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a b s t r a c t 

In this paper, we develop a fast and accurate numerical method for pricing of the three-asset equity-linked 

securities options. The option pricing model is based on the Black–Scholes partial differential equation. The 

model is discretized by using a non-uniform finite difference method and the resulting discrete equations are 

solved by using an operator splitting method. For fast and accurate calculation, we put more grid points near 

the singularity of the nonsmooth payoff function. To demonstrate the accuracy and efficiency of the proposed 

numerical method, we compare the results of the method with those from Monte Carlo simulation in terms 

of computational cost and accuracy. The numerical results show that the cost of the proposed method is 

comparable to that of the Monte Carlo simulation and it provides more stable hedging parameters such as 

the Greeks. 

© 2015 Elsevier B.V. All rights reserved. 
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. Introduction 

Equity-linked securities (ELS) is one of the most popular in-

estment products whose return is linked to the performance of

n underlying equity such as a single stock, a group of stocks, or

n equity-based index. The ELS option pricing model is based on

he Black–Scholes (BS) partial differential equation (PDE) ( Black &

choles, 1973 ). For some cases, there exist closed-form solutions of

ricing derivatives ( Capi ́nski, 2015; Pun, Chung, & Wong, 2015 ). How-

ver, in most cases with complex structures (e.g., ELS), it is inefficient

r impossible to derive the exact solutions. To solve the problem, an

lternative way is a numerical approach (see, for example, Bandi &

ertsimas, 2014; Han & Wu, 2003; Jeong, Kim, & Wee, 2009; Wilmott,

ewynne, & Howison, 1993; Zvan, Vetzal, & Forsyth, 20 0 0 ). In numer-

cal approaches, there are several ways such as Monte Carlo simula-

ion (MCS), binomial method, finite difference method, etc. 

Among these, MCS is the most commonly used method for

ricing complex derivatives because of its simplicity to use. How-

ver, it should be run with a large number of random samples to
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et a reliable option value or calculate its sensitivities which are

alled by the Greeks ( Choi & Song, 2008; González-Parra, Arenas, &

hen-Charpentier, 2013; Marroquı & Moreno, 2013 ). The Greeks,

hich play a key role in hedging, are defined as changes in option

alue relative to changes in each independent variable. It is important

o calculate the Greeks accurately for hedging an option. For example,

elta is the rate of change in option price relative to the underlying

sset. Therefore, in hedging, the Delta provides the number of short

nits of the underlying asset which is combined with a call option to

ffset immediate market risk. That is, the accurate value of the Delta

an give a dynamical strategy for hedging against risk. For more de-

ails about the Greeks, we refer the reader to Haug (2007) . 

Finite difference methods (FDM) such as alternating direction im-

licit (ADI) and operator splitting method (OSM) have been widely

sed in practice. The reason is that the numerical solution from FDM

uickly converges to a stable value unlike MCS. Nevertheless, when

ricing ELS with more than three underlying assets, FDM is not prac-

ical because it needs a lot of computational resources. Therefore,

CS is the only practical choice for three-asset ELS even though there

re drawbacks such as slow convergence and non-deterministic val-

es due to its randomness. 

The main purpose of this paper is to develop a fast and accurate

DM for pricing three-asset ELS options and computing its Greeks.

n this study, the mathematical model is discretized by using a

on-uniform FDM and the resulting discrete equations are solved by
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Fig. 1. Schematic representation of the non-equidistant grid on x -axis. The ghost point is defined as x N x +1 = 2 x N x − x N x −1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Schematic representation of non-uniform mesh in three-dimensional space. 
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means of OSM on adaptive grids with more grid points near nons-

mooth position of payoff. To show the superiority of the proposed

numerical method, we compare the numerical results with those

from MCS. We obtain more stable results with our proposed method

than MCS in pricing and computing the Greeks of the three-asset ELS

option. 

The rest of the paper is organized as follows. Section 2 describes

the Black–Scholes equation of European options with three underly-

ing assets. Section 3 contains the finite difference discretizations for

the BS PDE and a numerical solution algorithm using OSM on adap-

tive grids. We present the numerical experiments in Section 4 . Finally,

we conclude our study by summarizing the computational results in

Section 5 . 

2. Black–Scholes model with three underlying assets 

The pricing of options on multi-underlying assets is of great

interest in the financial industry ( Persson & von Persson, 2007;

Rambeerich, Tangman, Lollchund, & Bhuruth, 2013 ). In this paper, we

focus on fast and accurate calculations of the three-asset option value

and its Greeks. 

