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Highlights

• A simple and efficient finite difference method for the phase-field crystal equation on curved surfaces is presented.
• The proposed method can be combined with any time discretization.
• The proposed method gives stable solutions even on the surface having sharp curvatures without difficulties.

Abstract

We present a simple and efficient finite difference method for the phase-field crystal (PFC) equation on curved surfaces
embedded in R3. We employ a narrow band neighborhood of a curved surface that is defined as a zero level set of a signed
distance function. The PFC equation on the surface is extended to the three-dimensional narrow band domain. By using the closest
point method and applying a pseudo-Neumann boundary condition, we can use the standard seven-point discrete Laplacian operator
instead of the discrete Laplace–Beltrami operator on the surface. The PFC equation on the narrow band domain is discretized using
an unconditionally stable scheme and the resulting implicit discrete system of equations is solved by using the Jacobi iterative
method. Computational results are presented to demonstrate the efficiency and usefulness of the proposed method.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Material properties are controlled by complex microstructures exhibiting topological defects, such as vacancies,
grain boundaries, and dislocations. One model for simulating these defects is the phase-field crystal (PFC) equation
proposed by Elder et al. [1,2]. This model describes the microstructure of two-phase systems on atomic length scales
but on diffusive time scales, leading to significant computational savings compared to molecular dynamics simulations
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which are limited by atomic length scales and femtosecond time scales. The PFC equation has been used to study
various phenomena, including grain growth, dendritic and eutectic solidification, and epitaxial growth [1,3].

The PFC equation is derived from a free energy functional of Swift–Hohenberg type [4]

E(φ) :=


Ω


1
4
φ4

+
1 − ϵ

2
φ2

− |∇φ|
2
+

1
2
(∆φ)2


dx, (1)

where φ : Ω ⊂ Rd
→ R (d = 1, 2, 3) is the density field and ϵ is a positive constant with physical significance.

Under the constraint of mass conservation, the PFC equation is given by

∂φ

∂t
= ∆µ, (2)

where µ is the chemical potential defined as µ := δE/δφ = φ3
+ (1 − ϵ)φ + 2∆φ + ∆2φ and δE/δφ denotes

the variational derivative of E with respect to φ. Because (2) is of gradient type, it is easy to see that the energy
functional (1) is non-increasing in time. The PFC equation is a sixth-order nonlinear partial differential equation
and cannot generally be solved analytically. Therefore, computer simulations play an essential role in understanding
of nonequilibrium processing. Various computational algorithms [1,2,5–13] have been developed to solve the PFC
equation numerically. There are a few related works that try to solve the PFC equation on curved surfaces [14–16].

The aim of this paper is to present a simple and efficient finite difference method for the PFC equation on curved
surfaces in three-dimensional space. The key element in solving the PFC equation on a curved surface is calculating
the Laplace–Beltrami operator for describing the Laplacian on the curved surface [17]. Our method is based on the
closest point method [18–20]: we define a narrow band domain of the surface that is represented as a zero level set of
a signed distance function. Then, on the boundary of the narrow band domain, we apply a pseudo-Neumann boundary
condition via the closest point. This boundary treatment results that the density field φ is constant in the direction
normal to the surface. Thus, we can use the standard Laplacian operator instead of the Laplace–Beltrami operator.
Furthermore, we take the minimum number of grid points for the discrete narrow band domain and solve the PFC
equation only on the discrete narrow band domain. Therefore, the algorithm is simple and efficient. Note that our
method can be combined with any time discretization, but the Jacobi iterative method is used to solve the resulting
implicit discrete system of equations efficiently.

The outline of the paper is as follows. In Section 2, we describe the PFC equation on a narrow band domain.
In Section 3, we provide the numerical solution algorithm. Numerical experiments on various curved surfaces are
presented in Section 4. Finally, conclusions are drawn in Section 5.

