
mathematics

Article

Porous Three-Dimensional Scaffold Generation for
3D Printing

Chaeyoung Lee 1 , Darae Jeong 2 , Sungha Yoon 1 and Junseok Kim 1,*
1 Department of Mathematics, Korea University, Seoul 02841, Korea; chae1228@korea.ac.kr (C.L.);

there122@korea.ac.kr (S.Y.)
2 Department of Mathematics, Kangwon National University, Gangwon-do 24341, Korea;

tinayoyo@kangwon.ac.kr
* Correspondence: cfdkim@korea.ac.kr; Tel.: +82-2-3290-3077; Fax: +82-2-929-8562

Received: 20 May 2020; Accepted: 4 June 2020; Published: 9 June 2020
����������
�������

Abstract: In this paper, we present an efficient numerical method for arbitrary shaped porous
structure generation for 3D printing. A phase-field model is employed for modeling phase separation
phenomena of diblock copolymers based on the three-dimensional nonlocal Cahn–Hilliard (CH)
equation. The nonlocal CH equation is a fourth-order nonlinear partial differential equation.
To efficiently solve the governing equation, an unconditionally gradient stable convex splitting
method for temporal discretization with a Fourier spectral method for the spatial discretization is
adopted. The standard fast Fourier transform is used to speed up the computation. A new local average
concentration function is introduced to the original nonlocal CH equation so that we can locally control
the morphology of the structure. The proposed algorithm is simple to implement and complex shaped
structures can also be implemented with corresponding signed distance fields. Various numerical
tests are performed on simple and complex structures. The computational results demonstrate that the
proposed method is efficient to generate irregular porous structures for 3D printing.

Keywords: 3D printing; diblock copolymer; porous structure; nonlocal Cahn–Hilliard equation

1. Introduction

Porosity has many advantages in a variety of fields, including biomaterials, tissue engineering,
and clinical medicine. Especially, 3D porous scaffolds have attracted considerable attention in tissue
engineering. For instance, bones may be damaged due to accidents or aging in humans; one of the
most common methods for severe bone injury is surgical treatment, in which the damaged area is
removed and then transplanted for recovery. Because bone is a porous structure, scaffolds with similar
porosity distribution and mechanical loading structures need to be studied [1,2].

Porous objects usually have relatively large internal surface areas and are resistant to physical force.
Moreover, in the case of a model in which the pores are connected to each other, fluids can flow along
them, thereby providing nutrition and cell growth [3]. Therefore, many researches related to generating
porous structures have been conducted so far on materials [4], porous sizes [5], architecture [6],
topology optimization [7], and 3D printing [8,9] for optimized porous scaffolds. Hollister [10]
presented both hierarchical computational topology design and solid free-form fabrication to make 3D
anatomic scaffolds with porous structure satisfying the balance between permeability and diffusion.
Because creating a porous scaffold that balances mechanical function and material transport is an
important issue, how to adjust it efficiently is constantly being studied so far. The authors in [11] used
numerical and experimental methods to investigate the influence of the porous structure of triply
periodic minimal surface (TPMS) scaffolds on the macroscopic permeability behavior. In addition,
advances in 3D printing technology have led to active research into patient-specific structures. As such,
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the porous scaffolds are closely related to 3D printing. Mohammed et al. [8] examined the creation of
unit cells from TPMS renderings as a basis for creating tailored porous structures. In [12], the authors
presented a multi-scale porous structure-based lightweight method to make lightweight and strong
three-dimensional printed models.