Let x , y , and z be three underlying assets’ prices and t be a time

variable. For ( x , y , z ) ∈ � and t ∈ T , the option price u ( x , y , z , t ) follows

the BS PDE: 

u t (x, y, z, t) + rxu x (x, y, z, t) + ryu y (x, y, z, t) + rzu z (x, y, z, t) 

+ 

1 

2 

σ 2 
x x 

2 u xx (x, y, z, t) + 

1 

2 

σ 2 
y y 

2 u yy (x, y, z, t) + 

1 

2 

σ 2 
z z 

2 u zz (x, y, z, t)

+ ρxy σx σy xyu xy (x, y, z, t) + ρyz σy σz yzu yz (x, y, z, t) 

+ ρzx σx σz xzu zx (x, y, z, t) − ru (x, y, z, t) = 0 (1)

with the terminal condition u (x, y, z, T ) = �(x, y, z) , where � is the

payoff function at the expiration time T ( Reisinger & Wittum, 2004 ).

Subscripts x , y , z , and t of u denote the partial derivatives with respect

to those variables. σ x , σ y , and σ z are volatilities of underlying assets

x , y , and z , respectively. ρxy , ρyz , and ρzx represent the correlation

values between two subscript asset variables. r is the constant risk-

free interest rate. After we transform the backward-in-time PDE (1)

into the forward-in-time PDE by using τ = T − t, we have the initial

value problem 

u τ (x, y, z, τ ) = rxu x (x, y, z, τ ) + ryu y (x, y, z, τ ) + rzu z (x, y, z, τ ) 

+ 

1 

2 

σ 2 
x x 

2 u xx (x, y, z, τ ) + 

1 

2 

σ 2 
y y 

2 u yy (x, y, z, τ ) 

+ 

1 

2 

σ 2 
z z 

2 u zz (x, y, z, τ ) + ρxy σx σy xyu xy (x, y, z, τ ) 

+ ρyz σy σz yzu yz (x, y, z, τ ) + ρzx σx σz xzu zx (x, y, z, τ ) 

−ru (x, y, z, τ ) , (x, y, z, τ ) ∈ � × (0 , T ] , (2)

u (x, y, z, 0) = �(x, y, z) . 

3. Numerical method 

Let us first discretize the computational domain � = [0 , L ] ×
[0 , M] × [0 , N] with positive non-uniform space steps h x 

i −1 
= x i −

x i −1 , h 
y 
j−1 

= y j − y j−1 , and h z 
k −1 

= z k − z k −1 . Here, x 0 = y 0 = z 0 = 0 ,

x N x = L, y N y = M, and z N z = N. A time step size is defined as �τ =
 /N τ . The numbers of grid points in the x -, y -, z -, and τ -directions

re denoted by N x , N y , N z , and N τ , respectively. Fig. 1 represents a

chematic illustration of the non-equidistant grid on x -axis. Here, we

efine the ghost point x N x +1 as x N x + h N x −1 to apply the linear bound-

ry condition conveniently. 

Fig. 2 shows a schematic illustration of three-dimensional non-

niform grid structure which will be used in this paper. 

Let us denote the numerical approximation of the solution

y u n 
i jk 

≡ u (x i , y j , z k , n �τ ), where i = 0 , . . . , N x , j = 0 , . . . , N y , k =
 , . . . , N z , and n = 0 , . . . , N τ . We use the zero Dirichlet boundary con-

itions at x = 0 , y = 0 , and z = 0 and the linear boundary conditions

t x = L, y = M, and z = N. Now, we apply OSM ( Duffy, 2006; Jeong &

im, 2013 ) in order to solve Eq. (2) . OSM has been used extensively

n mathematical finance for solving numerically multi-asset option

ricing models. The basic idea of OSM is to divide each time step into

ractional time steps with simpler operators. 

We consider the following semi-implicit scheme: 

u 

n +1 
i jk 

− u 

n 
i jk 

�τ
= (L 

x 
BS u ) 

n + 1 3 

i jk 
+ (L 

y 
BS 

u ) 
n + 2 3 

i jk 
+ (L 

z 
BS u ) n +1 

i jk 
, (3)

here the discrete difference operators L 

x 
BS 

, L 

y 
BS 

, and L 

z 
BS 

are defined

y 

(L 

x 
BS u ) 

n + 1 3 

i jk 
= 

(σx x i ) 
2 

2 
D xx u 

n + 1 3 

i jk 
+ rx i D x u 

n + 1 3 

i jk 
+ 

1 

3 
σx σy ρxy x i y j D xy u 

n 
i jk 

+ 

1 

3 
σy σz ρyz y j z k D yz u 

n 
i jk + 

1 

3 
σz σx ρzx z k x i D zx u 

n 
i jk −

1 

3 
ru 

n + 1 3 

i jk 
, 

(L 

y 
BS 

u ) 
n + 2 3 

i jk 
= 

(σy y j ) 
2 

2 
D yy u 

n + 2 3 

i jk 
+ ry j D y u 

n + 2 3 

i jk 
+ 

1 

3 
σx σy ρxy x i y j D xy u 

n + 1 3 

i jk 

+ 

1 
σy σz ρyz y j z k D yz u 

n + 1 3 

i jk 
+ 

1 
σz σx ρzx z k x i D zx u 

n + 1 3 

i jk 
− 1 

ru 
n + 2 3 

i jk 
, 



J. Kim et al. / European Journal of Operational Research 252 (2016) 183–190 185 

 

t

D

T

N  

E

α

w

α

β

γ

F  

[  

s

A

w  

z  

2

A

Algorithm 1 Numerical algorithm for Eq. (4) . 