2. Phase-field crystal equation on a narrow band domain

The PFC equation on the surface S in R3 is given by

∂φ(x, t)

∂t
= ∆Sµ(x, t), x ∈ S, 0 < t ≤ T, (3)

µ(x, t) = φ3(x, t)+ (1 − ϵ)φ(x, t)+ 2∆Sφ(x, t)+ ∆Sν(x, t), (4)

ν(x, t) = ∆Sφ(x, t), (5)

where ∆S is the Laplace–Beltrami operator and is defined as ∆Sφ = ∇ · (P∇φ). Here, P = I − (∇ψ)T ∇ψ is a
projection operator onto the tangent plane [21,22], where I is the 3 × 3 identity matrix and ψ : R3

→ R is a signed
distance function such that S = {x ∈ R3

|ψ(x) = 0} with ψ < 0 inside of S and ψ > 0 outside of S. Next, let
Ωδ = {y|x ∈ S, y = x + θn(x) for |θ | < δ} be a δ-neighborhood band of S, where n(x) is a unit normal vector at x.
Then, we extend the PFC equations (3)–(5) to the narrow band domain Ωδ:

∂φ(x, t)

∂t
= ∆Sµ(x, t), x ∈ Ωδ, 0 < t ≤ T, (6)

µ(x, t) = φ3(x, t)+ (1 − ϵ)φ(x, t)+ 2∆Sφ(x, t)+ ∆Sν(x, t), (7)

ν(x, t) = ∆Sφ(x, t) (8)
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Fig. 1. Schematic illustration of a surface S, a narrow band domain Ωδ with a thickness of 2δ, its boundary ∂Ωδ , and the closest point cp(x) for a
point x ∈ ∂Ωδ .

with the following pseudo-Neumann boundary condition on ∂Ωδ:

φ(x, t) = φ(cp(x), t), µ(x, t) = µ(cp(x), t), and ν(x, t) = ν(cp(x), t), (9)

where cp(x) is a point on S, which is closest to x ∈ ∂Ωδ [20]. Fig. 1 shows a schematic illustration of a surface S, a
narrow band domain Ωδ with a thickness of 2δ, its boundary ∂Ωδ , and the closest point cp(x) for a point x ∈ ∂Ωδ .

If we take a sufficiently small δ, then we have a constant value of φ in the direction normal to the surface. Thus, we
can use the standard Laplacian operator instead of the Laplace–Beltrami operator in the narrow band domain Ωδ [20],
i.e., we have

∂φ(x, t)

∂t
= ∆µ(x, t), x ∈ Ωδ, 0 < t ≤ T, (10)

µ(x, t) = φ3(x, t)+ (1 − ϵ)φ(x, t)+ 2∆φ(x, t)+ ∆ν(x, t), (11)

ν(x, t) = ∆φ(x, t). (12)

3. Numerical solution algorithm

In this section, we describe our algorithm for solving Eqs. (10)–(12) with the boundary condition (9). Using
ideas presented in [18,19] for the Allen–Cahn equation and the nonlocal Cahn–Hilliard equation, we discretize Eqs.
(10)–(12) in the three-dimensional domain Ω = [a, b] × [c, d] × [e, f ] that includes Ωδ . Let h = (b − a)/Nx =

(d − c)/Ny = ( f − e)/Nz be the uniform grid size, where Nx , Ny , and Nz are positive integers. Let Ωh
= {xi jk =

(xi , y j , zk)|xi = a + hi, y j = c + hj, zk = e + hk for 0 ≤ i ≤ Nx , 0 ≤ j ≤ Ny, 0 ≤ k ≤ Nz} be a discrete
domain. Let φn

i jk be an approximation of φ(xi jk, n∆t), where ∆t is the time step. Let Ωh
δ = {xi jk ||ψi jk | < δ}

be a discrete narrow band domain and ∂Ωh
δ = {xi jk |Ii jk |∇h Ii jk | ≠ 0} be discrete domain boundary points, where

∇h Ii jk = (Ii+1, j,k − Ii−1, j,k, Ii, j+1,k − Ii, j−1,k, Ii, j,k+1 − Ii, j,k−1)/(2h). Here, Ii jk = 0 if xi jk ∈ Ωh
δ , and Ii jk = 1

otherwise. We discretize Eqs. (10)–(12) by applying an unconditionally stable scheme [12]:

φn+1
i jk − φn

i jk

∆t
= ∆hµ

n+1
i jk , (13)

µn+1
i jk = (φn+1

i jk )
3
+ (1 − ϵ)φn+1

i jk + 2∆hφ
n
i jk + ∆hν

n+1
i jk , (14)

νn+1
i jk = ∆hφ

n+1
i jk (15)

with the following boundary condition on ∂Ωh
δ :

φn+1
i jk = φn+1(cp(xi jk)), µn+1

i jk = µn+1(cp(xi jk)), and νn+1
i jk = νn+1(cp(xi jk)).

