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ABSTRACT. In this paper, we propose an optimal choice scheme to determine the best option
among comparable options whose current expectations are all the same under the condition
that an investor has a confidence in the future value realization of underlying assets. For this
purpose, we use a path-averaged option as our base instrument in which we calculate the time
discounted value along the path and divide it by the number of time steps for a given expected
path. First, we consider three European call options such as vanilla, cash-or-nothing, and asset-
or-nothing as our comparable set of choice schemes. Next, we perform the experiments using
historical data to prove the usefulness of our proposed scheme. The test suggests that the path-
averaged option value is a good guideline to choose an optimal option.

1. INTRODUCTION

When it comes to investment, selecting appropriate financial products and adjusting the ratio
of those selected items, i.e., maximizing expected return of the portfolio and minimizing the
risk of the investment at the same time, should be one’s top priority. There have been many
theories concerning standards for compromising the ‘ideal’ portfolio. ‘Portfolio Theory’, by
Sharpe, is one of the competing theories. To be specific, Sharpe insisted that, to maximize
the benefit, investors should find the set of mean and variance of portfolios and select the one
that provides the greatest expected utility. Similarly, the idea of comparing the set of mean
of different types of options is an underlying base in this paper. When we choose one option
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under the condition that all the options’ current expectations are the same, we have to make a
decision as to the best for the investment. In this paper, we present a method of an appropriate
judgement for a better option choice.

Until now, there have been various attempts to evaluate option prices in financial markets.
Beginning in 1973, it was described that a mathematical framework for finding the fair price of
a European option by Black and Scholes [1, 2], several numerical methods have been presented
for the cases where analytic solutions are neither available nor easily computable. See more
details about numerical methods such as finite difference method (FDM) [3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13], finite element method [14, 15, 16], finite volume method [17, 18, 19], and
a fast Fourier transform [20, 21, 22, 23, 24]. For convenience, we use the closed-form of the
Black–Scholes equation in this work. Next, we will describe the proposed method for choosing
the better option in next section. In the proposed method, we compute various path-averaged
option values and then choose the option which gives the maximum value.

The rest of the paper is organized as follows. Section 2 describes the proposed method to
determine the best option among comparable options whose current expectations are all the
same. We present the numerical experiments in Section 3. Finally, conclusions are drawn in
Section 4.

2. PROPOSED METHOD

For simplicity of exposition, we consider European call options. Let x denote the value
of underlying asset, t be time, σ be the volatility of return on the underlying asset, and r be
the risk-free interest rate. T and E represent the maturity and predetermined exercise price of
option, respectively. Let C1, C2, and C3 be the prices of vanilla European, cash-or-nothing,
and asset-or-nothing call options, respectively. Equations (2.1)–(2.3) are the payoff functions
for those options. In Fig. 1(a), (b), and (c), the solid and dash lines are the payoff at maturity
and the value of options at time t = 0.

Λ1(x) = max (x−E, 0) , (2.1)

Λ2(x) =

{
0 if x < E,
K otherwise, (2.2)

Λ3(x) =

{
0 if x < E,
x otherwise. (2.3)

Similarly, let P1, P2, and P3 be the prices of vanilla European, cash-or-nothing, and asset-
or-nothing put options, respectively. Equations (2.4)–(2.6) are also the payoff functions for
European put options. In Fig. 2(a), (b), and (c), the solid and dash lines are the payoff at
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FIGURE 1. Payoffs of (a) European vanilla, (b) cash-or-nothing, and (c) asset-
or-nothing call options. The solid and dash lines are the payoff at maturity and
the value of options at time t = 0.

maturity and the value of options at time t = 0.

Λ1(x) = max (E − x, 0) , (2.4)

Λ2(x) =

{
K if x < E,
0 otherwise, (2.5)

Λ3(x) =

{
x if x < E,
0 otherwise. (2.6)
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FIGURE 2. Payoffs of (a) European vanilla, (b) cash-or-nothing, and (c) asset-
or-nothing put options. The solid and dash lines are the payoff at maturity and
the value of options at time t = 0.
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The closed-form solutions [25, 26] for the European call and put options with payoffs (2.1)–
(2.6) are given as follows.

C1(x, t) = xN(d1)− Ee−r(T−t)N(d2), (2.7)

C2(x, t) = Ke−r(T−t)N(d2), (2.8)

C3(x, t) = xe−r(T−t)N(d1), (2.9)

P1(x, t) = Ee−r(T−t)N(−d2)− xN(−d1), (2.10)

P2(x, t) = Ke−r(T−t)N(−d2), (2.11)

P3(x, t) = xe−r(T−t)N(−d1), (2.12)

where N(d) = 1/
√
2π

∫ d
−∞ e−0.5x2

dx is the cumulative distribution function for the standard
normal distribution,

d1 =
log(x/E) + (r + 0.5σ2)(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t.