Require: Previous data u n . 

procedure Find the solution u n + 
1 
3 

for k = 1 ; k ≤ N z ; k ++ do 

for j = 1 ; j ≤ N y ; j ++ do 

for i = 1 ; i ≤ N x ; i ++ do 

Set αi , βi , γi , and f i jk by using Eqs. (8) –(11) 

end for 

Solve A x u 
n + 1 

3 

1: N x , jk 
= f 1: N x , jk by using the Thomas algorithm 

end for 

end for 

end procedure 
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(L 

z 
BS u ) 

n +1 
i jk 

= 

(σz z k ) 
2 

2 
D zz u 

n +1 
i jk 

+ rz k D z u 
n +1 
i jk 

+ 

1 

3 
σx σy ρxy x i y j D xy u 

n + 2 3 

i jk 

+ 

1 

3 
σy σz ρyz y j z k D yz u 

n + 2 3 

i jk 
+ 

1 

3 
σz σx ρzx z k x i D zx u 

n + 2 3 

i jk 
− 1 

3 
ru n +1 

i jk 
. 

For the discretization of the spatial variables in Eq. (3) , we employ

he following difference equations: 

D x u i jk = − h 

x 
i 

h 

x 
i −1 

(h 

x 
i −1 

+ h 

x 
i 
) 

u i −1 , jk + 

h 

x 
i 
− h 

x 
i −1 

h 

x 
i −1 

h 

x 
i 

u i jk 

+ 

h 

x 
i −1 

h 

x 
i 
(h 

x 
i −1 

+ h 

x 
i 
) 

u i +1 , jk , 

D xx u i jk = 

2 

h 

x 
i −1 

(h 

x 
i −1 

+ h 

x 
i 
) 

u i −1 , jk −
2 

h 

x 
i −1 

h 

x 
i 

u i jk + 

2 

h 

x 
i 
(h 

x 
i −1 

+ h 

x 
i 
) 

u i +1 , jk , 

 xy u i jk = 

u i +1 , j+1 ,k − u i −1 , j+1 ,k − u i +1 , j−1 ,k + u i −1 , j−1 ,k 

h 

x 
i 
h 

y 
j 
+ h 

x 
i −1 

h 

y 
j 
+ h 

x 
i 
h 

y 
j−1 

+ h 

x 
i −1 

h 

y 
j−1 

. 

hen, OSM consists of the following three discrete equations 

u 

n + 1 3 

i jk 
− u 

n 
i jk 

�τ
= 

(
L 

x 
BS u 

)n + 1 3 

i jk 
, (4) 

u 

n + 2 3 

i jk 
− u 

n + 1 3 

i jk 

�τ
= 

(
L 

y 
BS 

u 

)n + 2 3 

i jk 
, (5) 

u 

n +1 
i jk 

− u 

n + 2 3 

i jk 

�τ
= 

(
L 

z 
BS u 

)n +1 

i jk 
. (6) 

ow, we describe the numerical algorithm for Eqs. (4) –(6) . Given u n 
i jk 

,

q. (4) is rewritten as follows: 

i u 

n + 1 3 

i −1 , jk 
+ βi u 

n + 1 3 

i jk 
+ γi u 

n + 1 3 

i +1 , jk 
= f i jk for i = 1 , . . . , N x , (7) 

here 

i = − (σx x i ) 
2 

h 

x 
i −1 

(h 

x 
i −1 

+ h 

x 
i 
) 

+ rx i 
h 

x 
i 

h 

x 
i −1 

(h 

x 
i −1 

+ h 

x 
i 
) 
, (8) 

i = 

(σx x i ) 
2 

h 

x 
i −1 

h 

x 
i 

− rx i 
h 

x 
i 
− h 

x 
i −1 

h 

x 
i −1 

h 

x 
i 

+ 

1 

�τ
, (9) 

i = − (σx x i ) 
2 

h 

x 
i 
(h 

x 
i −1 

+ h 

x 
i 
) 

