v , t ) is the chemical potential, and κ( v , t ) is an auxiliary function. For simplicity of exposition, we let M = 1 and periodic

boundary conditions are considered if the surface boundary exists. The PFC model is based on the theory of freezing [2,3] .

The mathematical model can be derived using the following free energy functional [1,2] , i.e., 

E(φ) = 

∫ 
S 

(
1 

4 

φ4 + 

1 − ε

2 

φ2 − |∇φ| 2 + 

1 

2 

(�φ) 2 
)

dv . 

The solution of the PFC model satisfies the total energy dissipation and total mass conservation. For various applications of

the PFC model, see Provatas et al. [4] . However, it is difficult to simulate phase separation kinetics on surfaces. 

First, it is difficult to obtain an efficient numerical method that is accurate and stable because the PFC equation has a

nonlinear term and sixth-order spatial derivatives. An explicit time scheme has severe stability restrictions. A fully implicit

time step scheme can use a relatively large time step owing to its stability. However, it is first-order accurate in time and

requires sufficiently small time steps to obtain accurate numerical solutions. To remove the time step restrictions, several

methods have been proposed. Wise et al. [5,6] proposed first- and second-order accurate numerical methods for the PFC

equation. Zhang et al. [7] proposed an unconditionally energy stable scheme and use an adaptive time step method to

reduce computational cost. Gomez and Nogueira [8] presented a second-order unconditionally stable scheme. The authors

in [9] applied the operator splitting method: a closed-form solution for the linear equation and a Newton-type iterative

scheme for the nonlinear equation. Glasner and Orizaga [10] developed an unconditionally stable second-order time accurate

scheme. Based on radial basis functions, Dehghan and Mohammadi [11] developed a numerical meshless method for the

phase field crystal equation. Li and Kim [12] proposed a stable and efficient compact fourth-order method for the phase field

crystal equation in two- and three-dimensional spaces. However, the above-mentioned methods require solving a nonlinear

equation. Yang and Han [13] proposed provably unconditionally stable schemes for solving the PFC equation by linearizing

the nonlinear term. Generally, linear elliptic equations are solved faster and are considered easier to implement compared

to nonlinear equations. 

Second, it is difficult to compute the Laplace–Beltrami operator on a curved surface. Existing numerical methods can be

classified into two categories: explicit methods and implicit methods. The finite element method is a representative explicit

method, where the Laplace–Beltrami operator is commonly expressed by the tangential gradient [14–16] . Implicit methods

extend the governing equations to a high-dimensional domain and choose a narrow band embedding of the curved surface;

the equation is then solved on that narrow band domain [17–19] . However, all implicit methods incur additional compu-

tational cost. To the best of the authors’ knowledge, there are few studies of the PFC equation on curved surfaces. Based

on the implicit method, Lee and Kim [20] presented a first-order accuracy finite difference scheme for the PFC equation.

However, the computation of the PFC model requires considerable CPU time for a long-time evolution. In general, a first-

order accurate method requires very small time steps to obtain accurate numerical results. Therefore, a stable high-order

numerical scheme on curved surfaces is essential. 

The objective of this study is to develop an efficient direct discretization for solving the PFC equation on curved surfaces.

The discretization is performed using a triangular surface mesh, therefore the gradient, divergence, and Laplacian operators

are defined on the surface mesh. A direct discretization method for the Cahn–Hilliard equation on a fixed surface was re-

cently developed in [21] . Recently, the authors extended their method on an evolving surface [22] . Compared with the finite

element method, the proposed method is easy to implement. In contrast with the implicit method, the additional computa-

tional cost can be reduced because the dimension of the resulting discretization scheme is the same as the dimension of the

continuous problem. Recently, several studies on the second order backward differentiation formula scheme have appeared

and its applications to Allen–Cahn equation [23,24] and the Cahn–Hilliard equation [25–27] . Both the energy stability and

the unique solvability were preserved. Our proposed scheme, also derived by combining a backward differentiation and a

direct discretization for the time and space derivative terms, respectively, is second-order accurate in time and space. A fast

and efficient biconjugate gradient stabilized solver is used to solve the resulting discrete system. 

The contents of this paper are as follows. In Section 2 , the second-order numerical scheme for the PFC equation is

derived. In Section 3 , computational experiments are performed to demonstrate the feasibility of the proposed method. In

Section 4 , conclusions are given. 

2. Numerical solution 

Some basic notations regarding triangular meshes are first introduced, and a stable scheme for the PFC equation a curved

surface is then proposed. 

2.1. Discretizations of the Laplace–Beltrami operator 

Let S = { v i | 1 ≤ i ≤ N v } be a triangular discretization of S and F = { T k | 1 ≤ k ≤ N F } be the set of triangles. For a vertex v ∈ S ,

let v j be the neighboring vertices of v for j = 0 , 1 , . . . , p, where v 0 = v p . The vertices v j are labeled counterclockwise. Let

T j be the triangle with vertices v, v j , v j+1 , and G j = (v j + v j+1 + v ) / 3 (see Fig. 1 ). For a small regular surface ˜ S by using

Green’s formula, one has ∫ 
˜ 
�φdv = 

∫ 
˜ 
〈 ∇φ, n 〉 d ∂v . (5) 
S ∂ S 
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Fig. 1. (a) Triangular surface mesh. (b) Dual neighbor triangular mesh of the vertex v and its neighbors for evaluating the Laplace–Beltrami operators. 