On the one hand, the development of various additive manufacturing technologies [13,14] has
made it possible to use various infill technologies for generating 3D objects. These methods are effective
for filling the interior of surfaces with porosity. Various methods are used to generate the porosity
on surface, such as the Voronoi diagram [15], the Poisson disk sampling [16], and the example-based
method [17], etc. Therefore, various combinations of the above methods can be applied to a variety of
applications such as designing porosity architecture of bones, for example, by obtaining an internal
structure suitable for porous surfaces. On the other hand, there are methods of creating porous objects
smoothly using partial differential equations (PDE) to the 3D object itself directly. Creating porous
structures using PDE begins with forming patterns on surface. In the previous study, using the
reaction-diffusion type PDE, the numerical simulation results with generated patterns on surface were
presented in [18]. In this study, the mesh is generated but the interior is not filled, therefore filling
inside of object is needed to generate porosity. Then, one can create the object with the similar effect as
above. Certain aspects of this approach have been examined implicitly by Jeong et al. [19]. The authors
studied numerically a phase-field model for diblock copolymers based on the nonlocal Cahn–Hilliard
(CH) equation. The reason why porosity can be obtained is that isosurfaces can be generated using
phase-field models. A different average concentration yields a different pattern, i.e., a different porosity
by adjusting the phase values.

Therefore, the main purpose of this paper is to use the nonlocal CH equation [19] with a new
local average concentration function to generate arbitrary shaped porous structure for 3D printing
with space-dependent porous patterns. The CH equation was originally derived from the spinodal
decomposition and coarse dynamics of binary alloys. It has been applied to various fields such as image
inpainting [20], image segmentation [21], multi-phase flow [22]. Once a signed distance field is given,
our method solves the equation and can generate a porous object quickly by using the well-known
method, the fast Fourier transform (FFT). Compared with traditional engineering algorithms for
generating regular porous architectures, the proposed method allows one to easily adjust parameters
to obtain irregular structures with specific volume, density, etc. Regular porous objects are easy
to design and fabricate but have shortages such as controlling local pore sizes or distribution of
pores. These limitations can be solved through the generation of irregular porous objects [9]. Likewise,
these difficulties can be solved by using the modified space-dependent average concentration function
in our model.

The paper is organized in the following manner. In Section 2, the governing equation and its
computational method are described. In Section 3, the computational experiments are performed.
In Section 4, conclusions are given.

2. Mathematical Model and Numerical Method

Let φ(x, t) be the order parameter. Then, the nonlocal CH equation for modeling a diblock
copolymer is given as

∂φ(x, t)
∂t

= ∆
[
φ3(x, t)− φ(x, t)− ε2∆φ(x, t)

]
− α(φ(x, t)− φ̄), x ∈ Ω, t > 0, (1)

where Ω is the domain, ε and α are positive constants, and φ̄ is the average concentration [19].
In this paper, the nonlocal CH equation with a local average concentration function φ̄(x) is

proposed to generate arbitrary shaped porous structure for 3D printing:

∂φ(x, t)
∂t

= ∆
[
φ3(x, t)− φ(x, t)− ε2∆φ(x, t)

]
− α(φ(x, t)− φ̄(x)), x ∈ Ω, t > 0, (2)
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With the local average concentration function φ̄(x), arbitrary shaped porous structure for 3D
printing can be easily generated. When we consider a structure represented by the signed distance
function ψ(x, y, z), a local average concentration functions φ̄(x) can be defined as follows:

φ̄(x) =

{
f (x) if ψ(x) ≤ 0
−1 otherwise

, (3)

where f (x) is a space-dependent function. Figure 1 illustrates a structure in the domain cube.

Figure 1. Schematic diagram illustrating a volume in the cubic domain.

An unconditionally stable Fourier spectral method is used for the nonlocal CH Equation (1)
in 3D space Ω = (−Lx, Lx) × (−Ly, Ly) × (−Lz, Lz). Fourier spectral method has been applied in
many studies [23]. Let h = 2Lx/Nx = 2Ly/Ny = 2Lz/Nz be the spatial step size, where Nx, Ny,
and Nz are positive even integers. Let φs

mnk be approximations of φ(xm, yn, zk, ts), where (xm, yn, zk) =

(−Lx + (m− 0.5)h, − Ly + (n− 0.5)h, − Lz + (k− 0.5)h) and ts = s∆t with ∆t the temporal step.