− rx i 
h 

x 
i −1 

h 

x 
i 
(h 

x 
i −1 

+ h 

x 
i 
) 
, (10) 

f i jk = 

1 

3 

σx σy ρxy x i y j D xy u 

n 
i jk + 

1 

3 

σy σz ρyz y j z k D yz u 

n 
i jk 

+ 

1 

3 

σx σz ρzx x i z k D zx u 

n 
i jk −

1 

�τ
u 

n 
i jk . (11) 

or fixed index j and k , the solution vector u 
n + 1 

3 

1: N x , jk 
=

 u 
n + 1 

3 

1 jk 
u 

n + 1 
3 

2 jk 
· · · u 

n + 1 
3 

N x jk 
] T can be found by solving the tridiagonal

ystem 

 x u 

n + 1 3 

1: N x , jk 
= f 1: N x , jk , 

here A x is a tridiagonal matrix constructed from Eq. (7) with the

ero Dirichlet ( u 
n + 1 

3 

0 jk 
= 0 at x = 0 ) and linear boundary ( u 

n + 1 
3 

N x +1 , jk 
=

 u 
n + 1 

3 

N x jk 
− u 

n + 1 
3 

N x −1 , jk 
at x = L ) conditions, i.e., 

 x = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

β1 γ1 0 · · · 0 0 

α2 β2 γ2 · · · 0 0 

0 α3 β3 · · · 0 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 
0 0 0 · · · βN x −1 γN x −1 

0 0 0 · · · αN x − γN x βN x + 2 γN x 

fi  

s  
hen, Eq. (4) is implemented in a loop over the y - and z - directions

ith the following Algorithm 1 . 

Similarly, Eqs. (5) and (6) are solved. Note that one execution from

qs. (4) –(6) advances the numerical solution with a �τ -step in time.

or more details about the solution algorithm, see references ( Jeong

 Kim, 2013; Jeong, Wee, & Kim, 2010 ). 

. Numerical experiments 

In order to demonstrate the efficiency and accuracy of the pro-

osed method, we perform the numerical experiments such as con-

ergence test, domain size effect, non-uniform grid size effect, com-

arison with MCS, computation of the Greeks, and pricing three-asset

tep-down ELS. In all numerical tests, unless otherwise stated, we use

he same parameters r = 0 . 03 , σx = σy = σz = 0 . 3 , and ρxy = ρyz =
zx = 0 . 5 . OSM and MCS algorithms are implemented using MATLAB

Mathworks Inc., Natick, MA, USA) and closed-form solutions are ob-

ained using Mathematcia ( Wolfram, 1999 ). Especially, in MCS, we

se the antithetic variates technique ( Hammersley & Morton, 1956 )

mong the variance reduction methods. The programs are executed

n Intel(R) Core(TM) Duo CPU @3.00 GHz desktop PC. 

.1. Convergence test 

We perform a convergence test in order to verify the accuracy of

SM. We consider the cash-or-nothing option with three underlying

ssets. The payoff is given as 

 (x, y, z, 0) = 

{
100 if x ≥ K 1 , y ≥ K 2 , z ≥ K 3 , 

0 otherwise. 

ere, we take K 1 = K 2 = K 3 = 100 . For this test, we use � =
0 , 200] × [0 , 200] × [0 , 200] and T = 1 / 12 . We discretize each di-

ection of the domain as [0 , 100 − (m + 0 . 5) h, . . . , 100 − 1 . 5 h, 100 −
 . 5 h, 100 + 0 . 5 h, 100 + 1 . 5 h, . . . , 100 + (m + 0 . 5) h, 200] , where m =
ound [100 /h − 0 . 5] − 1 . The order of accuracy is defined as the ratio

f successive errors: log 2 ( e h / e h /2 ), where e h is the difference of the

umerical solution using the space step size h and the exact solution

 e . Exact solution for the cash-or-nothing option is obtained from the

ormula which is described in Appendix . 

First, we compute the numerical solutions u (100, 100, 100, T ) with

τ = 1 / 1440 and a set of increasingly finer grids, i.e., h = 8 , 4 , 2 , to

est the convergence rate for the spatial discretization. To get the op-

ion value by OSM at a point (x, y, z) = (100 , 100 , 100) , we use tri-

inear interpolation from the eight neighborhood points. The exact

olution is calculated as u e = 24 . 41647 at (x, y, z) = (100 , 100 , 100) .

able 1 shows that this method has the second order accuracy in

pace. 

To show the convergence rate for the temporal discretization, we

x the space step size as h = 1 and choose a set of decreasing time

teps, �τ = 1 / 90 , 1 / 180 , 1 / 360 . All other parameters are the same as
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Table 1 

Option values, errors, and convergence orders of OSM at x = y = z = 100 

and T = 1 / 12 on various mesh grids with �τ = 1 / 1440 . 

h 8 4 2 

Value 20 .63802 23 .50780 24 .24836 

Error 3 .77844 0 .90867 0 .16810 

Order 2 .05596 2 .434 4 4 

Table 2 

Option values, errors, and convergence orders of OSM at x = y = z = 100 

and T = 1 / 12 with various time steps and h = 1 . 