 

 

 

 

 

 

 

 

 

Here, n is the outer normal vector of the regular surface ˜ S . It is easy to obtain that ∫ 
˜ S 
�φdv ≈ D (v )�τφ(v ) , (6)

where D (v ) = 

∑ p−1 
j=0 

| ̂  T j | and | ̂  T j | is the area of ˆ T j , which is a triangle with vertices v, G j , and G j+1 . �τ is a discrete Laplace–

Beltrami operator. Furthermore, 

∫ 
∂ ̃  S 

〈 ∇φ, n 〉 d∂v ≈
p−1 ∑ 

j=0 

(‖ G j+1 − G j ‖ ) 

∫ 1 

0 

〈 
q ∇ d φ(G j ) + (1 − q ) ∇ d φ(G j+1 ) , q n v (G j ) + (1 − q ) n v (G j+1 ) 

〉 
dq 

= 

p−1 ∑ 

j=0 

‖ G j+1 − G j ‖ 

6 

(
2 

〈∇ d φ(G j ) , n v (G j ) 
〉
+ 2 

〈∇ d φ(G j+1 ) , n v (G j+1 ) 
〉

+ 

〈∇ d φ(G j ) , n v (G j+1 ) 
〉
+ 

〈∇ d φ(G j+1 ) , n v (G j ) 
〉)

. (7)

Here, ‖ · ‖ and 〈· , ·〉 denote the normal and inner vector product, respectively. The normals n v ( G j ) and n v (G j+1 ) are defined

as 

n v (G j ) = 

(G j+1 − G j ) × N j 

‖ (G j+1 − G j ) × N j ‖ 

and n v (G j+1 ) = 

(G j+1 − G j ) × N j+1 

‖ (G j+1 − G j ) × N j+1 ‖ 

. (8)

Here N j and N j+1 are the normal vectors of the triangles T j and T j+1 , respectively. ∇ d φ( G j ) is the approximate surface

gradient of φ( G j ) at the centroid G j of each triangle. Eqs. (5) –(7) suggest that the discretization of the Laplace–Beltrami

operator can be defined by 

�τφ(v ) = 

1 

D (v ) 

p−1 ∑ 

j=0 

‖ G j+1 − G j ‖ 

6 

(
2 

〈∇ d φ(G j ) , n v (G j ) 
〉
+ 2 

〈∇ d φ(G j+1 ) , n v (G j+1 ) 
〉

+ 

〈∇ d φ(G j ) , n v (G j+1 ) 
〉
+ 

〈∇ d φ(G j+1 ) , n v (G j ) 
〉)

. (9)

A second-order-accurate method is used to compute ∇ d φ( G j ). Using a Taylor expansion, we obtain ⎧ ⎨ 

⎩ 

φ(v ) − φ(G j ) = 

〈∇ d φ(G j ) , v − G j 

〉
+ 0 . 5�d φ(G j ) ‖ v − G j ‖ 

2 + O (‖ v − G j ‖ 

2 ) , 

φ(v ) j − φ(G j ) = 

〈∇ d φ(G j ) , v j − G j 

〉
+ 0 . 5�d φ(G j ) ‖ v j − G j ‖ 

2 + O (‖ v − G j ‖ 

2 ) , 

φ(v j+1 ) − φ(G j ) = 

〈∇ d φ(G j ) , v − G j 

〉
+ 0 . 5�d φ(G j ) ‖ v j+1 − G j ‖ 

2 + O (‖ v j+1 − G j ‖ 

2 ) . 

(10)

We assume that ∇ d φ( G j ) has the following form 

∇ d φ(G j ) = α j (v j − G j ) + β j (v j+1 − G j ) , (11)
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where αj and β j are two constants. Then, substituting Eq. (11) into Eq. (10) yields ( 

α j 

β j 

0 . 5�d φ(G j ) 

) 

= B 

−1 
j 

( 

φ(v ) − φ(G j ) 
φ(v j ) − φ(G j ) 

φ(v j+1 ) − φ(G j ) 

) 

(12) 

B j = 

⎛ 

⎝ 

〈
v j − G j , v − G j 

〉 〈
v j+1 − G j , v − G j 

〉 〈
v − G j , v − G j 

〉〈
v j − G j , v j − G j 

〉 〈
v j+1 − G j , v j − G j 

〉 〈
v j − G j , v j − G j 

〉〈
v j − G j , v j+1 − G j 

〉 〈
v j+1 − G j , v j+1 − G j 

〉 〈
v j+1 − G j , v j+1 − G j 

〉
⎞ 

⎠ . (13) 

It is not difficult to prove that �d φ( G j ) is zero and B −1 
j 

exists, which implies that ∇ d φ( G j ) has second-order accuracy in

space. Therefore, combing Eqs. (9) –(13) , we can compute the Laplace–Beltrami operator (9) with second order accuracy. The