Here, ∆hφi jk = (φi+1, j,k + φi−1, j,k + φi, j+1,k + φi, j−1,k + φi, j,k+1 + φi, j,k−1 − 6φi jk)/h2. The numerical closest
point cp(xi jk) for a point xi jk ∈ ∂Ωh

δ is defined as

cp(xi jk) = xi jk − |ψi jk |
∇h |ψi jk |

|∇h |ψi jk ||
.

In general, cp(xi jk) is not a grid point in Ωh
δ , i.e., cp(xi jk) ∉ Ωh

δ , and thus we calculate φ(cp(xi jk)) by using
trilinear interpolation. Therefore, we need to take δ >

√
3h. In order to solve the implicit discrete equations (13)–(15)
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efficiently, we use the Jacobi iterative method: we set an initial guess {φ
n+1,0
i jk , µ

n+1,0
i jk , ν

n+1,0
i jk } = {φn

i jk, µ
n
i jk, ν

n
i jk} and

calculate {φ
n+1,m+1
i jk , µ

n+1,m+1
i jk , ν

n+1,m+1
i jk } from the given {φ

n+1,m
i jk , µ

n+1,m
i jk , ν

n+1,m
i jk } for m = 0, 1, . . . , by solving the

following equations: for all xi jk ∈ Ωh
δ ,

φ
n+1,m+1
i jk

∆t
+

6µn+1,m+1
i jk

h2 =
φn

i jk

∆t
+
µ

n+1,m
i+1, j,k + µ

n+1,m
i−1, j,k + µ

n+1,m
i, j+1,k + µ

n+1,m
i, j−1,k + µ

n+1,m
i, j,k+1 + µ

n+1,m
i, j,k−1

h2 , (16)

×


−3(φn+1,m

i jk )2 − 1 + ϵ

φ

n+1,m+1
i jk + µ

n+1,m+1
i jk +

6νn+1,m+1
i jk

h2

=
2(φn

i+1, j,k + φn
i−1, j,k + φn

i, j+1,k + φn
i, j−1,k + φn

i, j,k+1 + φn
i, j,k−1 − 6φn

i jk)

h2

− 2(φn+1,m
i jk )3 +

ν
n+1,m
i+1, j,k + ν

n+1,m
i−1, j,k + ν

n+1,m
i, j+1,k + ν

n+1,m
i, j−1,k + ν

n+1,m
i, j,k+1 + ν

n+1,m
i, j,k−1

h2 , (17)

6φn+1,m+1
i jk

h2 + ν
n+1,m+1
i jk =

φ
n+1,m
i+1, j,k + φ

n+1,m
i−1, j,k + φ

n+1,m
i, j+1,k + φ

n+1,m
i, j−1,k + φ

n+1,m
i, j,k+1 + φ

n+1,m
i, j,k−1

h2 . (18)

We iterate the Jacobi iteration (16)–(18) until ∥φn+1,m+1
−φn+1,m

∥L2(Ωh
δ )

is less than a tolerance tol. Here, a discrete

L2-norm on Ωh
δ is defined as ∥φ∥L2(Ωh

δ )
=


xi jk∈Ωh

δ
φ2

i jk/#Ω
h
δ , where #Ωh

δ is the number of elements in the set Ωh
δ .