�τ 1/90 1/180 1/360 

Value 26 .12745 25 .17284 24 .73388 

Error 1 .71098 0 .75637 0 .31741 

Order 1 .17766 1 .25274 

Table 3 

Values of u (100, 100, 100, T ) on various computational domain � = [0 , L ] 3 . 

L 125 150 175 200 225 250 

Values 27 .55637 23 .43614 23 .42480 23 .42479 23 .42479 23 .42479 

Table 4 

Values of u (100, 100, 100, T ) and computational time on various non-uniform 

grids. 

h = 1 Value (CPU time) h = 2 Value (CPU time) 

0.5: 1: 199.5 24 .73388 (286.95) 1: 2: 199 24 .51486 (42.95) 

69.5: 1: 130.5 24 .73388 (11.86) 69: 2: 131 24 .51486 (2.33) 

79.5: 1: 120.5 24 .73497 (5.01) 79: 2: 121 24 .51577 (1.05) 

89.5: 1: 110.5 24 .82122 (1.08) 89: 2: 111 24 .56993 (0.34) 

91.5: 1: 108.5 24 .57615 (0.74) 91: 2: 109 24 .35032 (0.26) 

95.5: 1: 104.5 21 .46677 (0.27) 95: 2: 105 21 .48070 (0.15) 

99.5: 1: 100.5 9 .76569 (0.17) 99: 2: 101 10 .55660 (0.09) 
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Fig. 3. Results from MCS (open circles), OSM (solid symbols), and analytic solution 

(solid line) at x = (100 , 100 , 100) . 
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before. As expected from the discretization, first-order accuracy with

respect to time is observed in Table 2 . 

4.2. Domain size effect 

We investigate the effect of domain size � = [0 , L ] 3 for the numer-

ical solution u (100, 100, 100, T ). We take L = 125 , 150 , 175 , 200 , 225 ,

and 250 with h = 1 , T = 1 / 2 , and �τ = 1 / 360 . For each x -, y -, and

z -directions, we set the mesh as [0 , 0 . 5 , 1 . 5 , . . . , L − 1 . 5 , L − 0 . 5 , L ] .

From Table 3 , we can observe that if L is larger than 200, the values

do not change significantly. Therefore, L = 200 is large enough to be

used for calculating option values when the strike price is 100. 

4.3. Non-uniform grid effect 

In this test, we find an optimal non-uniform grid structure which

gives the smallest number of grid points with equivalent accuracy of

uniform mesh. Table 4 shows the value of u (100, 100, 100, T ) calcu-

lated by using non-uniform grids on � = [0 , 200] 3 with �τ = 1 / 360

and T = 1 / 12 . In Table 4 , a : h : b denotes that mesh is [0 , a, a +
h, a + 2 h, . . . , b − h, b, (b + 20 0) / 2 , 20 0] for all three x -, y -, and z -

directions. As shown in Table 4 , the values at the top five lines are

almost the same. This result suggests that we can use smaller num-

ber of grid points with equivalent accuracy. Next to the values, we

also put CPU times. By using non-uniform grid, we can substantially

reduce the calculation time. 

4.4. Comparison of MCS and OSM 

We compare the results from MCS and OSM with equivalent com-

putational costs. MCS is tested with a temporal step size �τ = 1 / 360
nd 10 4 , 10 5 , and 10 6 samples until T = 1 / 12 . In OSM simulations,

on-uniform meshes [0 69.5:1:130.5 165.25 200], [0 74.5:1:125.5

62.75 200], and [0 79.5:1:120.5 160.25 200] for each direction are

sed with �τ = 1 / 1440 until T = 1 / 12 . In Fig. 3 , the open circles

re the results of u (100, 100, 100, T ) from MCS with varying num-

er of samples. For each number of samples, we plot the results ob-

ained from 10 trials. In the legend in Fig. 3 , 69.5: 130.5 denotes

he numerical solution (solid symbol) from OSM on a non-uniform

rid [0 69.5: 1: 130.5 165.25 200]. The other notations represent non-

niform grids in the same manner. The solid line is the analytic solu-

ion. This simulation result indicates that OSM converges to the ana-

ytic solution faster than MCS does with the same computational cost.

.5. Greeks 

In this section, the temporal step sizes �τ = 1 / 720 , �τ = 1 / 360

re used for OSM and MCS, respectively. We get the values of the

reeks at a point x = (100 , 100 , 100) and compare the two numer-

cal results calculated by MCS and OSM. 