Let φ̂s
pqr = ∑Nx

m=1 ∑
Ny
n=1 ∑Nz

k=1 φs
mnke−i(ξpxm+ηqyn+νrzk) be the discrete Fourier transform with a given

data {φs
mnr|m = 1, · · · , Nx, n = 1, · · · , Ny, and k = 1, · · · , Nz}, where ξp = πp/Lx, ηq = πq/Ly,

and νr = πr/Lz. The inverse discrete Fourier transform is

φs
mnk =

1
Nx NyNz

Nx/2−1

∑
p=−Nx/2

Ny/2−1

∑
q=−Ny/2

Nz/2−1

∑
r=−Nz/2

φ̂s
pqrei(ξpxm+ηqyn+νrzk). (4)

Let

φ(x, y, z, s∆t) =
1

Nx NyNz

Nx/2−1

∑
p=−Nx/2

Ny/2−1

∑
q=−Ny/2

Nz/2−1

∑
r=−Nz/2

φ̂s
pqrei(ξpx+ηqy+νrz).

Then,

∆φ(x, y, z, s∆t) = − 1
Nx NyNz

Nx/2−1

∑
p=−Nx/2

Ny/2−1

∑
q=−Ny/2

Nz/2−1

∑
r=−Nz/2

(
ξ2

p + η2
q + ν2

r

)
φ̂s

pqrei(ξpx+ηqy+νrz).

By using the linearly stabilized splitting scheme [24] to Equation (1), we have

φs+1
mnk − φs

mnk
∆t

= ∆
(

2φs+1
mnk − ε2∆φs+1

mnk + F′(φs
mnk)

)
− α

(
φs+1

mnk − φ̄mnk

)
, (5)

where F′(φ) = φ3 − 3φ. Thus, Equation (5) can be transformed into the discrete Fourier space
as follows:
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φ̂s+1
pqr − φ̂s

pqr

∆t
= −

(
ξ2

p + η2
q + ν2

r

) (
2φ̂s+1

pqr + ε2
(

ξ2
p + η2

q + ν2
r

)
φ̂s+1

pqr + F̂′
s
pqr

)
− α

(
φ̂s+1

pqr − ˆ̄φpqr

)
.

Therefore, the following discrete Fourier transform is obtained as follows:

φ̂s+1
pqr =

φ̂s
pqr − (ξ2

p + η2
q + ν2

r )∆tF̂′
s
pqr + α∆t ˆ̄φpqr

1 + ∆t[α + 2(ξ2
p + η2

q + ν2
r ) + ε2(ξ2

p + η2
q + ν2

r )
2]

.

Then, using Equation (4), we get the updated numerical solution φs+1
mnk as

φs+1
mnk =

1
Nx NyNz

Nx/2−1

∑
p=−Nx/2

Ny/2−1

∑
q=−Ny/2

Nz/2−1

∑
r=−Nz/2

φ̂s+1
pqr ei(ξpxm+ηqyn+νrzk). (6)

The standard FFT has been used to speed up the computations [25].

3. Numerical Experiments

In this section, we perform several numerical experiments on various structures and print the
resulting 3D models. The interfacial length parameter εm is defined by εm = mh/[2

√
2 tanh−1(0.9)] ≈

0.24015 mh. This means that there is approximately mh transition layer width when α = 0 [26].