In the proposed method, we use the path-averaged option value (PAOV) which is the average
of discounted value of option from each time steps to the present along the path as

PAOV =

N∑
i=1

V (x, ti)e
−rt

N
, (2.13)

where V (x, t) is the value of the option at time t and N is the number of days. Here, the time
ti represents a discrete observation time, with uniform time steps. Thus, ti − ti−1 = h. Since
we assume constant slope on the value of the underlying asset, the PAOV is obtained by the
average of discounted option price on day by day.

3. NUMERICAL EXPERIMENTS

In the previous section, we have introduced the concept of PAOV, path averaged option value,
to calculate expected value of the option in the aspect of future tendencies of underlying asset.
Now we will actually apply this concept both theoretically and practically. In the subsection
3.1, we set certain linear direction of future tendencies of underlying asset. To be specific, we
calculate PAOV of 6 options (Vanilla call/put, Cash-or-nothing call/put, and Asset-or-nothing
call/put), and compare the theoretical value. In the subsection 3.2, on the other hand, we apply
PAOV with real stock data, KOSPI200, in more practical way. We find specific periods of stock
data movements that have increase and decrease tendency, and calculate PAOV of them. In this
process, we first calculate PAOV with real data of the real date, and then we fit a linear line for
each tendencies and calculated PAOV with those fitted data. In addition, since the majority of
option market in the real world is consisted with vanilla option, we perform our test only with
European vanilla call and put options.
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3.1. Stock path with the drift. In this section, we present the numerical tests to compare the
performance of options with respect to the direction of underlying asset. Equations (2.7)–(2.12)
are used to value an European option on a non-dividend stock. The value of underlying asset
at present value x(0) and the exercise price E are 100, respectively. The maturity is 1 year,
and the number of the time steps is 365. The riskless interest rate r is 3%. We firstly compare
PAOV of call options given the condition that the underlying asset has a certain tendency, and
then we compare PAOV of put options. The procedure is explained in the next paragraph.

Table 1 represents the call option price at time t = 0 and a ratio of the price of the asset-or-
nothing to the price of vanilla call option, which means the option buyer takes a long position
with an amount of ratio of vanilla call and cash-or-nothing. Moreover, we have set the present
value of cash-or-nothing same with that of vanilla call option by adjusting designated cash
payoff K. Calculating the ratio and adjusting the present value are to make sure that different
kinds of options have same condition.

TABLE 1. The price of the three options at time t = 0 and the ratio of asset-
or-nothing to vanilla call option values.

Types Vanilla call Cash-or-nothing Asset-or-nothing Ratio
13.2833084 13.2833084 58.1011880 4.374

Table 2 shows the path-averaged call option values with respect to the direction of underlying
asset. The obtained ratio is reflected in the calculation of asset-or-nothing option values, i.e.,
we divide the value of asset-or-nothing by the ratio for the fair comparison. We test every
cases with linear increase or decrease at certain percentage which makes linear direction of
underlying asset in daily market.

TABLE 2. PAOVs of call options with respect to the direction of underlying asset.

Types -0.1% -0.05% 0% +0.05% +0.1%
Vanilla call 16.107322 22.950863 37.393584 65.434432 99.379309

Cash-or-nothing 22.685429 33.689913 58.743554 82.868066 93.373250
Asset-or-nothing 21.381259 31.622485 54.799640 80.333005 96.336642

From Table 2, we can observe the fact that PAOVs of cash-or-nothing and asset-or-nothing
tend to move together. To be specific, the variation of PAOV between vanilla call and either
cash-or-nothing or asset-or-nothing is bigger than that of between cash-or-nothing and asset-or-
nothing. This result comes from the different payoff structures of each option. When we check
the payoffs of Fig. 3, we can easily notice that both cash-or-nothing and asset-or-nothing have
discontinuous payoff at the maturity. Consequently, the values of the option jump up at the time
near maturity, resulting in higher PAOV of cash-or-nothing and asset-or-nothing. However, we
can also observe that PAOV of vanilla call option is the largest when the underlying asset
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(a) (b) (c)

FIGURE 3. The value of European call options with respect to the increasing
path of underlying asset. (a) Vanilla European, (b) cash-or-nothing, and (c)
asset-or-nothing options.

increases by 0.1%. Table 2 suggests that we should choose options which give the highest
PAOV depending on the expected path direction.