.5.1. Delta 

Delta ( �) is the rate of change of the option price with respect to

he price of the underlying asset. We calculate the Delta �x at x =
(100 , 100 , 100) , which is defined as 

x (x , T ) := u x (x , T ) ≈ u (x + 0 . 5 h e , T ) − u (x − 0 . 5 h e , T ) 

h 

, (12)

here e denotes (1, 0, 0). Therefore, we need two simulations to

btain two values u (x + 0 . 5 h e , T ) and u (x − 0 . 5 h e , T ) when we use

CS. However, in OSM, we can get the Delta from only one sim-

lation. Fig. 4 shows the results by a closed-form solution, MCS,

nd OSM. Here, the closed-form solution of the Delta is derived

y the formula in Appendix and its value is �x (x , T ) = 1 . 38192 . In

CS, the values of the Delta converge as the number of samples

ncreases. With OSM, we obtain the Delta on three different non-

niform grids. In the legend in Fig. 4 , 69.5: 130.5 represents a non-

niform grid [0 69.5: 1: 130.5 165.25 200]. The other legends repre-

ent non-uniform grids in the same manner. We need 4.15 seconds for

ne MCS trial with 10 5 samples. This means that 10 MCS trials with

0 6 samples takes 415 seconds. However, the numerical solution by

SM on [0 69.5: 1: 130.5 165.25 200] is calculated in 24.99 seconds.

s shown in Fig. 4 , we can confirm that OSM is more stable and fast

ethod than MCS. 
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OSM (91.5:108.5),   1.39s

Fig. 4. Delta obtained from closed-form solution (open circles), MCS (solid circles), 

and OSM (three different lines) at x = (100 , 100 , 100) . 
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Fig. 5. Gamma obtained from closed-form solution (open circles), MCS (solid circles), 

and OSM (three different lines) at x = (100 , 100 , 100) . 
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Fig. 6. Vega obtained from closed-form solution (open circles), MCS (solid circles), and 

OSM (three different lines) at x = (100 , 100 , 100) and σx = 0 . 35 . 
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.5.2. Gamma 

In this section, we consider the Gamma ( �). Gamma represents

he change in the Delta of an option relative to the change in the

nderlying assets. Therefore, in hedging, traders need to measure

amma as large moves in an underlying asset could change the risks

hey hold in option positions dramatically. 

For comparison, we calculate the Gamma �x at a point x =
(100 , 100 , 100) . Since �x is the second derivative of u with respect

o x , we can express the Gamma �x as follows: 

x (x , T ) := u xx (x , T ) ≈ u (x − h e , T ) − 2 u (x , T ) + u (x + h e , T ) 

h 

2 
. 

(13) 

n order to evaluate the Gamma �x with MCS by the formula (13) , we

eed three different simulations. However, we can get the Gamma

rom OSM through only one simulation. Therefore, we can save the

omputational time by using OSM on a non-uniform grid. Fig. 5 rep-

esents the Gamma �x from a closed-form solution, MCS, and OSM.

he Gamma from a closed-form solution is �x (x , T ) = −0 . 133136 . In

CS, the Gamma with 10 5 samples is obtained in about 5.88 seconds.

o get a reliable result with MCS, we have to perform the simulation

ith more than 10 6 samples. It means that the computational time

akes more than 588 seconds. However, with OSM, we can obtain a

omparable value of the Gamma to closed-form solution within only
5.02 seconds. This shows that OSM is more efficient than MCS for

alculating the Gamma. 

.5.3. Vega 

Vega is the option’s sensitivity to changes in the volatility. This

alue is a number that tells in direction and extent the option price

ill move if there is a positive change in the volatility. 

In this section, we compare the Vega from MCS and OSM. Since

he Vega is the derivative of the option price u with respect to the

olatility σ x , we can calculate the Vega at a point x = (100 , 100 , 100)

nd σx = 0 . 35 with �σx = 0 . 1 , i.e., 

ega (x , T ) | σx =0 . 35 := u σx 
(x , T ) | σx =0 . 35 

≈ u (x , T ) | σx =0 . 4 − u (x , T ) | σx =0 . 3 

0 . 1 

. (14) 

ig. 6 shows the numerical results of the Vega from a closed-form

olution, MCS, and OSM. Here, the Vega from closed-form formula is

2 . 59518 . As shown in Fig. 6 , the numerical result of OSM is more

loser to exact solution than MCS. Also, the values of Vega by OSM is

table and deterministic while those of MCS slowly converge. 

.5.4. Rho 

As the sensitivity of the option value to interest rate, Rho is de-

ned the first derivative of the option value with respect to the in-

erest rate r . In this section, we evaluate the Rho at a point x =
(100 , 100 , 100) and r = 0 . 03 as follows. 

ho (x , T ) | r=0 . 03 := u r (x , T ) | r=0 . 03 

≈ u (x , T ) | r=0 . 03+0 . 0 0 015 − u ( x , T ) | r=0 . 03 −0 . 0 0 015 

0 . 0 0 03 

. 

(15) 

ere, the Rho means the rate of change in the option value per 1%

hange in the risk-free interest rate r = 0 . 03 . Fig. 7 represents the Rho

rom a closed-form solution, MCS, and OSM. 