Laplace–Beltrami operator �τφ( v ) at the vertex v is rewritten as 

�τφ(v i ) = L i ·

⎛ 

⎜ ⎜ ⎝ 

φ(v 1 ) 
φ(v 2 ) 

. . . 
φ(v N v ) 

⎞ 

⎟ ⎟ ⎠ 

and 

⎛ 

⎜ ⎜ ⎝ 

�τφ(v 1 ) 
�τφ(v 2 ) 

. . . 
�τφ(v N v ) 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎝ 

L 1 

L 2 

. . . 
L N v 

⎞ 

⎟ ⎟ ⎠ 

·

⎛ 

⎜ ⎜ ⎝ 

φ(v 1 ) 
φ(v 2 ) 

. . . 
φ(v N v ) 

⎞ 

⎟ ⎟ ⎠ 

, 

where L i is an 1 × N v matrix for i = 1 , 2 , . . . , N v that can be obtained by Eqs. (9) –(13) . Furthermore, the N v × N v matrix L
can be defined as L = (L 1 , L 2 , . . . , L N v ) 

′ 
. For more detail, the reader is referred to [21] . 

2.2. Numerical scheme for the PFC model on the surface 

Let φn 
i 

be the numerical approximation of φ( v i , n �t ), where �t is the time step. To obtain a high-order numerical

solution, a stable backward differentiation scheme can be applied to Eqs. (1) –(3) : 

3 φn +1 
i 

− 4 φn 
i 

+ φn −1 
i 

2�t 
= �τμ

n +1 
i 

, i = 1 , . . . , N s , (14) 

μn +1 
i 

= (φn +1 
i 

) 3 + (1 − ε) φn +1 
i 

+ �τκ
n +1 
i 

, (15) 

κn +1 
i 

= 2 ̃

 φn +1 
i 

+ �τφ
n +1 
i 

. (16) 

Here, ˜ φn +1 
i 

= 2 φn 
i 

− φn −1 
i 

. It is obvious that Eqs. (14) –(16) are second-order accurate in time and space. As (φn +1 
i 

) 3 is non-

linear, the Newton-type iterative scheme in [12] can be applied, and thereby the nonlinear systems can be solved at each

time step. To reduce computational cost, the nonlinear term (φn +1 ) 3 is linearized as 

(φn +1 
i 

) 3 = ( ̃  φn +1 
i 

) 3 + 3( ̃  φn +1 
i 

) 2 (φn +1 
i 

− ˜ φn +1 
i 

) + O ((φn +1 
i 

− ˜ φn +1 
i 

) 2 ) 

= 3( ̃  φn +1 
i 

) 2 φn +1 
i 

− 2( ̃  φn +1 
i 

) 3 + O (( φtt 
n +1 
i �t) 2 ) , (17) 

thereby retaining the second-order accuracy in time. Therefore, keeping the second-order accuracy in time and space, we

can rewrite Eqs. (14) –(16) as 

3 φn +1 
i 

− 4 φn 
i 

+ φn −1 
i 

2�t 
= �τμ

n +1 
i 

, i = 1 , . . . , N s , (18) 

μn +1 
i 

= 3( ̃  φn +1 
i 

) 2 φn +1 
i 

− 2( ̃  φn +1 
i 

) 3 + (1 − ε) φn +1 
i 

+ �τκ
n +1 
i 

, (19) 

κn +1 
i 

= 2 ̃

 φn +1 
i 

+ �τφ
n +1 
i 

. (20) 

In Section 2.5 , a detailed proof will be provided for the unconditional stability of the proposed form. In this study, we set

φ−1 
i 

= φ0 
i 

. However, for later computations, the discrete system (18) –(20) is indeed second-order accurate. Let us rewrite
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Eqs. (18) –(20) as 

⎛ 

⎜ ⎝ 

3 I/ 2 −�tL 0 

−3 D( ̃  φn +1 ) − (1 − ε) I I −L 

−L 0 I 

⎞ 

⎟ ⎠ 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

φn +1 
1 
. . . 

φn +1 
N v 

μn +1 
1 
. . . 

μn +1 
N s 

κn +1 
1 
. . . 

κn +1 
N v 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

2 φn 
1 − φn −1 

1 
/ 2 

. . . 

2 φn 
N v 

− φn −1 
N v 

/ 2 

−2( ̃  φn +1 ) 3 1 
. . . 

−2( ̃  φn +1 ) 3 N s 

2 ̃

 φn +1 
1 
. . . 

2 ̃

 φn +1 
N v 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(21)

Here, I is the N v × N v identity matrix and 0 is the N v × N v zero matrix. D( ̃  φn +1 ) is a N v × N v diagonal matrix with diagonal

element ( ̃  φn +1 ) 2 . To solve the discrete system (21) , we use a biconjugate gradient stabilized method [28] . 