3.1. Simple Structures

In this subsection, numerical tests are conducted to generate porous structures inside simple surfaces
for which distance functions are well known. The followings are the signed distance functions ψ(x, y, z)
for a sphere, a cube, a cylinder, and a torus [27]. The periodic nodal surface (PNS) approximation of the
Schwarz primitive (P) surface [28,29] is also listed below.

sphere : ψ =
√

x2 + y2 + z2 − 0.3, (7)

cube : ψ = max
(
|x| − 0.4, |y| − 0.4, |z| − 0.4

)
, (8)

cylinder : ψ = max
(√

x2 + y2 − 0.4, |z| − 0.48
)
, (9)

torus : ψ =

√
(
√

x2 + y2 − 0.32)2 + z2 − 0.14, (10)

P surface : ψ = cos(2πx) + cos(2πy) + cos(2πz). (11)

First, let us consider the case that f (x, y, z) is a constant. The initial phase condition is given as

φ(x, y, z, 0) = −0.3 + rand(x, y, z)

on the computational domain Ω = (−0.5, 0.5)× (−0.5, 0.5)× (−0.5, 0.5), where rand(x, y, z) is a random
number between−1 and 1. Figure 2a shows the surfaces of the sphere, the cube, the cylinder, the torus,
and the P surface with the signed distance functions (7)–(11) from top to bottom. The following parameters
are used: Nx = Ny = Nz = 100, h = 0.01, ε = ε2, ∆t = 10h2, f (x, y, z) = −0.3, and α = 500.
For torus only, the domain is Ω = (−0.5, 0.5) × (−0.5, 0.5) × (−0.25, 0.25) with Nx = Ny = 100,
and Nz = 50. Figure 2b–d are zero level isosurfaces of numerical solutions φ at t = 30∆t, 50∆t,
and 200∆t, respectively.
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(a) (b) (c) (d)

Figure 2. Sphere, cube, cylinder, torus, P surface from top to bottom. (a) Surfaces and (b–d) zero
level isosurfaces of φ at t = 30∆t, 50∆t and 200∆t, respectively, with an initial condition φ(x, y, z, 0) =
−0.3 + rand(x, y, z).

Next, we investigate the effect of parameter α on the dynamics of phase separation. The following
values are used: α = 200, 1000, and 2000, and the rest of the parameters are the same as before.
Figure 3a–c show the zero level isosurfaces of φ at t = 200∆t with α = 200, 1000, and 2000, respectively.
As the value of α increases, the structure becomes more detailed.

(a) (b) (c)

Figure 3. (a–c) are zero level isosurfaces of φ at t = 200∆t with α = 200, 1000, and 2000, respectively,
and φave = −0.3.

Now, we consider the effect of the local average concentration functions (3). First, the constant
average concentration, f (x, y, z) = −0.15, −0.3, −0.45, and α = 200 are used; and the other parameters
are the same as before. Figure 4 show zero level isosurfaces of φ at t = 200∆t with f (x, y, z) = −0.15,
−0.3, and −0.45, respectively. According to the values of the local average concentration function,
the results show corresponding average concentration morphologies.
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(a) (b) (c)

Figure 4. (a–c) are zero level isosurfaces of φ at t = 200∆t with f (x, y, z) = −0.15, −0.3, and −0.45,
respectively, and α = 200.

Moreover, the following space-dependent average concentration function is used

f (x, y, z) = −0.25 + 0.2((x + 0.5)2 − (y + 0.5)2 + 0.4(z + 0.5)2),

where (x, y, z) are inside the cylinder. Here, the parameters are used as follows: Nx = Ny = Nz = 100,
ε = ε2, ∆t = 10h2, and α = 200. Figure 5 shows the phase separation of the cylinder structure over
time. Figure 5d is a 3D printed model of the structure in Figure 5c. As post-processing, the above
cylinder result is covered on the side with 6h and on the bottom 2h thickness. Figure 6 shows the
results in Figure 5c with closed cylinder.

(a) (b) (c) (d)

Figure 5. Zero level isosurfaces of φ at (a) t = 20∆t, (b) t = 50∆t, and (c) t = 200∆t. (d) 3D printed
model of zero level isosurfaces of φ at t = 200∆t.

(a) (b) (c)

Figure 6. (a,b) Zero level isosurfaces of φ with closed cylinder at t = 200∆t, and (c) its corresponding
3D printed model.