Then, we set {φ
n+1,∗
i jk , µ

n+1,∗
i jk , ν

n+1,∗
i jk } = {φ

n+1,m+1
i jk , µ

n+1,m+1
i jk , ν

n+1,m+1
i jk }. Finally,


xi jk∈Ωh

δ
φn

i jk/#Ω
h
δ is generally

not constant with respect to n since the boundary condition (9) is not conservative. In order to make the method
conservative, the following correction procedure is used:

φn+1
i jk = φ

n+1,∗
i jk +

1

#Ωh
δ


xpqr ∈Ωh

δ

(φ0
pqr − φn+1,∗

pqr ) for all xi jk ∈ Ωh
δ .

4. Numerical experiments

We perform several numerical experiments on various curved surfaces. Unless otherwise stated, we take an initial
condition as

φ(x, y, z, 0) = φ̄ + rand(x, y, z),

where rand(x, y, z) is a random number between −0.1 and 0.1. The parameters h = ∆t = 1, ϵ = 0.25, δ = 1.1
√

3h,
and tol = 0.1 are used.

4.1. Convergence test

In order to estimate the convergence rate with respect to h, we consider the evolution of φ on a unit sphere. An
initial condition is

φ(x, y, z, 0) = 0.5 sin(2πx) sin(2πy) sin(2π z)

and the unit sphere is represented as a zero level set of the following signed distance function:

ψ(x, y, z) =


x2 + y2 + z2 − 1

on a domain Ω = [−1.5, 1.5]
3. Simulations are performed by varying h = 0.2, 0.1, 0.05, 0.025, 0.0125. The time

steps are ∆t = 0.1h2. We define the L2- and L∞-errors between two different grid sizes h and h/2 to be

∥φh,∆t
− φh/2,∆t/4

∥
L2(Ω

h/2
δ )

=

 
xi jk∈Ω

h/2
δ


φ

h,∆t
i jk − φ

h/2,∆t/4
2i−1,2 j−1,2k−1

2 
#Ωh/2

δ
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Fig. 2. (a) φ(x, y, z, 0) and (b) φ(x, y, z, 0.008) with h = 0.0125. The red, green, and blue regions indicate φ = 0.25, 0, and −0.25, respectively.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1

L2- and L∞-errors and convergence rates at t = 0.008.

h 0.2–0.1 0.1–0.05 0.05–0.025 0.025–0.0125

L2-error 3.849 × 10−2 1.150 × 10−2 3.132 × 10−3 7.105 × 10−4

Rate 1.74 1.88 2.14

L∞-error 8.304 × 10−2 2.709 × 10−2 6.897 × 10−3 1.461 × 10−3

Rate 1.62 1.97 2.24

and

∥φh,∆t
− φh/2,∆t/4

∥
L∞(Ω

h/2
δ )

= max
xi jk∈Ω

h/2
δ

φh,∆t
i jk − φ

h/2,∆t/4
2i−1,2 j−1,2k−1

 ,
respectively. Here, φh,∆t is a numerical solution obtained with a grid size h and a time step ∆t . The convergence rate
is defined as

log2


∥φh,∆t

− φh/2,∆t/4
∥

∥φh/2,∆t/4 − φh/4,∆t/16∥


.

Fig. 2(a) and (b) show φ(x, y, z, 0) and φ(x, y, z, 0.008) with h = 0.0125, respectively. The errors and convergence
rates at t = 0.008 are shown in Table 1. The results suggest that the numerical scheme is approximately second-order
accurate in space and first-order accurate in time. Note that we applied the pseudo-Neumann boundary condition
φi jk = φ(cp(xi jk)) on ∂Ωh

δ and calculated φ(cp(xi jk)) by an interpolation since cp(xi jk) ∉ Ωh
δ . Thus, the order of

the numerical scheme can be affected by this implementation. In order to obtain more accurate results, one can try the
method suggested in [20]. Fig. 3 shows the evolution of the energy for various grid sizes. We observe that the energy
is non-increasing.

4.2. Temporal evolution on a sphere

Next, we consider the evolution of φ on a sphere. The sphere is represented as a zero level set of the following
signed distance function:

ψ(x, y, z) =


x2 + y2 + z2 − 64

on a domain Ω = [−68, 68]
3. Figs. 4 and 5 show the evolution of φ(x, y, z, t) with φ̄ = 0.05 and 0.15, respectively.