2.3. Total mass conservation property 

It is now proved that the proposed numerical scheme satisfies the total mass conservation property, that is, ∑ 

v i ∈ S 
φn +1 

i 
D (v i ) = 

∑ 

v i ∈ S 
φn 

i D (v i ) . (22)

By multiplying Eq. (18) by D ( v ) and summing by parts, we can obtain that ∑ 

v i ∈ S 
3 φn +1 

i 
D (v i ) − 4 

∑ 

v i ∈ S 
φn 

i D (v i ) + 

∑ 

v i ∈ S 
φn −1 

i 
D (v i ) 

= 2�t 
∑ 

v i ∈ S 
�τμ

n + 1 2 

i 
D (v i ) 

= �t 
∑ 

v i ∈ S 

( 

p−1 ∑ 

j=0 

‖ G j+1 − G j ‖ 

3 

(
2 

〈∇ d μ(G j ) , n (G j ) 
〉
+ 2 

〈∇ d μ(G j+1 ) , n (G j+1 ) 
〉

+ 

〈∇ d μ(G j ) , n (G j+1 ) 
〉
+ 

〈∇ d μ(G j+1 ) , n (G j ) 
〉))

(23)

Let G j G j+1 denote the edge of G j G j+1 . It is obvious that G j G j+1 belongs to the dual neighbor triangular mesh of the vertices

s and v j+1 (see Fig. 1 ). It should be noted that in Eq. (23) , the sum in the last term is for the vertex v . Thus, this sum can

be rewritten as ∑ 

v i ∈ S 
3 φn +1 

i 
D (v i ) − 4 

∑ 

v i ∈ S 
φn 

i D (v i ) + 

∑ 

v i ∈ S 
φn −1 

i 
D (v i ) 

= �t 
∑ 

G j G j+1 ∈ ̃ S 

(‖ G j+1 − G j ‖ 

3 

(
2 

〈∇ d μ(G j ) , n v (G j ) 
〉
+ 2 

〈∇ d μ(G j+1 ) , n v (G j+1 ) 
〉

+ 

〈∇ d μ(G j ) , n v (G j+1 ) 
〉
+ 

〈∇ d μ(G j+1 ) , n v (G j ) 
〉

+2 

〈∇ d φ(G ) j , n v j+1 
(G j ) 

〉
+ 2 

〈∇ d μ(G j+1 ) , n v j+1 
(G j+1 ) 

〉
+ 

〈∇ d μ(G j ) , n v j+1 
(G j+1 ) 

〉
+ 

〈∇ d μ(G j+1 ) , n v j+1 
(G j ) 

〉))
. (24)

As all vertices are labeled counterclockwise, Eq (8) implies that 

n v j+1 
(G j ) = 

(G j − G j+1 ) × N j 

‖ (G j − G j+1 ) × N j ‖ 

= −n v (G j ) and 

n v j+1 
(G j+1 ) = 

(G j − G j+1 ) × N j+1 

‖ (G j − G j+1 ) × N j+1 ‖ 

= −n v (G j+1 ) . (25)

Substituting Eq. (25) into Eq. (24) yields 

3 

∑ 

v i ∈ S 
φn +1 

i 
D (v i ) − 3 

∑ 

v i ∈ S 
φn 

i D (v i ) = 

∑ 

v i ∈ S 
φn 

i D (v i ) −
∑ 

v i ∈ S 
φn −1 

i 
D (v i ) . (26)
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As φ0 = φ−1 , we have 

3 

∑ 

v i ∈ S 
φ1 

i D (v i ) − 3 

∑ 

v i ∈ S 
φ0 

i D (v i ) = 

∑ 

v i ∈ S 
φ0 

i D (v i ) −
∑ 

v i ∈ S 
φ−1 

i 
D (v i ) = 0 , 

which implies ∑ 

v i ∈ S 
φ2 

i D (v i ) = 

∑ 

v i ∈ S 
φ1 

i D (v i ) . (27) 

Therefore, we have the chain of equalities ∑ 

v i ∈ S 
φn +1 

i 
D (v i ) = 

∑ 

v i ∈ S 
φn 

i D (v i ) = · · · = 

∑ 

v i ∈ S 
φ1 

i D (v i ) = 

∑ 

v i ∈ S 
φ0 

i D (v i ) , (28) 

which suggests that the proposed numerical scheme conserves the total mass. 

2.4. Unique solvability 

Eqs. (18) –(20) are uniquely solvable. The discrete inner product and centroid of the triangle face are defined by 

(φ, ψ) d = 

∑ 

v i ∈ S 
φi ψ i D (v i ) and (∇ d φ, ∇ d ψ) d = 

∑ 

v i ∈ S 

[ 

D (v i ) 
n −1 ∑ 

j=0 

∇ d φ(G j ) · ∇ d ψ(G j ) 

] 

. 

The discrete norm is defined as 

‖ φ‖ 

2 
d = (φ, φ) d , ‖∇ d φ‖ 

2 
d = (∇ d φ, ∇ d φ) d , and ‖ φ‖ −1 ,d = 

√ (
φ, (−�τ ) 

−1 φ
)

d 
. 

