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We present a practical finite difference scheme for the incompressible Navier–Stokes 
equation on curved surfaces in three-dimensional space. In the proposed method, the 
curved surface is embedded in a narrow band domain and the governing equation is 
extended to the narrow band domain. We use the standard seven-point stencil for the 
Laplace operator instead of a discrete Laplacian–Beltrami operator by using the closet point 
method and pseudo-Neumann boundary condition. The well-known projection method 
is used to solve the incompressible Navier–Stokes equation in the narrow band domain. 
To make the velocity field be parallel to the surface, a velocity correction step is used. 
Various numerical experiments, such as the divergence-free test, the convergence rate, and 
the energy dissipation, are performed on curved surfaces, which demonstrated that our 
proposed method is robust and practical.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The incompressible Navier–Stokes (NS) equation has wide applications in various problems with fluid flow. Because the 
analytic solution for the NS equation is generally hard to find, it is necessary to develop efficient and accurate numerical 
schemes for solving the NS equation numerically. The NS equation couples the velocity and pressure fields, which causes 
difficulty in numerical solution. To overcome this difficulty, the projection method [1–3], which decouples the solution of 
the momentum equation from the solution of the continuity equation, has been widely used. Later, many researchers have 
developed robust and accurate numerical schemes for solving the NS equation. For example, Zhang et al. [4] performed a 
direct discontinuous Galerkin (DDG) method for solving incompressible NS equation and their method has the merit of high-
order accuracy in arbitrary grids. Lin et al. [5] developed an efficient and practical numerical scheme based on an auxiliary 
energy variable for the NS equation. Suchde et al. [6] proposed a new meshfree solver for the NS equation which achieves 
the better mass conservation and accuracy than the previous meshfree methods. Recently, various numerical schemes based 
on the finite element method have been developed for the NS equation [7–10]. Although many numerical schemes work 
well for the incompressible NS equation on two-dimensional planes, most of them are limited to the flat surfaces.

Solving the partial differential equations on curved surfaces in R3 is an interesting problem. Recently, many efficient and 
robust numerical methods have been proposed for solving the Cahn–Hilliard (CH) [11–14], Allen–Cahn (AC) [15], phase-field 
crystal (PFC) [16,17], and diblock copolymer (DC) equations [18] on curved surfaces. However, the numerical simulations of 
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Fig. 1. Schematic representations of S , �δ , ∂�δ , and cp(x).

NS equation on curved surfaces in R3 are not very rate. At present, two efficient methods such as discrete exterior calculus 
method and surface finite element method for solving the NS equation on curved surfaces in R3 have been developed. 
Mohamed et al. [19] developed a mass conservative discretization for the incompressible NS equation on surfaces, which 
is based on the discrete exterior calculus (DEC) method. Their scheme has second-order accuracy for structured meshes 
and first-order accuracy for unstructured meshes. Later, Nitschke et al. [20] used the DEC method to solve the vorticity-
stream function instead of the incompressible NS equation on various curved surfaces. Reuther and Voigt [21] solved the 
incompressible NS equation on surfaces based on the surface finite element and their scheme can be implemented in most 
finite element approaches. Different from the previous methods mentioned above, our proposed method uses the standard 
seven-point finite difference Laplacian operator instead of Laplacian–Beltrami operator by using the closet point method and 
the pseudo-Neumann boundary condition.

In the proposed method, the projection method [1] is used to solve the incompressible NS equation in a narrow band 
domain. To obtain the velocity field parallel to the surface, a velocity correction step is used. Compared with the previous 
methods mentioned above, our proposed method is very easy to implement because the standard finite difference Laplacian 
operator is used. The proposed method can also be applied to simulate the flow on more complex surfaces, such as a bunny. 
As a future work, the proposed method will be extended to solve the two-phase flow system on various curved surfaces in 
a phase-field approach. Recently, the phase-field approaches have been widely applied to simulate multi-phase fluid flow 
problems [22–24].

The organization of this paper is as follows. In Section 2, we describe the incompressible NS equation on a narrow band 
domain in three-dimensional space. In Section 3, we provide the algorithm of numerical solution. We present the numerical 
results in Section 4. In Section 5, conclusions are drawn.