Depending on the value of φ̄, we have different patterns, such as striped (Fig. 4) and hexagonal (Fig. 5). Fig. 6 shows
the evolution of the energy with φ̄ = 0.05 and 0.15. We observe that the energy is non-increasing.

4.3. Temporal evolution on a sphere perturbed by a spherical harmonic

In this section, we validate that the proposed method can handle complex surfaces by simulating the evolution of
φ on a sphere of center (0, 0, 0) and radius 32 perturbed by a spherical harmonic 10Y 7

10(θ, ϕ). Here, θ and ϕ are the
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Fig. 3. Evolution of E(φ)/E(φ0) for various grid sizes.

(a) t = 200. (b) t = 500. (c) t = 10,000.

Fig. 4. Evolution of φ(x, y, z, t) with φ̄ = 0.05.

(a) t = 250. (b) t = 350. (c) t = 5000.

Fig. 5. Evolution of φ(x, y, z, t) with φ̄ = 0.15.

polar and azimuthal angles, respectively, and the computational domain is Ω = [−40, 40]
3. Figs. 7 and 8 show the

evolution of φ(x, y, z, t) with φ̄ = 0.05 and 0.15, respectively. From the results in Figs. 7 and 8, we can see that our
method can solve the PFC equation on not only simple but also complex surfaces. Fig. 9 shows the evolution of the
energy with φ̄ = 0.05 and 0.15. We observe that the energy is non-increasing.

4.4. Temporal evolution on a cube

In order to demonstrate the robustness of the proposed method, we consider the evolution of φ on a cube that has
sharp curvatures. The cube is represented as a zero level set of the following signed distance function:

ψ(x, y, z) = min(max(x̄,max(ȳ, z̄)), 0)+


max(x̄, 0)2 + max(ȳ, 0)2 + max(z̄, 0)2
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Fig. 6. Evolution of E(φ)/E(φ0) with φ̄ = 0.05 and 0.15.

(a) t = 200. (b) t = 300. (c) t = 10,000.

Fig. 7. Evolution of φ(x, y, z, t) with φ̄ = 0.05.

(a) t = 250. (b) t = 350. (c) t = 5000.

Fig. 8. Evolution of φ(x, y, z, t) with φ̄ = 0.15.

on a domain Ω = [−36, 36]
3, where x̄ = |x |−32, ȳ = |y|−32, and z̄ = |z|−32. Figs. 10 and 11 show the evolution

of φ(x, y, z, t) with φ̄ = 0.05 and 0.15, respectively. As we can see in Figs. 10 and 11, our method gives stable
solutions without difficulties, even on a surface having sharp curvatures. Fig. 12 shows the evolution of the energy
with φ̄ = 0.05 and 0.15. We observe that the energy is non-increasing.

4.5. Crystal growth in a supercooled liquid on an ellipsoid

Droplets of supercooled water often exist in stratiform and cumulus clouds. Abrupt crystallization of these droplets
can occur when aircraft fly through these clouds, which can result in the formation of ice on the aircraft’s wings or
blockage of its instruments and probes. In order to simulate aircraft icing, we consider crystal growth in a supercooled
liquid on an ellipsoid. We take an initial condition

φ(x, y, z, 0) =


0.285 + rand(x, y, z) if x < −60
0.285 otherwise
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Fig. 9. Evolution of E(φ)/E(φ0) with φ̄ = 0.05 and 0.15.

(a) t = 200. (b) t = 300. (c) t = 10,000.

Fig. 10. Evolution of φ(x, y, z, t) with φ̄ = 0.05.

(a) t = 250. (b) t = 350. (c) t = 5000.

Fig. 11. Evolution of φ(x, y, z, t) with φ̄ = 0.15.

on a domain Ω = [−68, 68] × [−36, 36] × [−36, 36]. Fig. 13 shows the evolution of φ(x, y, z, t) on an ellipsoid of
center (0, 0, 0) and radius (64, 32, 32). We observe the growth of a crystalline phase and the motion of a well-defined
crystal–liquid interface. Fig. 14 shows the evolution of the energy. We observe that the energy is non-increasing.
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Fig. 12. Evolution of E(φ)/E(φ0) with φ̄ = 0.05 and 0.15.