By taking the L 2 inner product of Eqs. (18) –(20) with (−�τ ) −1 ψ, we obtain 

0 = 

(
3 φn +1 − 4 φn + φn −1 

2�t 
, (−�τ ) 

−1 ψ 

)
d 

+ 

(
3 ( ̃  φn +1 

i 
) 

2 
φn +1 

i 
− 2( ̃  φn +1 

i 
) 3 , ψ 

)
d 

+(1 − ε) 
(
φn +1 , ψ 

)
d 

+ 

(
2�τ

˜ φn +1 + �2 
τ φ

n +1 , ψ 

)
d 

= 

3 

2�t 

(
φn +1 , (−�τ ) 

−1 ψ 

)
d 

+ 

(
3 ( ̃  φn +1 ) 

2 
φn +1 + (1 − ε) φn +1 + �2 

τ φ
n +1 , ψ 

)
d 

+ 

1 

2�t 

(
− 4 φn + φn −1 , (−�τ ) 

−1 ψ 

)
d 

+ 

(
− 2 ( ̃  φn +1 ) 

3 + 2�τ
˜ φn +1 , ψ 

)
d 
. (29) 

Let 

G (φ) := 

3 

4�t 
‖ φ‖ 

2 
−1 ,d + 

3 

2 

‖ ̃

 φn +1 φ‖ 

2 
d + 

1 − ε

2 

‖ φ‖ 

2 
d + 

1 

2 

‖ �τφ‖ 

2 
d + F 1 (φ

n , φn −1 , φ) −
(
δφF 2 ( ̃  φn +1 ) , φ

)
d 
. 

Here, F 1 (φ
n , φn −1 , φ) = ((−4 φn + φn −1 ) / (2�t) , (−�τ ) −1 φ) d − (2 ( ̃  φn +1 ) 

3 
, φ) d is a bounded linear functional, F 2 (φ) =

‖∇ d φ‖ 2 
d 

is strictly convex, and δφ is the discrete variation with respect to φ. As G ( φ) can be written as the difference

of two purely convex functionals, it has a unique minimizer by the convex splitting algorithm. The scheme (18) –(20) is

equivalent to δφG (φn +1 ) = 0 . Therefore, its solution exists and is unique. 

2.5. Unconditional energy stability 

Theorem. If φn +1 , φn , and φn −1 are the solutions of Eqs. (18) –(20) , then the scheme (18) –(20) is unconditionally stable and 

E d (φn +1 , φn ) ≤ E d (φn , φn −1 ) . (30) 

Here, 

E d (φn +1 , φn ) = 2 ‖ ̃

 φn +1 (φn +1 − φn ) ‖ 

2 
d + 

1 

2 

(
‖ ̃

 φn +1 φn +1 ‖ 

2 
d + ‖ ̃

 φn +1 (2 φn +1 − φn ) ‖ 

2 
d 

)
+ 

1 − ε

2 

(
‖ φn +1 ‖ 

2 
d + ‖ 2 φn +1 − φn ‖ 

2 
d 

)
+ 

1 

2 

(
‖ �τφ

n +1 ‖ 

2 
d + ‖ 2�τφ

n +1 − �τφ
n ‖ 

2 
d 

)
−
(
‖∇ d φ

n +1 ‖ 

2 
d + ‖ 2 ∇ d φ

n +1 − ∇ d φ
n ‖ 

2 
d − 2 ‖∇ d φ

n +1 − ∇ d φ
n ‖ 

2 
d 

)
. (31) 

and E d (φn , φn −1 ) is defined likewise . 
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Proof. By taking the L 2 inner product of Eq. (18) and −2�tμn +1 , we obtain 

−(3 φn +1 − 4 φn + φn −1 , μn +1 ) d = 2�t‖∇ d μ
n +1 ‖ 

2 
d . (32)

By multiplying Eq. (19) by 3 φn +1 − 4 φn + φn −1 , we have (
3 φn +1 − 4 φn + φn −1 , μn +1 

)
d 

= 

(
2 ( ̃  φn +1 ) 

2 
(φn +1 − ˜ φn +1 ) + ( ̃  φn +1 ) 

2 
φn +1 + (1 − ε) φn +1 + �τκ

n +1 , 3 φn +1 − 4 φn + φn −1 
)

d 
. (33)

The terms in the resultant Eq. (33) are computed as follows: (
2 ( ̃  φn +1 ) 

2 
(φn +1 − ˜ φn +1 ) , 3 φn +1 − 4 φn + φn −1 

)
d 

= 

(
2 ( ̃  φn +1 ) 

2 
(φn +1 − 2 φn + φn −1 ) , 2(φn +1 − φn ) + (φn +1 − 2 φn + φn −1 ) 

)
d 

= 2 ‖ ̃

 φn +1 (φn +1 − φn ) ‖ 

2 
d − 2 ‖ ̃

 φn +1 (φn − φn −1 ) ‖ 

2 
d + 4 ‖ ̃

 φn +1 (φn +1 − 2 φn + φn −1 ) ‖ 

2 
d (34)

(
( ̃  φn +1 ) 

2 
φn +1 , 3 φn +1 − 4 φn + φn −1 

)
d 

= 

1 

2 

(
‖ ̃

 φn +1 φn +1 ‖ 

2 
d − ‖ ̃

 φn +1 φn ‖ 

2 
d + ‖ ̃

 φn +1 (2 φn +1 − φn ) ‖ 

2 
d 

−‖ ̃

 φn +1 (2 φn − φn −1 ) ‖ 

2 
d + ‖ ̃

 φn +1 (φn +1 − 2 φn + φn −1 ) ‖ 

2 
d 

)
(35)

