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a b s t r a c t

In this paper, we propose an explicit time-stepping scheme for the pattern formation
in reaction–diffusion systems on evolving surfaces. The proposed numerical method is
based on a simple discretization scheme of Laplace–Beltrami operator over triangulated
surface. On the static and evolving domains, we perform various numerical experiments
for effect of domain growth and pattern formations. The computational results demon-
strate that our proposed method can simulate pattern formation in reaction–diffusion
systems on evolving surfaces. The actual zebra skin pattern and computational results
are compared. In the computational results, we can observe different pattern formations
on the evolving surface with specific rotation speed.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

After Turing proposed the reaction–diffusion system to describe phenomena of morphogenesis [1], the reaction–
iffusion systems have drawn significant interest. In the biological field, the reaction–diffusion systems may show the
pecific patterns including animal coat markings, formation of skin organs, pinning of diffusional patterns [2,3], and cell-
ivision [4] depending on initial conditions, spatial scale, and geometry. To solve the reaction–diffusion systems which
xhibit the pattern formation efficiently, the numerical scheme has been developed, like a work in [4]. Moreover, to
onsider the geometry, pattern formations on the curved surfaces have been studied with various numerical methods.
he reaction–diffusion system on the surfaces was solved numerically using the finite element method in [5,6]. The
odified Galerkin method was proposed to solve the reaction–diffusion equations on implicit surfaces [7]. A finite
ifference method has been used to solve the partial differential equations on the curved surfaces [8–10] where the
losest point method in narrow band domain, or Laplace–Beltrami operator on triangulated surfaces is used. During the
attern development, growth of domain is an important factor for fundamental change [11,12]. Therefore, the pattern
ormation on the growing domains has been studied by many authors [13–15] including isotropic [3,16] and anisotropic
rowth [17]. The domain growth can be implemented to model the cortical folding pattern of the human brain [12].
In this paper, we shall study the pattern formation in the reaction–diffusion system on evolving surfaces with different

nitial conditions, as an extension of our previous study [18] which simulates the zebra skin pattern formation numerically
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on the static three-dimensional space. Especially, we focus on the formation of zebra striping patterns as our starting
point to investigate generation of pattern on evolving surfaces. We propose an explicit time-stepping scheme for the
pattern formation in reaction–diffusion systems on the growing two-dimensional (2D) space and evolving surfaces in the
three-dimensional (3D) space. First, we validate the patterns are well formed in the two-dimensional static domain, then
we shall perform to the numerical experiments by gradually expanding to static curved surfaces and evolving curved
surfaces. The proposed numerical method is based on a simple discretized Laplace–Beltrami operator [19] to solve the
Laplacian on the triangulated curved surface. Here, we use a finite difference method as the finite element method is
difficult to implement and an implicit method is rather computationally costly [9]. Then we perform various numerical
tests to demonstrate that our proposed method simulates the pattern formation in the reaction–diffusion system robustly
on evolving surfaces.

This article is constructed as follows: We briefly introduce the mathematical model in Section 2. In Section 3, we
resent the numerical solutions in the two-dimensional space and on the curved surface. Based on the linear stability
nalysis, we investigate the growth mode of the mathematical model and we perform the numerical experiments on the
tatic domain and evolving curved surface in Section 4. Finally, discussions are drawn in Section 5.

. Mathematical model

To study of the pattern formation in the reaction–diffusion system on smooth closed surfaces S in R3, we consider the
following reaction–diffusion systems:

∂u
∂t

= Du∆Su + f (u, v)

∂v

∂t
= Dv∆Sv + g(u, v)

(1)

where u(x, t) and v(x, t) are concentrations of an inhibitor and an activator at position x ∈ S and time t , respectively.
f (u, v) and g(u, v) are the reaction kinetics terms which typically are nonlinear functions. Here, Du and Dv are the diffusion
coefficients for u and v, respectively. Also, ∆S denotes the Laplace–Beltrami operator [20].