(a) t = 0. (b) t = 8000. (c) t = 9000. (d) t = 16,000.

Fig. 13. Crystal growth in a supercooled liquid on an ellipsoid.

Fig. 14. Evolution of E(φ)/E(φ0).

4.6. Mixed pattern on an ellipsoid

In this section, we solve the PFC equation on an ellipsoid of center (0, 0, 0) and radius (96, 16, 16) with the
following initial condition:

φ(x, y, z, 0) = 0.05 + (0.285 − 0.05)


x + 100
200

3

+ rand(x, y, z).
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a

b

c

Fig. 15. Evolution of φ(x, y, z, t) at (a) t = 0, (b) 1000, and (c) 40,000 with the initial condition φ(x, y, z, 0) = 0.05+(0.285−0.05)


x+100
200

3
+

rand(x, y, z).

Fig. 16. Evolution of E(φ)/E(φ0).

The computational domain is Ω = [−100, 100]× [−20, 20]× [−20, 20]. Fig. 15 shows the evolution of φ(x, y, z, t).
In this simulation, we obtain a mixed pattern of striped and hexagonal. Fig. 16 shows the evolution of the energy. We
observe that the energy is non-increasing.

4.7. Effect of surface topology on pattern formation

In order to investigate the effect of surface topology on pattern formation, we consider two rectangular
parallelepipeds having the following signed distance functions: ψ64,8,8(x, y, z) and ψ64,4,4(x, y, z) on a domain
Ω = [−36, 36]

3, where

ψu,v,w(x, y, z) = min(max(|x | − u/2,max(|y| − v/2, |z| − w/2)), 0)

+


max(|x | − u/2, 0)2 + max(|y| − v/2, 0)2 + max(|z| − w/2, 0)2.

Note that Fig. 11 shows a hexagonal pattern on the cube having ψ64,64,64(x, y, z) with φ̄ = 0.15. Figs. 17 and 18
show the evolution of φ(x, y, z, t) on the rectangular parallelepipeds having ψ64,8,8(x, y, z) and ψ64,4,4(x, y, z) with
φ̄ = 0.15, respectively. On the rectangular parallelepiped having ψ64,8,8(x, y, z), we also obtain a hexagonal pattern.
However, on the rectangular parallelepiped having ψ64,4,4(x, y, z) (a narrow rectangular parallelepiped), we obtain
a striped pattern even with φ̄ = 0.15. Fig. 19 shows the evolution of the energy on the rectangular parallelepipeds
having ψ64,8,8(x, y, z) and ψ64,4,4(x, y, z) with φ̄ = 0.15. We observe that the energy is non-increasing.
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(a) t = 250. (b) t = 350. (c) t = 10,000.

Fig. 17. Evolution of φ(x, y, z, t) on the rectangular parallelepiped having ψ64,8,8(x, y, z) with φ̄ = 0.15.

(a) t = 250. (b) t = 350. (c) t = 10,000.

Fig. 18. Evolution of φ(x, y, z, t) on the rectangular parallelepiped having ψ64,4,4(x, y, z) with φ̄ = 0.15.

Fig. 19. Evolution of E(φ)/E(φ0) on the rectangular parallelepipeds having ψ64,8,8(x, y, z) and ψ64,4,4(x, y, z) with φ̄ = 0.15.

5. Conclusions

We presented a simple and efficient finite difference method for the PFC equation on curved surfaces embedded in
R3. We employed a three-dimensional narrow band neighborhood of a curved surface that is defined as a zero level
set of a signed distance function. The PFC equation on the surface was extended to the three-dimensional narrow
band domain. By using the closest point method and applying a pseudo-Neumann boundary condition, we could
use the standard seven-point discrete Laplacian operator instead of the discrete Laplace–Beltrami operator on the
surface. The PFC equation on the narrow band domain was discretized using an unconditionally stable scheme and
the resulting implicit discrete system of equations was solved by using the Jacobi iterative method. We performed
numerical experiments on various curved surfaces, which demonstrate the efficiency and usefulness of the proposed
method for the PFC equation on curved surfaces.
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