(1 − ε) 
(
φn +1 , 3 φn +1 − 4 φn + φn −1 

)
d 

= 

1 − ε

2 

(
‖ φn +1 ‖ 

2 
d − ‖ φn ‖ 

2 
d + ‖ 2 φn +1 − φn ‖ 

2 
d − ‖ 2 φn − φn −1 ‖ 

2 
d 

+ ‖ φn +1 − 2 φn + φn −1 ‖ 

2 
d 

)
(36)

(
�τκ

n +1 , 3 φn +1 − 4 φn + φn −1 
)

d 
= 

(
κn +1 , 3�τφ

n +1 − 4�τφ
n + �τφ

n −1 
)

d 
. (37)

By taking the L 2 inner product of Eq. (20) and 3�τφn +1 − 4�τφn + �τφn −1 , we obtain (
κn +1 , 3�τφn +1 − 4�τφn + �τφn −1 

)
d 

= 

(
2 ̃

 φn +1 + �τφn +1 , 3�τφn +1 − 4�τφn + �τφn −1 

)
d 
. (38)

The terms in the resultant Eq. (38) are computed as follows: (
2(2 φn − φn −1 ) , 3�τφ

n +1 − 4�τφ
n + �τφ

n −1 
)

d 

= −
(
‖∇ d φ

n +1 ‖ 

2 
d + ‖ 2 ∇ d φ

n +1 − ∇ d φ
n ‖ 

2 
d − 2 ‖∇ d φ

n +1 − ∇ d φ
n ‖ 

2 
d 

)
+ 

(
‖∇ d φ

n ‖ 

2 
d + ‖ 2 ∇ d φ

n − ∇ d φ
n −1 ‖ 

2 
d − 2 ‖∇ d φ

n − ∇ d φ
n −1 ‖ 

2 
d 

)
+3 ‖∇ d φ

n − 2 ∇ d φ
n + ∇ d φ

n −1 ‖ 

2 
d (39)

(
�τφ

n +1 , 3�τφ
n +1 − 4�τφ

n + �τφ
n −1 

)
d 

= 

1 

2 

(
‖ �τφ

n +1 ‖ 

2 
d − ‖ �τφ

n ‖ 

2 
d + ‖ 2�τφ

n +1 − �τφ
n ‖ 

2 
d 

−‖ 2�τφ
n − �τφ

n −1 ‖ 

2 
d + ‖ �τφ

n +1 − 2�τφ
n + �τφ

n −1 ‖ 

2 
d 

)
. (40)

By combining Eqs. (32) –(40) and using the definition of energies (30) and (31) , we obtain 

E d (φn +1 , φn ) − E d (φn , φn −1 ) = −2�t‖∇ d μ
n +1 ‖ 

2 
d − 4 ‖ ̃

 φn +1 (φn +1 − 2 φn + φn −1 ) ‖ 

2 
d (41)

−1 

2 

‖ ̃

 φn +1 (φn +1 − 2 φn + φn −1 ) ‖ 

2 
d −

1 − ε

2 

‖ φn +1 − 2 φn + φn −1 ‖ 

2 
d 

−3 ‖∇ d φ
n − 2 ∇ d φ

n + ∇ d φ
n −1 ‖ 

2 
d −

1 

2 

‖ �τφ
n +1 − 2�τφ

n + �τφ
n −1 ‖ 

2 
d . 
which implies the desired result (30) . The proof is complete. �
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Table 1 

Numerical errors and calculated convergence rates with various mesh grids. Here, �t = 

0 . 05 is used. The reference solution is obtained using h = 0 . 05 . 

h 2 1 0.5 0.25 

l 2 -error 1.976E −2 4.636E −3 1.231E −3 3.231E −4 

Rate 2.09 1.91 1.93 

Table 2 

Numerical errors and calculated convergence rates. Here h = 0 . 125 is fixed. The reference 

solution is obtained with �t = 0 . 0625 . 

�t 2 1 0.5 0.25 

l 2 -error 2.452E −3 5.616E −4 1.422E −4 3.701E −5 

Rate 2.13 1.98 1.94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Numerical results 

Herein, numerical results are presented. Unless otherwise specified, we use ε = 0 . 25 . 

3.1. Convergence test 

The convergence rate predicted by the proposed scheme is verified. If the L 2 norm of the residual is less than a given

tolerance (1E −12), then the iteration of the proposed scheme is terminated. The surface of a sphere with radius 30 is chosen

as a test surface. The initial density field is taken as 

φ0 (v ) = 0 . 1 + 0 . 05 cos (2 πx ) cos (2 πy ) cos (2 πz) , (42) 

where v = (x, y, z) . The system is evolved up to final time T = 5 with �t = 0 . 05 . The mesh grids are taken to be h = 2 , 1,

0.5, and 0.25. φref is taken as a reference numerical solution, which is obtained with a fine space grid h = 0 . 05 . For a grid

v i in the coarse surface mesh, three reference cells ( v ref 
p , v ref 

q , and v ref 
r ) neighboring it can be obtained in the reference tri-

angular surface mesh. By taking the linear interpolation operator, the weightings ζ i , ηi , and θ i are obtained, which satisfy

v i = ζi v 
ref 
p + ηi v 

ref 
q + θi v 

ref 
r . With the obtained weightings, the error of a grid can be defined as the L 2 -norm of the differ-

ence between that grid and the mean of the neighboring reference solutions, that is, e h i := φi − (ζi φ
ref 
p + ηi φ

ref 
q + θi φ

ref 
r ) .

log 2 ( ‖ e h ‖ 2 / ‖ e h 
2 

‖ 2 ) is the convergence rate. Table 1 lists the numerical errors and rates of convergence. The results suggest

that the scheme is second-order accurate. 