2. Incompressible NS equation on a narrow band domain

We consider the following incompressible NS equation on a curved surface S in three-dimensional space R3:

∂u(x, t)

∂t
+ u(x, t) · ∇su(x, t) = −∇s p(x, t) + 1

Re
�su(x, t), x ∈ S, 0 < t ≤ T , (1)

where u(x, t) = (u(x, t), v(x, t), w(x, t)) and p(x, t) are the velocity field and pressure at the position x on surface S and 
time t . Re is the Reynolds number, ∇s = P∇ indicates the surface gradient operator, where P = I − (∇d)T ∇d is projection 
operator onto the tangent plane [16,25]. Here, I is the identity matrix [25,26] and d :R3 →R is a signed distance function 
such that S = {x ∈ R3| d(x) = 0} with d < 0 inside and d > 0 outside of S . The δ-neighborhood band of S is defined as 
�δ = {y| y = x + θn(x) for |θ | < δ, x ∈ S}, where n(x) is a unit normal vector at x. Next, we extend Eq. (1) to the narrow 
band domain �δ :

∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t) = −∇p(x, t) + 1

Re
�u(x, t), x ∈ �δ, 0 < t ≤ T . (2)

Here, the following pseudo-Neumann boundary conditions are used:

u(x, t) = u(cp(x), t), p(x, t) = p(cp(x), t) on ∂�δ, (3)

where the closest point cp(x) ∈ S for x ∈ ∂�δ [27], see Fig. 1. If a small enough δ is taken, then we have constant values 
of u and p in the direction normal to the surface S . Therefore, the standard Laplacian operator can be used to replace the 
Laplace–Beltrami operator in the narrow band domain �δ [28].

3. Numerical solution

We describe the numerical solution for the incompressible NS equation on �δ . We discretize the NS equation in � =
(a, b) ×(c, d) ×(e, f ) embedding �δ . Let Nx , N y , and Nz be positive integers, h = (b −a)/Nx = (d −c)/N y = ( f −e)/Nz be the 
space step, and �h = {xi jk = (xi, y j, zk) = (a + hi, c + hj, e + hk)| 0 ≤ i ≤ Nx, 0 ≤ j ≤ N y, 0 ≤ k ≤ Nz} be the discrete domain. 
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Fig. 2. Schematic illustrations of boundary point xi jk and its closest point cp(xi jk). The minimum value of δ should be greater than
√

3h.

In this work, the velocity and pressure variables are stored at cell vertices. Let un
i jk and pn

ijk be discrete approximations of 
u(xi jk, n�t) and p(xi jk, n�t), respectively, where �t is the temporal step. Let S = {x ∈ R3| d(x) = 0}, where d : R3 → R is 
the signed distance function to S . Let �h

δ = {xi jk| |dijk| < δ} be the discrete narrow band domain with δ >
√

3h. Note that 
the closet points of all boundary points are calculated by using a trilinear interpolation. Therefore, the discrete narrow band 
domain �h

δ must include all interpolation stencils, that means we need to take δ >
√

3h; otherwise, we may include the 
boundary point as an interpolation stencil, see Fig. 2 as a schematic illustration.

Let ∂�h
δ = {xi jk| Ii jk|∇h Ii jk| �= 0} be the discrete boundary, where ∇h Ii jk = (Ii+1, jk − Ii−1, jk, Ii, j+1,k − Ii, j−1,k, Ii j,k+1 −

Ii j,k−1)/(2h). Here, Ii jk = 0 if xi jk ∈ �h
δ ; otherwise Ii jk = 1. We first define the discretization of the NS equation:

un+1
i jk − un

i jk

�t
= −(u · ∇du)n

i jk − ∇d pn+1
i jk + 1

Re
�dun

i jk, (4)

∇d · un+1
i jk = 0. (5)

We denote that ∇d, �d , and ∇d· are the discrete gradient, Laplacian, and divergence operators, respectively. The standard 
seven-point discrete Laplacian operator for velocity u is

�dui jk = (ui+1, jk + ui−1, jk + ui, j+1,k + ui, j−1,k + ui j,k+1 + ui j,k−1 − 6ui jk)/h2.