To perform numerical simulations of pattern formation on evolving surfaces, we take f (u, v) and g(u, v) of specific
reaction kinetics form with quadratic and cubic terms [2]. The governing systems are derived from systems (1) in the
following way. With a stationary uniform solution (us, vs) given by the zeros of f (u, v) and g(u, v), the functions f and g
re expanded by using a Taylor series around the stationary uniform solution without terms of higher order than cubic.
herefore, the governing systems have the following specific reaction–diffusion form with the homogeneous Neumann
oundary condition:

∂u
∂t

= Dδ∆Su + αu(1 − r1v2) + v(1 − r2u),

∂v

∂t
= δ∆Sv + βv

(
1 +

αr1
β

uv
)

+ u(γ + r2v),
(2)

where the quantity δ is the ratio of the diffusion coefficient for the two chemicals, r1 and r2 are the interaction parameters,
D, α, β and γ are free parameters. It is known that spot or stripe patterns could be generated by the nonlinearity effect of
quadratic and cubic interactions in systems (2), respectively [21,22]. These reaction–diffusion systems have been widely
applied in the mathematical biology field, representatively such as in fish skin patterning [2], pattern formation on curved
surface [23], generating pigment patterns on the leopard and the jaguar [24].

3. Numerical solution

3.1. Discretization of reaction–diffusion systems in the growing two-dimensional domain

We apply the explicit Euler method to solve the reaction–diffusion systems (1) in the growing two-dimensional
domain. We conveniently denoted that un

i = u(xi, n∆t) and vn
i = v(xi, n∆t), where ∆t is the time step size. Here, we

onsider nonuniform mesh with different spatial step sizes hi and hj. i.e., xi+1 = xi + hi for x0 = 0, i = 0, . . . ,Nx−1,
where Nx is the number of grid intervals and hi is the grid spacing in x-direction. Likewise, yj+1 = yj + hj for y0 = 0,
= 0, . . . ,Ny−1, where Ny is the number of grid intervals and hj is the grid spacing in y-direction. Let us consider the first
nd second derivatives with respect to x in 1D and it is defined analogously with respect to y.(

∂u
∂x

)n

i
=

hi

hi−1(hi−1 + hi)
un
i−1 +

hi − hi−1

hi−1hi
un
i +

hi−1

hi(hi−1 + hi)
un
i+1,(

∂2u
2

)n

=
2

un
i−1 −

2
un
i +

2
un
i+1.
∂x i hi−1(hi−1 + hi) hi−1hi hi(hi−1 + hi)
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Then, we have the discretized Laplacian ∆d in the two-dimensional space

∆dun
ij =

2
hi−1(hi−1 + hi)

un
i−1,j −

2
hi−1hi

un
ij +

2
hi(hi−1 + hi)

un
i+1,j

+
2

hj−1(hj−1 + hj)
un
i,j−1 −

2
hj−1hj

un
ij +

2
hj(hj−1 + hj)

un
i,j+1.

Therefore, the governing systems are discretized as

un+1
ij − un

ij

∆t
= Dδ∆dun

ij + αun
ij(1 − r1(vn

ij)
2) + vn

ij(1 − r2un
ij),

vn+1
ij − vn

ij

∆t
= δ∆dv

n
ij + βvn

ij

(
1 +

αr1
β

un
ijv

n
ij

)
+ un

ij(γ + r2vn
ij).

(3)

3.2. Discretization of Laplace–Beltrami operator on the curved surfaces

Now, we shall apply the simple discretization of Laplace–Beltrami operator [19,25] on the curved surfaces.
Let M be a triangular surface mesh of given surfaces S as shown in Fig. 1(a). With N points, the set {x}Ni=1 is called the

surface vertex set of M . For each surface vertex xi with index n, let us denote that N1(i) = {i1, i2, . . . , in} is a set of surface
vertex indices of one-ring neighbors with i1 = in as shown in Fig. 1(b). We simply denote by u(xi) = ui, v(xi) = vi, and
j is a triangle consisting of vertices xi, xj− and xj. A(xi) is the sum of areas of each triangle Tj encircling vertex xi (see

Fig. 1(d)) and it has the following form [19]:

A(xi) =

∑
j∈N(i)

√
∥xj − xi∥2∥xj+ − xi∥2 −

(
xj − xi, xj+ − xi

)2
2

. (4)