To study the accuracy of the proposed scheme with respect to time, �t = 2 , 1, 0.5, and 0.25 are taken. Here h = 0 . 125 is

fixed. The numerical reference solution φref is obtained with a very fine time step �t = 0 . 0625 . log 2 ( ‖ e �t ‖ 2 / ‖ e �t 
2 

‖ 2 ) is the

convergence rate. All numerical solutions are computed up to time T = 200 . Table 2 lists the errors and the second-order

convergence rates. 

3.2. Stability of the proposed scheme 

It is difficult to obtain a stable numerical scheme for the PFC equation because it involves a nonlinear term and sixth-

order spatial derivatives. To demonstrate the stability of the proposed scheme (18) –(20) , a numerical experiment is con-

ducted using large time steps, namely, �t = 10 and 100. The initial condition and parameters are the same. Here, h = 0 . 5 is

used. All computations are run up to final time T = 10 0 0 . The computational solutions at T = 10 0 0 with �t = 10 and 100

are shown in Fig. 2 . To confirm the accuracy of numerical solution, the reference solutions φref , which are obtained with

�t = 1 , are considered. Fig. 2 (d) shows the temporal evolution of the energy and the mass of the density field φ. This plot

shows that the mass is conserved and the energy is non-increasing. It should be noted that by observing the evolution of

the energy, the evolution of the PFC equation has several time scales. Initially, it rapidly evolves and exhibits slow evolution

at a later time. To save the computational cost, an adaptive time step technique [12,29] can be used to compute the PFC

equation. 

3.3. Comparison study on the dynamics between flat and non-flat surfaces 

This example presents a comparison of the PFC dynamics between flat and non-flat surfaces. For the flat surface, a square

domain (0, 100) × (0, 100) is used. The mesh is composed of 128 2 elements. For the non-flat surface, a spherical surface with

radius 100 
√ 

4 π is chosen, so that the areas of the two surfaces are equal. On the spherical surface, a uniform computational

mesh composed of 160 0 0 elements is defined. As initial condition, the following expression is used to define a crystal

lattice: φ0 (v ) = 0 . 15 + 0 . 05 rand (v ) , where rand( v ) is a random number between −1 and 1. The time step is �t = 1 . We use

periodic boundary conditions for the flat surface. Fig. 3 shows the time evolution of the energy for the PFC on the flat and
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Fig. 2. (a–c) Density field φ with different time steps at time t = 10 0 0 . The used time steps are listed below each figure. (d) Evolutions of energy and 

mass with three different time steps. 

Fig. 3. Time evolution of PFC growth on flat surface (a) and non-flat surface (b). 

 

 

 

 

 

the non-flat surfaces. It is observed that the energy decreases at all times. Furthermore, on the non-flat surface, the energy

decreases faster and the radius of the hexagonal crystal is larger than those obtained on the flat surface. 

3.4. Comparison with previous method 

In [20] , Lee and Kim presented a finite difference method for the PFC equation on curved surfaces. First, they employed

a narrow band and extended the PFC equation on the surface to the 3D narrow band domain. Subsequently, they used

the standard discrete Laplacian operator. Lee and Kim performed a simulation on a spherical surface with a radius 64 and

initial data φ0 (v ) = 0 . 15 + 0 . 05 rand (v ) . A time step �t = 1 , a grid size h = 1 , and a narrow band domain with a thickness
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Fig. 4. Phase field φ with different time steps at time t = 50 0 0 . The time steps used are listed below each figure. 

Fig. 5. (a) and (b) are the density field φ with φa v e = 0 . 05 and φa v e = 0 . 15 , respectively. Two random perturbations are placed on the pole of the spherical 

surface as nucleation seeds. From left to right, the time is t = 50 , t = 100 , t = 200 , and t = 500 . It should be noted that the red solid lines are guides for 

finding the grain boundaries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

of 2 . 2 
√ 

3 h were chosen. To compare the present results with those from [20] , the same initial condition and equivalent edge

length are used. 

Fig. 4 (a)–(c) shows the phase field φ at time t = 50 0 0 with �t = 1 , 2, and 4, respectively. As can be observed, the numer-

ical results are similar to those in ( [20] , Fig. 5). The agreement between the results with different time steps suggests that

owing to its second-order accuracy, the proposed scheme can use a slightly lager time step to obtain equivalent numerical

results. The grid size used here is 64008, which is approximately one-quarter of the size of the grid used in [20] . 