Similarly, Table 3 shows the put option price at time t = 0 and a ratio of the price of the
asset-or-nothing to the price of vanilla put option, which means the option buyer takes a long
position with an amount of ratio of vanilla put and cash-or-nothing.

TABLE 3. The price of the options at time t = 0 and the ratio of asset-or-
nothing to vanilla put option values.

Types Vanilla put Cash-or-nothing Asset-or-nothing Ratio
10.3278618 10.3278618 38.9433654 3.771

Also, the present value of vanilla put option is set to be same with cash-or-nothing by ad-
justing the designated cash payoff K, and again, this is our intention to make same comparison
condition between different option types. Table 4 shows the path-averaged put option values
with respect to the direction of underlying asset.

TABLE 4. PAOV of put options with respect to the direction of underlying asset.

Types -0.1% -0.05% 0% +0.05% +0.1%
Vanilla put 75.797600 47.969067 26.691586 17.136683 12.671502

Cash-or-nothing 60.863853 54.053611 38.344239 23.619190 17.117946
Asset-or-nothing 57.955672 56.570245 41.983720 25.571325 18.423489

From Table 4, we can observe the fact that PAOV of cash-or-nothing and asset-or-nothing
tend to move together again, and vise versa. When we check the payoffs of Fig. 4, we can
easily notice that both cash-or-nothing and asset-or-nothing have discontinuous payoff at the
maturity. Consequently, the values of the option jumps up at the time near maturity, resulting
in higher PAOV of cash-or-nothing and asset-or-nothing. However, we can also observe that
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PAOV of vanilla put option is the largest when the underlying asset decreases by 0.1%. To sum
up, all these differences are due to different structures of options, and since those structures are
easily changed by many factors, we can only calculate and judge the options by PAOV.
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FIGURE 4. The value of European put options with respect to the increasing
path of underlying asset. (a) Vanilla European, (b) cash-or-nothing, and (c)
asset-or-nothing options.

Next, we consider a PAOV of the path we tested with random perturbation for sensitivity
analysis. We generate the path with normal distributed perturbation of mean µ = 0 and stan-
dard deviation σ = 0.1.

The result is almost similar with the experiment without perturbations. See Tables 5 and 6.

TABLE 5. PAOV of call options with respect to the direction with random
perturbation of underlying asset.

Types -0.1% -0.05% 0% +0.05% +0.1%
Vanilla call 16.113370 22.968903 37.428544 65.414449 99.328331

Cash-or-nothing 22.692883 33.721284 58.804893 82.839290 93.319291
Asset-or-nothing 21.379911 31.621394 54.826034 80.332875 96.341435

TABLE 6. PAOV of put options with respect to the direction with random
perturbation of underlying asset.

Types -0.1% -0.05% 0% +0.05% +0.1%
Vanilla put 75.775506 47.903553 26.664359 17.142853 12.678970

Cash-or-nothing 60.834855 53.990866 38.504766 23.629520 17.128893
Asset-or-nothing 57.952913 56.573101 42.228138 25.572186 18.421479
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3.2. Stock path with real data. In this subsection, we apply the PAOV with real stock data.
Here the stock data, KOSPI200 index announced by Korea Securities and Future exchange
(KRX), are used [27]. KOSPI200 has existed since 1964, which consists of 200 representative
constituents. These constituents were chosen based on the largeness of capital stocks. We can
easily understand it as a national index such as S&P 500 of U.S.A. Figure 5 shows the prices
of KOSPI200 for 2 years, from August 5, 2013 to August 6, 2015.

FIGURE 5. The rough variation of KOSPI200 for 2 years, from August
5, 2013 to August 6, 2015.

As a first step, we intend to apply PAOV with the random movement of underlying asset.
We select the data from March 2, 2015 to June 1, 2015, that shows random movements, and
manipulate them for efficient implementation. Then we calculate PAOV of the vanilla call and
put option for KOSPI200 index at different strike prices, using the pricing formula derived by
Black and Scholes (see Eqs. (2.7) and (2.10)). A schematic for the evaluating procedure is
shown in Figure 6. We perform the test in a similar way on previous test with parameters as
follows.

(a)

t

xE

P1

(b)

FIGURE 6. Schematic for vanilla (a) call and (b) put options on KOSPI200
data.
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The underlying asset is KOSPI200, the maturity is 0.25 with 63 operation days from March
2, 2015 to June 1, 2015. The riskless interest rate r is 1.65%, and the volatility on return of
underlying asset σ is 0.3. The result is shown in Table 7. As we can infer from the different
payoff structures of vanilla call and put options, PAOV of vanilla call option increases when
strike price decreases. On the other hand, PAOV of vanilla put option increases as strike price
increases.