From curvature normal formula [26], we get the following discretization systems over the given surface S [20]:

∆Sui ≈
3

A(xi)

∑
j∈N(i)

cot θij + cot θij+
2

(uj − ui),

∆Svi ≈
3

A(xi)

∑
j∈N(i)

cot θij + cot θij+
2

(vj − vi),
(5)

where θij and θij+ are angles in triangles Tj and Tj+, respectively (see Fig. 1(c)).
Then, the governing system is discretized as

un+1
i − un

i

∆t
= Dδ∆Sun

i + αun
i (1 − r1(vn

i )
2) + vn

i (1 − r2un
i ),

vn+1
i − vn

i

∆t
= δ∆Svn

i + βvn
i

(
1 +

αr1
β

un
i v

n
i

)
+ un

i (γ + r2vn
i ).

(6)

4. Numerical results

4.1. Linear stability analysis in the static domain

We let γ = −α to have the unique equilibrium point (ū, v̄) = (0, 0) throughout this paper. If we linearize systems (2)
at the unique equilibrium point (ū, v̄) = (0, 0), we have

∂u
∂t

(x, t) = Dδ∆u(x, t) + αu(x, t) + v(x, t),

∂v

∂t
(x, t) = δ∆v(x, t) + βv(x, t) + γ u(x, t).

(7)

Let us assume the solutions to the linearized systems (7) have the following form:

u(x, y, t) = F (t) cos(kx), v(x, y, t) = G(t) cos(kx). (8)

After substituting Eq. (8) into systems (7), we obtain(
F (t)
G(t)

)′

= A
(
F (t)
G(t)

)
, A =

(
−k2Dδ + α 1

γ − k2δ + β

)
, (9)

where ′ is the temporal derivative. The characteristic polynomial is

λ2
+ (−α − β + δk2(1 + D))λ + Dδ2k4 − (α + βD)δk2 + αβ − γ = 0. (10)
2021
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Fig. 1. Schematic illustrations of (a) triangulation of surfaces, (b) the surface vertices set of one-ring neighbors of xi with i1 = in , (c) triangles Tj
nd Tj+ with the angles θij and θij+ , and (d) area A(xi) at vertex xi .

herefore, the eigenvalues of A are

λ1 =
1
2

(
α + β − δk2(1 + D) − B

)
, λ2 =

1
2

(
α + β − δk2(1 + D) + B

)
, (11)

where B =
√
(α − β)2 + 4γ + 2(α − β)(1 − D)δk2 + δ2(D − 1)2k4.

The corresponding eigenvectors are

X1 =

(
α − β + (1 − D)δk2 − B

2γ
, 1

)T

, (12)

X2 =

(
α − β + (1 − D)δk2 + B

2γ
, 1

)T

. (13)

The solution to the system of ODEs (9) is given by(
F (t)
G(t)

)
= C1X1eλ1t + C2X2eλ2t , (14)

where(
C1
C2

)
= (X1 X2)−1

(
f (0)
g(0)

)
.

Fig. 2(a) shows the eigenvalues λ1 (solid line) and λ2 (dashed line) of the linearized system (11) with the parameter
sets D = 0.516, δ = 2, α = 0.899, and β = −0.95. Let us consider the initial conditions:

u(x, y, 0) = 0.01 cos(kx), v(x, y, 0) = 0.01 cos(kx). (15)

Then, we compare the solutions of ODEs F (t) and G(t) in (14) to numerical solutions. In Fig. 2, (b) and (c) are the numerical
results with the linear stability solution (14) for k = 0.7, and k = 1.1, respectively. Here, fmax(t) (solid line) and gmax(t)
(dotted line) are analytic solutions for u and v, respectively. Fmax(t) (circles) which is the maxima of the numerical solution
for u and Gmax(t) (squares) which is the maxima of the numerical solution for v. With chosen initial conditions, we observe
that the numerical solutions agree well with f (t) and g (t).
max max
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Fig. 2. (a) Eigenvalues λ1 (solid line) and λ2 (dashed line) of the linearized system (9) with D = 0.516, δ = 2, α = 0.899, and β = −0.95.
b) and (c) are the numerical results with the linear stability solution (14) for k = 0.7 and k = 1.1, respectively. Here, fmax(t) (solid line) is the
nalytic solution for u and gmax(t) (dotted line) is the analytic solution for v. Fmax(t) (circles) and Gmax(t) (squares) are the maxima of the numerical
olutions for u and v, respectively.