3.5. Dynamics of polycrystals and grain boundaries on a sphere surface 

The proposed scheme is now used to compute the growth of a polycrystal and the grain boundary dynamics in a super-

cooled liquid on a surface. This experiment demonstrates the applicability of the proposed method to a physical problem. A

system on a spherical surface with radius 50 is simulated. As nucleation seeds, two random perturbations are placed on the

pole of the spherical surface with the following expression: 

φ0 (v ) = 

{ 

φa v e + 0 . 1 rand (v ) , if z > 45 , 

φa v e + 0 . 3 rand (v ) , if x > 45 , 

φa v e , otherwise . 

Here, φave is the average of the density field φ and �t = 1 . Fig. 5 (a) and (b) shows snapshots of the crystal microstructure

with φa v e = 0 . 05 and φa v e = 0 . 15 , respectively. The computational time is shown below each figure. It can be seen that as

time evolves the crystallites grow and form grain boundaries. As two different initial configurations are considered, the two

crystallites evolve with a different orientation and striped pattern. Depending on the average of density field φ, there are

different patterns, e.g., striped ( Fig. 5 (a)) and hexagonal ( Fig. 5 (b)). It should be noted that the red solid lines in Fig. 5 are

guides for finding the grain boundaries. The evolution of the total energy with different average of the density field φ is

shown in Fig. 6 . It can be seen that these energies are non-increasing. 
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Fig. 6. Evolution of energy with different φave . 

Fig. 7. PFC growth on a bunny surface. The first and second row show the results from different view points. The computational time is given below each 

figure. 

 

 

 

 

3.6. PFC growth on a bunny surface 

In this section, the PFC equation will be solved on a bunny surface, which is set in a box (0, 100) × (0, 100) × (0, 80) with

the following initial condition: 

φ0 (v ) = 

{
0 . 05 + 0 . 1 rand (v ) , if x < 50 , 

0 . 15 + 0 . 1 rand (v ) , otherwise . 

The simulation is run up to time T = 10 0 0 with �t = 1 . Fig. 7 (a)–(c) shows the results of crystal growth on the bunny

surface at time t = 0 , 100 , and 1000 , respectively. The first and second row show the results from different view points. A

mixture of lamellar and hexagonal patterns is observed. These results confirm that the proposed algorithm performs well

on complex surfaces. 
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Fig. 8. (a) Dodecahedron. (b) Triangular mesh on the Dodecahedron surface. 

Fig. 9. Density field φ on a sharp surface. (a) Dodecahedron surface with 4610 vertices. (b) Dodecahedron surface with 18 , 442 vertices. From left to right, 

the time is t = 100 , t = 200 , t = 400 , and t = 10 0 0 , respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.7. PFC growth on a sharp surface 

In this section, the evolution of the density field will be considered on a Dodecahedron surface having sharp feature (see

Fig. 8 ). The Dodecahedron is located in the box (−15 , 15) 3 . The initial configuration of φ is a random perturbation from

φa v e = 0 . 05 . The simulation was performed up to time t = 10 0 0 with �t = 1 . Fig. 9 (a) and (b) shows snapshots of φ with

4610 vertices and 18 , 442 vertices, respectively. From left to right, the time is t = 100 , 200, 400, and 1000. The convergence

results obtained by using coarse and finer mesh confirm that the proposed method performs well on sharp surface. 

3.8. Dynamics of crystal growth on a non-uniform surface mesh 

In this test, it will be demonstrated that the proposed method can be used with an adaptive mesh. Fig. 10 shows the

non-uniform surface mesh structure. The mean curvature of the surface provides an indicator for determining a region to

be refined. The domain near the left and right ends is refined with a finer mesh. In the middle domain, a coarse mesh is

used. The parameter ε is related to temperature [30] . The initial condition is given as φ0 (v ) = 0 . 1 + 0 . 1 rand (v ) . The density

field at time t = 10 0 0 with ε = 0 . 1 and 1 are shown in the first row and second row of Fig. 11 , respectively. Here, �t = 1 is

used. Depending on the value of the parameter ε, different patterns are obtained. That is, a smaller ε results in a hexagonal

pattern. As ε increases, the pattern becomes striped. The third and fourth rows in Fig. 11 show the density field φ with

ε = 0 . 1 and 1, respectively, on the uniform mesh at time T = 10 0 0 . Here, the nodes used in the uniform mesh are 2.42 as

many as in the non-uniform mesh. The agreement between the results using the non-uniform and uniform mesh is obvious.
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Fig. 10. Non-uniform surface mesh structure. For better visualization, the surface mesh is displayed more sparsely than in reality. 

Fig. 11. Density field φ at time T = 10 0 0 . The first two rows show the solutions on the non-uniform grid with ε = 1 and ε = 0 . 1 , respectively. The second 

two rows show the solutions on the uniform grid with ε = 1 and ε = 0 . 1 , respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusions 

An efficient direct discretization method was proposed for solving the PFC equation on curved surfaces. The proposed

method consists of a backward differentiation and a linearly stabilized splitting scheme. It is second-order accurate in space

and time. The proposed scheme is easy to implement. It is proved that the proposed scheme is unconditionally stable.

Numerical experiments such as time and space convergence, stability of the proposed scheme, dynamics of polycrystals and

grain boundaries on a sphere surface, dynamics of crystal growth on a non-uniform surface mesh, and PFC growth on a

bunny surface were performed. The computational tests confirmed the efficiency of the proposed method. 
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