TABLE 7. PAOVs with respect to different strike price.

Strike price 245 247.5 250 252.5 255 257.5 260
call 20.6673 18.8363 17.0817 15.4107 13.8313 12.3521 11.0014
put 4.5226 5.1813 5.9165 6.7353 7.6457 8.6563 9.7755

Next, we consider the windows for specific dates in real data to reflect a sort of tendency.
The criteria for choosing certain tendencies are based on the concept called moving average.
Here, moving average is one of the most frequently used indicators of stock market, which
reflects long and short term tendency of stock index movements. For instance, if someone tries
to calculate 20 days of moving average on a specified date, he or she has to gather data of past
20 operation days and simply divide the sum of data by 20. In the same way, we can easily
calculate moving average of a period with specific lengths. 20 and 60 days of moving averages
are the typically used periods, which generally imply short and long term of the stock tendency,
respectively.

Practically, if 20 days of moving average increases, overtaking 60 days of moving average,
this implies that the current stock indexes are on the rise. Thus, this tendency is interpreted as
a signal of purchasing stocks. With the decreasing tendency of 20 days of moving average, on
the other hand, which passes down through 60 days of moving average, the shareholders are
encouraged to sell the stocks. These concepts are known as golden cross and dead cross.
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FIGURE 7. Moving average of 20 and 60 days from August 5, 2013 to August
6, 2015.
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In the Fig. 7, we calculate both 20 days and 60 days of moving average of KOSPI200, from
August 5, 2013 to August 5, 2015, with 492 days of operation. By calculating the proportion
of 20 days of moving average divided by that of 60’s, we select 2 periods that represents de-
creasing (from December 2, 2013 to February 2, 2014) and increasing (from February 2, 2015
to April 30, 2015) tendency of KOSPI200, namely, dead cross and golden cross. These periods
are shaded in Fig. 8 below. Figure 8 represents some of the dates which we focus on.

FIGURE 8. Shaded areas which represent the decreasing (left side, the first
period) and increasing (right side, the second period) tendency.

Tables 8 and 9 show PAOV from the first period and the second period of KOSPI200 data,
respectively.

TABLE 8. PAOV in the first period (November 1, 2013 ∼ January 29, 2014)
from Fig 8.

Strike 245 247.5 250 252.5 255 257.5 260
put 7.12061 8.34253 9.64627 11.05333 12.55678 14.15021 15.82721

TABLE 9. PAOV in the second period (February 2, 2015 ∼ April 30, 2015)
from Fig 8.

Strike 245 247.5 250 252.5 255 257.5 260
call 24.85838 22.94389 21.09232 19.30742 17.59279 15.95195 14.38826

First, we obtain the ratios of each strike on the basis of the present option price of median
strike (252.5) which is meant to manage the share, making same present option price. Next,
we obtain the PAOV and multiply them by the ratios.

Tables 10 and 11 show PAOV on linear tendency from data of the first and second period.



PATH AVERAGED OPTION VALUE CRITERIA 173

TABLE 10. PAOV on linear decreasing tendency from the first period (No-
vember 1, 2013 ∼ January 29, 2014) from Fig 8.

Strike 245 247.5 250 252.5 255 257.5 260
put 6.83285 8.02358 9.30524 10.69801 12.19162 13.77698 15.44646

TABLE 11. PAOV on linear increasing tendency from the second period (Feb-
ruary 2, 2015 ∼ April 30, 2015) from Fig 8.

Strike 245 247.5 250 252.5 255 257.5 260
call 25.73309 23.76498 21.85788 20.01647 18.24550 16.54985 14.93444

In this part, we simply draw a linear line by connecting the first and last KOSPI200 indexes
in each periods respectively, and again calculated PAOV of them. We conclude that the results
in the Tables 10 and 11 show no significance here, since the variances of PAOV have not
changed.

4. CONCLUSION

The simple and useful method was proposed for choosing a better option among options
under the conditions that all the options’ current expectations are the same and one has a con-
fidence in predicting future tendency of underlying assets. To choose a better option, we com-
pute the PAOV. As test problems, we considered three European call and put options such
as vanilla, cash-or-nothing, and asset-or-nothing since there exist closed-form solutions. The
proposed method is general. Therefore it can be applied to other options. If there is no closed-
form solution is available, then we can use numerical approximations such as finite difference
method, finite element method, and Monte Carlo simulation. The test results suggested that the
PAOV is a good guideline to choose a better option.
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