.2. Effect of domain growth

.2.1. Effect of domain growth in the two-dimensional space
Based on the growing mode, we shall implement the effect of the growing two-dimensional domain. First, we perform

umerical experiments on the nonuniformly growing two-dimensional domain. The parameter set is chosen as D =

.516, δ = 2, α = 0.899, β = −0.95, r1 = 3.5, and r2 = 0, where δ is scaled as 2 on the growing two-dimensional
omain. With the initial conditions u(x, y, 0) = 0.1 cos (kx) and v(x, y, 0) = 0.1 cos (kx), we simulate the profile of v with
espect to growing in the x-direction as shown in Fig. 3. Here, we set k = 1.1, on the domain [0, 50π/k] × [0, 5π/k],
Nx = 200, Ny = 20, h = π/(4k) and ∆t = 0.0025h2. With chosen parameter set and initial conditions, we can observe
sequentially stretching stripe shapes in the x-direction, by the effect of domain growth.

Fig. 4 shows the snapshots at t = 0, 500∆t, 1000∆t from left to right with the initial conditions u(x, y, 0) =

0.1 cos(k
√
x2 + y2) and v(x, y, 0) = 0.1 cos(k

√
x2 + y2). The parameter set is taken as D = 0.516, δ = 2, α = 0.899, β =

−0.95, r1 = 3.5 and r2 = 0. Here, we set k = 1.1, on the domain [0, 30π/k]×[0, 30π/k], Nx = Ny = 200, h = π/(4k) and
∆t = 0.0025h2. As shown in Fig. 4, we can observe that curved lines are sequentially changing flat lines by the domain
growth in the x-, y-directions.

4.2.2. Effect of the domain growth on evolving curved surfaces
Now, we numerically investigate different type of the zebra skin patterns as shown in Fig. 5. Zebra skin patterns on the

neck and legs show almost regular parallel stripes, however on the torso, patterns show stretched, split and demagnified
stripes that are not regular as shown in Fig. 5(a). Also, in Fig. 5(b), we can see that the brightness of the zebra skin pattern
is different. This happens when zebra grows up, and we shall consider observed patterns in the numerical simulations.

The evolving process of curved surfaces which having sphere as the initial state is schematically depicted in Fig. 6.
Set p(t) = (x(t), y(t), z(t)) and let s be a scale parameter and c be a some constant. For x(t) < 0, we translate
p(t) to p(t + ∆t) = p(t) + s∆t(cx(t), y(t), z(t)). Otherwise, we rotationally translate p(t) to p(t + ∆t) = p(t) +

s∆t
(
(cx(t), y(t), z(t)) + x(t)

(
(z(t), 0, −x(t)) − l

))
if x(t) ≥ 0. As shown in Fig. 6, µ = (−R, 0, 0) and ν = (x, y, z) are

points on the surface. The angle θ is calculated using µ and ν, and then we define L = Rθ which is used to determine an
initial value in each point. In the numerical experiments on evolving surfaces, we take R = 100, c = 30 and l = (−75, 0, 0).
2023
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Fig. 3. Effect of the growing two-dimensional domain in the x-direction at t = 0, 500∆t, 1000∆t from top to bottom, respectively.

Fig. 4. Effect of the growing two-dimensional domain at t = 0, 500∆t, 1000∆t from left to right, respectively.

Fig. 5. Skin pattern on a zebra. Reprinted from (a) Grzybowski and Campbell [27] with permission from Elsevier, and from (b) Jonathan [28] with
permission from John Wiley and Sons.

Note that ā− p is a vector which is orthogonal to the projection of p− a onto xz-plane, represented by (z(t), 0, −x(t))− l
as above. Therefore, l is just normal to a on xz-plane.