Let us consider a cylinder represented by

ψ(x, y, z) = max
(√

x2 + y2 − 0.24, |z| − 0.48
)

.

on the computational domain Ω = (−0.3, 0.3) × (−0.3, 0.3) × (−0.5, 0.5) with a space-dependent
average concentration function defined as:

f (x, y, z) = −0.15− 0.25(z + 0.5)2.

Here, the parameters Nx = Ny = 60, Nz = 100, h = 0.01, ε = ε2, ∆t = 10h2, and α = 800 are used.
In Figure 7, there are more porous upwards.
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(a) (b) (c) (d)

Figure 7. Zero level isosurfaces of φ with f (x, y, z) = −0.15− 0.25(z+ 0.5)2 at (a) t = 20∆t, (b) t = 50∆t,
and (c) t = 200∆t. (d) 3D printed model of zero level isosurfaces of φ at t = 200∆t.

Now, consider a cylinder represented by

ψ(x, y, z) = max
(√

x2 + y2 − 0.6, |z| − 0.24
)

on the computational domain Ω = (−0.75, 0.75)× (−0.75, 0.75)× (−0.25, 0.25) with a space-dependent
average concentration function defined as:

f (x, y, z) = 0.2− 0.4
x2 + y2 + 1

.

Here, the following parameters are used: Nx = Ny = 150, Nz = 50, h = 0.01, ε = ε2, ∆t = 10h2,
and α = 500. In Figure 8, there are more porous inside the cylinder.

(a) (b) (c) (d)

Figure 8. Temporal phase separation with f (x, y, z) = 0.2 − 0.4/(x2 + y2 + 1) at (a) t = 50∆t,
(b) t = 100∆t, and (c) t = 200∆t. (d) 3D printed model of zero level isosurfaces of φ at t = 200∆t.

3.2. Complex Structures

Further examples for complex structures with various average concentration functions φ̄(x) are
presented. Assume that there is point cloud data of surface for complex structure. First, the Stanford
Bunny from the Stanford 3D repository is used as an example for the complex structure. Note that
point2trimesh function in MATLAB is used to make a discrete signed distance function for the Stanford
bunny. Once the discrete signed distance function is computed, then the procedure is the same as
before. Unless otherwise noted, the following initial condition is used for phase separations of complex
structure case:

φ(x, y, z, 0) = φ̄(x) + rand(x, y, z). (12)

Figure 9a–c show the phase separation on the Stanford Bunny at t = 40∆t, 60∆t, and 80∆t,
respectively. Here, Nx = 150, Ny = 150, Nz = 130, h = 1/150, ∆t = h2, α = 1000, and ε = ε4 are used.
Furthermore, the following discrete average concentration function is used:

φ̄(x) = −0.15− 0.85(−1)i(xi − 0.56), (13)

where x = (xi, yj, zk) ∈ (0, 1)× (0, 1)× (0, 130h), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz.
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(a) (b) (c)

Figure 9. (a–c) are snapshots of phase separation with average concentration function Equation (13) on
the Stanford Bunny at t = 40∆t, 60∆t, and 80∆t, respectively.

Compared to the constant average function used in the above simulations, the usage of a
space-dependent average function produces various patterns in complex structures. For the next step,
a similar investigation for the Stanford Armadillo is performed. Figure 10a–c show the phase separation
on the Stanford Armadillo at t = 40∆t, 60∆t, and 80∆t, respectively. Here, Nx = 146, Ny = 160, Nz = 139,
h = 1/Nx, ∆t = h2, α = 1000, ε = ε4, and the same discrete average concentration function Equation (13)
are used, where x ∈ (0, 1)× (0, 160h)× (0, 139h).

(a) (b) (c)

Figure 10. (a–c) are snapshots of phase separation with average concentration function Equation (13)
on the Stanford Armadillo at t = 40∆t, 60∆t, and 80∆t, respectively.