In Fig. 7 , the numerical results by OSM are closer to the closed-

orm solution. However, the results by MCS have a big deviation from

he exact solution. Therefore, OSM is more efficient to evaluate the

ho than MCS. 

.5.5. Theta 

Theta ( θ ) is the sensitivity of an option’s value to change in time.

his indicates an absolute change in option value for one-unit reduc-

ion in time. We can calculate this value though the following for-

ula: 

(x , T ) := u t (x , T ) ≈ u (x , T ) − u (x , T − �t) 
. (16) 
�t 
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Fig. 7. Rho obtained from closed-form solution (open circles), MCS (solid circles), and 

OSM (three different lines) at x = (100 , 100 , 100) and r = 0 . 03 . 
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By Eq. (16) , we obtain the value of θ from closed-form solution,

MCS, and OSM. These results are shown in Fig. 8 . One of the notable

points is that the value of θ from OSM is more quickly evaluated than

MCS. The θ can be calculated with two option values u (x , T − �t)

and u ( x , T ). Therefore, MCS needs two calculations unlike OSM which

needs only one calculation. 
a b

Fig. 9. Pay-off functions at (a) maturity and (b) earl
From these simulation results for computing the values of the

reeks, we can confirm that the numerical results from OSM con-

erge to the analytic solutions faster than MCS with the same com-

utational cost. 

.6. Three-asset step-down ELS 

As a practical example, let us consider a three-asset step-down

LS which is the most popular kind of ELS structure in Korean finan-

ial market. The three-asset step-down ELS is a derivative securities

hose payoff is determined by three underlying equity prices. This

ption is automatically exercised at each validation date before or at

aturity if the price of underlying asset is above a pre-defined ex-

rcise level. The validation date is called the early redemption date.

n step-down ELS, the pre-specified exercise levels are lowered from

revious validation date to next date ( Lee, 2013 ). If the price of under-

ying asset is below those levels on each validation date, the payoff

ill be deferred maturity ( Kim, Bae, & Koo, 2014 ). 

Fig. 9 (a) and (b) show the pay-off function at maturity and early

edemption date for the step-down ELS, respectively. Here, the early

edemption value denotes the pre-specified interim evolution date

hich has early redemption chances ( Kim et al., 2014 ). 

Let x ( t ), y ( t ), z ( t ) be linearly scaled underlying assets’ prices at

ime t with ( x (0), y (0) , z(0)) = (100 , 100 , 100) . Let T be maturity, F

e face value, and t i for i = 1 , . . . , N be early obligatory redemption

bservation dates. K i and c i are corresponding exercise prices and

ates of return, respectively. Let D denote the knock-in barrier level

nd d denote a dummy. Let S t = min { x (t) , y (t) , z(t) } be the mini-

um of three underlying assets at t . By definition of τ , we have S τ =
in { x (T − τ ) , y (T − τ ) , z(T − τ ) } . Let u ( x , y , z , τ ) and v (x, y, z, τ ) be

he solutions with and without knock-in event, respectively. A knock-

n event happens when min{ S t | 0 ≤ t ≤ T } < D . The initial conditions

re given as 

 (x, y, z, τ = 0) = 

{
F S T / 100 if S T < K 6 , 

(1 + c 6 ) F otherwise . 
(17)

 (x, y, z, τ = 0) = 

{ 

(1 + c 6 ) F if S T ≥ K 6 , 

(1 + d) F if D < S T < K 6 , 

F S T / 100 otherwise . 
(18)

nd Fig. 9 (b) shows the diagonal plots of the early obligatory redemp-

ion conditions along the line x = y = z. 

The solution algorithm is as follows: First, we update u and v by

olving Eqs. (4) –(6) with the initial conditions (17) and (18) . After that

e replace the values of v by u in the region which is bounded by the

nock-in barrier D , i.e., v 1 
i jk 

= u 1 
i jk 

for (x i , y j , z k ) ∈ �ki = { (x, y, z) | x <
, y < D, z < D } . We apply this replacement after every time step un-

il τ = T , i.e., v n 
i jk 

= u n 
i jk 

for ( x i , y j , z k ) ∈ �ki and n = 1 , . . . , N t . Let

m 

= { (x, y, z) | x ≥ K m 

, y ≥ K m 

, z ≥ K m 

} . At the first observation date
y redemption for three-asset step-down ELS. 
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a b c

Fig. 10. (a) and (b) are payoff functions of u and v at z = 100 , respectively. (c) is the final solution of v at z = 100 and τ = 3 . 

Table 5 

Parameters of three-asset step-down ELS. 