From now on, we shall observe how effect of domain growth on evolving curved surface which having a sphere as
the initial state, varies with rotation speed. In Fig. 7(a), the initial conditions are set to u(x, y, z, 0) = 0.5 cos(30L) and
(x, y, z, 0) = −0.25 cos(30L). The parameters used are ∆t = 0.025, D = 0.516, δ = 3, α = 0.899, β = −0.95, and
= −α. By adding a condition that accelerates the rotation speed 1.5 times more after a certain number of iterations, in
umerical simulations following the rules described above, we were able to observe the effect of domain growth such as
tretching stripe shape, and splitting stripe shape, and then we can observe different stretching shapes, splitting shapes,
nd brightness with respect to different rotation speeds at the same shape, as shown in Fig. 7. First row of Fig. 7 has
riginal rotation speed, and second row has 1.5 times rotation speed on evolving curved surface.
2024
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Fig. 6. Schematic representation of the evolving of curved surfaces.

Fig. 7. From top to bottom, effect of domain growth on evolving curved surface with original and 1.5 times rotation speed at (a) t = 0, (b) t = 65, 50
nd (c) t = 100, 75, respectively.

.3. Pattern formation

.3.1. Pattern formation on static curved surface
We perform the pattern formation on a curved surface S. We investigate a phase separation of random initial condition

n sphere as shown in Fig. 8. We used the triangular surface mesh to represent a sphere. Here, radius of sphere R = 100
2025
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Fig. 8. Pattern formation in the reaction–diffusion systems on the static sphere at (a) t = 0, (b) t = 500, and (c) t = 10000.

Fig. 9. From top to bottom, pattern formation in the reaction–diffusion systems on evolving curved surface with 0.1 times and 0.5 times rotation
speed at (a) t = 0, (b) t = 1050, 210 and (c) t = 3500, 700, respectively.

is used. Furthermore, the parameters to the 3D extension of systems (3) are adopted as follows: ∆t = 0.1, D = 0.516,
δ = 3, α = 0.899, β = −0.95, and γ = −α. In Fig. 8(a), the initial condition is given by u(x, y, z, 0) = rand(x, y, z) and
v(x, y, z, 0) = rand(x, y, z), where rand(x, y, z) denotes random number between 0 and 1. We can observe the pattern
formation of reaction–diffusion systems at t = 500 in Fig. 8(b). In Fig. 8(c), the value of v at the edges of triangular patches
is numerically in the range between −0.2743 and 0.2665, and we could observe that labyrinth-type pattern formations
on the static sphere.

4.3.2. Pattern formation on evolving curved surface
Finally, we perform pattern formations on evolving curved surface which having sphere as the initial state. The initial

conditions are set to u(x, y, z, 0) = 2rand(x, y, z) − 1 and v(x, y, z, 0) = 2rand(x, y, z) − 1, where rand(x, y, z) denotes
2026
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random number between 0 and 1, as shown in Fig. 9. The parameters used are ∆t = 0.035, D = 0.516, δ = 3, α = 0.899,
β = −0.95, and γ = −α. First row of Fig. 9 has 0.1 times rotation speed, and second row has 0.5 times rotation
speed on evolving curved surface. As shown in temporal evolutions from Fig. 9(b) to (c), it can be seen that patterns
are generated along rotational directions and the curvatures. Furthermore, splitting pattern formation seen in Fig. 7 could
also be observed in the second row of Fig. 9(c). This splitting pattern formation cannot be found in the first row of Fig. 9(c).
Therefore, we can see that the splitting pattern formation is depending on rotation speeds.

5. Discussions

In this article, we considered an explicit time-stepping scheme for pattern formation in reaction–diffusion systems
on evolving surfaces. The proposed numerical method is based on a simple discretization scheme of Laplace–Beltrami
operator over triangulated surface. We performed various numerical experiments and presented the computational results
to demonstrate that our proposed method can simulate pattern formation in reaction–diffusion systems on evolving
surfaces. The actual zebra skin pattern on the body part for each different growth condition as shown in Fig. 5 was
compared with the effect of domain growth in the reaction–diffusion systems on the evolving surface with respect to
the different rotation speeds as shown in Fig. 7. In future work, we shall study the pattern formations on the evolving
surfaces with time dependent spectrum of Laplace–Beltrami operator, that can compare actual pattern formations.
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