Moreover, 3D printed models of Figures 9c and 10a can be printed as shown in Figure 11.

(a) (b)

Figure 11. (a,b) are 3D printed models of Figures 9c and 10a, respectively.

Next, the following examples show that the proposed method for making porous structures can
be useful for bone tissue engineering studies because bone is a porous material (see Figure 12). Let us
consider a bone and a spine as shown in Figures 13a and 14a.
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Figure 12. Porous structure inside the bone. Reprinted with permission from Gong et al. [30].
Copyright 2015, Springer Nature.

Similar to the Stanford Bunny, we create a discrete signed distance function using point2trimesh
function and use the same initial condition (12). Figure 13b,c illustrate the phase separation on the
given bone structure at t = 20∆t and 40∆t, respectively. Here, Nx = Ny = 86, Nz = 2Nx, h = 1/Nx,
∆t = h2, α = 750, and ε = ε4 are used. Moreover, we use the discrete average concentration function
(13), where x ∈ (0, 1)× (0, 1)× (0, 2), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz.

(a) (b) (c)

Figure 13. (a) Bone structure. (b) and (c) are snapshots of phase separation with average concentration
function Equation (13) at t = 20∆t and 40∆t, respectively.

Figure 14b,c illustrate the compact bone made by giving 3h thickness on the given spine,
and spongy bone represented by the phase separation on the given spine at t = 40∆t. Figure 14d
describes the combination of these two structures as post-processing. Here, Nx = Nz = 203, Ny = 123,
h = 1/Nx, ∆t = 4h2, α = 750, and ε = ε8 are used. Moreover, we use the discrete average concentration
function (13), where x ∈ (0, 1)× (0, hNy)× (0, 1), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz.

(a) (b) (c) (d)

Figure 14. (a) Spine. (b) Compact bone. (c) Spongy bone represented by the snapshot of phase separation
with average concentration function Equation (13) at t = 40∆t. (d) Combination of (b) and (c).

3.3. Porous Structure Generation Using TPMS

We consider TPMSs which are widely used for porous scaffold structure in the field of tissue
engineering. Numerical simulations are conducted with the signed distance functions ψ(x, y, z) of
Schwarz primitive (P), Schwarz diamond (D), and Schoen gyroid (G) surface, respectively [28,29]:

ψ(x, y, z) = tanh
(
(cos(2πx) + cos(2πy) + cos(2πz)) /(

√
2ε)
)
, (14)

ψ(x, y, z) = tanh
(
(cos(2πx) cos(2πy) cos(2πz)− sin(2πx) sin(2πy) sin(2πz)) /(

√
2ε
)
, (15)

ψ(x, y, z) = tanh
(
(sin(2πx) cos(2πy) + sin(2πz) cos(2πx) + sin(2πy) cos(2πz)) /(

√
2ε)
)
, (16)
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as shown in Figure 15. Note that PNS approximations of TPMSs are relaxed and bounded using tanh
function in Equations (14)–(16).

(a) P surface (b) D surface (c) G surface

Figure 15. Triply periodic minimal surfaces: P, D, and G.

A porous scaffold structure can be created by configuring several TPMSs in the shape of cylinder.
In [8], authors made 3D porous scaffolds in a tetrahedral, cubic, and cylindrical configuration using
Gyroid and P surfaces. They used commercial programs to make Gyroid and Schwarz P unit cells
and create scaffold structures. However, the nonlocal CH equation (2) can be used to make similar
results. The following parameters on the computational domain Ω = (0, 1)× (0, 1)× (0, 1) are used:
Nx = Ny = Nz = 100, ε = ε2, ∆t = 10h2, φave = −0.3, and α = 1000. Equation (14) is used as
the initial condition in the cylinder (9). Figure 16a–c illustrate the numerical results at 10∆t, 20∆t,
and 50∆t, respectively.