Observation date (years) Exercise price Return rate 

τ1 = T / 6 K 1 = 0 . 85 K 0 c 1 = 0 . 25 

τ2 = 2 T / 6 K 2 = 0 . 90 K 0 c 2 = 0 . 20 

τ3 = 3 T / 6 K 3 = 0 . 90 K 0 c 3 = 0 . 15 

τ4 = 4 T / 6 K 4 = 0 . 95 K 0 c 4 = 0 . 10 

τ5 = 5 T / 6 K 5 = 0 . 95 K 0 c 5 = 0 . 05 

τ  

y  

r
 

f

 

p  

d  

f  

r  

t  

s  

A  

�  

i  

u  

u  

s  

g  

T  

−  

r

5

 

f  

u  

i  

m  

o  

a  

p

f  

m  

v

A

 

R  

a  

(  

K  

r  

p

A

u

w

u

a

�

w  

ρ  [
 

f  

1

R

B  

B  

C  

C  

 

D  

G  

 

H  

 

H  

H  

J  

 

1 = T / 6 , we reset values of u and v as u 
n 1 
i jk 

= v n 1 
i jk 

= (1 + c 1 ) F for ( x i ,

 j , z k ) ∈ �1 . Likewise, at the intermediate observation dates τ n , we

eset values of u and v as u n m 
i jk 

= v n m 
i jk 

= (1 + c m 

) F for ( x i , y j , z k ) ∈ �m

or m = 1 , 2 , 3 , 4 , and 5. The parameters are listed in Table 5 . 

In this section, we chose the following parameters: the reference

rice K 0 = 100 , the interest rate r = 0 . 03 , the volatilities of the un-

erlying assets σx = σy = σz = 0 . 3 , the total time T = 3 years, the

ace price F = 100 , the knock-in barrier level D = 0 . 65 K 0 , the dummy

ate d = 0 . 3 , the correlation ρxy = ρyz = ρzx = 0 . 5 , and the computa-

ional domain � = [0 , 200] × [0 , 200] × [0 , 200] . We compare the re-

ults from MCS and OSM for the step-down ELS option (see Fig. 9 ).

s a reference solution value, we run MCS with 10 7 samples and

τ = 1 / 360 . The option value obtained from this MCS is 84.4431 and

t takes 5035.73 seconds. For OSM simulation, �τ = 1 / 30 and a non-

niform mesh [0 60:2.5:130 160 180 200 220] for each direction are

sed. Fig. 10 (a and b) show payoff functions of u and v at z = 100 , re-

pectively. Fig. 10 (c) is the final solution of v at z = 100 and τ = 3 . We

et its numerical value as 84.6347 and it takes only 12.0938 seconds.

he relative percent error is (84 . 4431 − 84 . 6347) / 84 . 4431 × 100 % =
0 . 2269 % . This percent error demonstrates the efficiency and accu-

acy of the non-uniform OSM. 

. Conclusions 

To price the three-asset equity-linked securities (ELS) options, a

ast and accurate numerical method is developed. In this paper, we

se the Black–Scholes partial differential equation for the option pric-

ng. The model is discretized by using a non-uniform finite difference

ethod and the resulting discrete equations are solved by means

f the operator splitting method. In particular, in order to do fast

nd accurate calculation, we use non-uniform grid structures which

ut more grid points near the singularity of the nonsmooth payoff

unction. The numerical results show that the cost of the proposed

ethod is comparable to that of Monte Carlo simulation and it pro-

ides more stable hedging parameters such as the Greeks. 

cknowledgments 

The first author (J.S. Kim) was supported by a subproject of project

esearch for Applications of Mathematical Principles (No C21501)
nd supported by the National Institute of Mathematics Sciences

NIMS) . The corresponding author (D. Jeong) was supported by a

orea University Grant. The authors are grateful to the anonymous

eferees whose valuable suggestions and comments significantly im-

roved the quality of this paper. 

ppendix. 

The closed-form solution u ( x 1 , x 2 , x 3 , t ) of Eq. (1) is given by 

 (x 1 , x 2 , x 3 , t) = 

Ee −r(T −t) 

σ1 σ2 σ3 

√ 

(2 π(T − t)) 3 det �

×
∫ ∞ 

K 3 

∫ ∞ 

K 2 

∫ ∞ 

K 1 

exp 

(
−0 . 5 α�−1 αT 

)
ξ1 ξ2 ξ3 

d ξ1 d ξ2 d ξ3 , 

here the payoff function is 

 (x 1 , x 2 , x 3 , 0) = 

{
E if x 1 ≥ K 1 , x 2 ≥ K 2 , x 3 ≥ K 3 , 

0 otherwise, 

nd the correlation matrix � is 

= 

( 

1 ρ12 ρ13 

ρ21 1 ρ23 

ρ31 ρ32 1 

) 

, 

hich is symmetric for the correlation coefficients

ij and α = (α1 , α2 , α3 ) where αi is defined by αi =
ln (x i /ξi ) + 

(
r − 0 . 5 σ 2 

i 

)
(T − t) 

]
/ (σi 

√ 

T − t ) . We evaluate the closed-

orm option price and the Greeks by using Mathematica ( Wolfram,

999 ). 
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