(a) t = 10∆t (b) t = 20∆t (c) t = 50∆t

Figure 16. Cylindrical scaffolds using the P surface. Snapshots of phase separation at (a) t = 10∆t,
(b) t = 20∆t, and (c) t = 50∆t.

Figure 17 shows cylindrical scaffolds using the D surface (15) and G surface (16) with the same
parameters as in the previous test. Figures 16 and 17 show the shapes of the scaffolds soften over time.

To smooth the outside of the cylindrical scaffold structure, a post-processing is added after
applying Equation (6). Let the whole domain be Ω, the cylindrical domain be Ωout, the slightly smaller
cylinder be Ωin as shown in Figure 18.
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(a)

(b)

(c)

(d)

t = 10∆t t = 20∆t t = 50∆t
Figure 17. Cylindrical scaffolds using the (a,b) D and (c,d) G surfaces. Snapshots of phase separation
at t = 10∆t, 20∆t, and 50∆t from left to right.

Figure 18. Schematic diagram illustrating a surface in the cubic domain Ω.

First, we make a cylinder with the initial condition and a local average concentration, and save
the initial data in the domain Ωin. At every iteration, the solution φs+1

pqr is replaced by the initial value
for each (xp, yq, zr) ∈ Ωin. Figure 19 illustrates the numerical results at t = 50∆t. Both methods based
on the simulation results are compared: On the one hand, Equation (6) is solved on the domain Ω.
The results are shown in Figure 19a,b; On the other hand, φs+1

pqr for (xp, yq, zr) ∈ Ωin is solved and
replaced by the initial values. The results are shown in Figure 19c,d. With the second method, we can
obtain the cylindrical scaffolds which maintain the original shape of TPMSs inside the cylinder and
smooth outside it.
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(a)

(b)

(c)

(d)

P surface D surface G surface

Figure 19. Comparison between phase separation of two methods at t = 50∆t: (a,b) Equation (6) is
solved on the domain Ω; (c,d) φs+1

pqr for (xp, yq, zr) ∈ Ωin is updated with the initial condition.

3.4. TPMS Scaffolds Inside Complex Surfaces

Both methods used in the TPMS section above are applied to the Stanford Bunny and Armadillo.
Figures 20 and 21 show snapshots of temporal evolutions with average concentration function
Equation (13) for the Stanford Bunny and Armadillo, respectively. All the parameters are the same
listed in Section 3.2 except for α = 500 and T = 160∆t.

(a) (b) (c)

(d) (e) (f)

Figure 20. (a–c) are snapshots of phase separation on the Stanford Bunny at t = 40∆t, t = 120∆t,
and t = 160∆t, respectively. (d–f) are snapshots of phase separation with replacing initial values inside
the object at t = 40∆t, t = 120∆t, and t = 160∆t, respectively. Here, the local average concentration
function Equation (13) is used.
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(a) (b) (c)

(d) (e) (f)

Figure 21. (a–c) are snapshots of phase separation on the Stanford Armadillo at t = 40∆t, 120∆t,
and 160∆t, respectively. (d–f) are snapshots of phase separation with replacing initial values inside
the object at t = 40∆t, 120∆t, and 160∆t, respectively. Here, the local average concentration function
Equation (13) is used.

4. Conclusions

In this paper, the simple numerical method was proposed to generate irregular porous objects
using the phase-field model for diblock copolymers based on the nonlocal CH equation. Using the
space-dependent local average concentration function, the computational simulation results of generating
various typed porous structures were presented. The most important findings are:

• The proposed method can generate porous structures from a solid volume using a distance function.
• The porous structure generating algorithm is simple and easy to implement.
• The proposed algorithm can control pore shapes by the space-dependent average

concentration function.

In this article, we focused on the porous structure generation from solid volumes. In future work,
we will investigate the generation of porous structure on arbitrary surfaces in three-dimensional space.
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