The pseudo-Neumann boundary condition is defined as

ui jk = u(cp(xi jk)) and pijk = p(cp(xi jk)) for xi jk ∈ ∂�h
δ ,

where

cp(xi jk) = xi jk − ∇d|dijk|
|∇d|dijk||2 |dijk|. (6)

Since cp(xi jk) is generally not a grid point, u(cp(xi jk)) is obtained using the trilinear interpolation method. For each xi jk ∈
∂�h

δ , we compute cp(xi jk) using Eq. (6) and find the cube cell, [xp, xp+1) × [yq, yq+1) × [zr, zr+1) containing the point 
cp(xi jk). Let (α1, α2, α3) = cp(xi jk) − xpqr , then

u(cp(xi jk)) = [
(h − α1)(h − α2)(h − α3)upqr + α1(h − α2)(h − α3)up+1,qr

+(h − α1)α2(h − α3)up,q+1,r + α1α2(h − α3)up+1,q+1,r

+(h − α1)(h − α2)α3upq,r+1 + α1(h − α2)α3up+1,q,r+1

+(h − α1)α2α3up,q+1,r+1 + α1α2α3up+1,q+1,r+1
]
/h3.

The outline of the main procedure for solving the discrete equations (4) and (5) is as follows:

Step 1. Give the initial velocity field u0 which satisfies the divergence-free condition.

Step 2. The intermediate velocity field u∗ is solved explicitly with the absence of pressure gradient term,

u∗
i jk − un

i jk

�t
= −un

i jk · ∇dun
i jk + 1

Re
�dun

i jk.

We use the second-order ENO scheme [29,30] for the spatial discretization of advection term in Eq. (4). The advection term 
is discretized as:
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(u · ∇du)i jk = uijk

h

(
ūi+ 1

2 , j,k − ūi− 1
2 , j,k

)
+ vijk

h

(
ūi, j+ 1

2 ,k − ūi, j− 1
2 ,k

)
+ wijk

h

(
ūi, j,k+ 1

2
− ūi, j,k− 1

2

)
. (7)

The procedure for computing the quantity ūi+ 1
2 , j,k is as follows:

l =
{

i if ui+ 1
2 , j,k > 0,

i + 1 otherwise,

a = uljk − ul−1, j,k

h
, b = ul+1, j,k − uljk

h
, d =

{
a if |a| ≤ |b|,
b otherwise,

ūi+ 1
2 , j,k = uljk + h

2
d(1 − 2(k − i)),

where ui+ 1
2 , j,k = (

uijk + ui+1, j,k
)
/2. The other quantities are similarly computed.

Step 3. In order to solve the pressure at (n + 1)th time step, we solve the following discrete equations

un+1,1
i jk − u∗

i jk

�t
= −∇d pn+1

i jk , (8)

∇d · un+1,1
i jk = 0. (9)

We take the divergence operation to Eq. (8) and use the divergence-free condition, then the following pressure Poisson 
equation is obtained

�d pn+1
i jk = 1

�t
∇d · u∗

i jk, (10)

where the source term is written as

∇d · u∗
i jk = u∗

i+1, jk − u∗
i−1, jk

2h
+ v∗

i, j+1,k − v∗
i, j−1,k

2h
+ w∗

i j,k+1 − w∗
i j,k−1

2h

and �d pn+1
i jk is discretized by the standard seven-point discrete Laplacian. We use the Jacobi iteration to solve the implicit 

Eq. (10). The pseudo-Neumann boundary condition is used for pressure pn+1 in relaxation. After each Jacobi iteration, we 
take the following pressure correction step to maintain the unique solution

pn+1,m+1
i jk = pn+1,m+1

i jk − 1

#�h
δ

∑
xi jk∈�h

δ

pn+1,m+1
i jk ,

where #�h
δ is the total number of points in narrow band domain. The Jacobi iteration stops when the L2-error of the 

consecutive iterative solutions is less than a given tolerance, i.e.,

‖pn+1,m+1 − pn+1,m‖L2(�h
δ )

< tol,

where pn+1,m+1 and pn+1,m represent the iterative solutions after (m + 1)th and mth rounds of Jacobi iterations.

Step 4. Update the velocity field at (n + 1)th time step which satisfies the divergence-free condition

u∗∗ = u∗ − �t∇d pn+1 (11)

Step 5 (Velocity correction step). When we solve the NS equation on curved surfaces, we want the velocity field is parallel 
to the surfaces. Although the velocity field u∗∗ satisfies the divergence-free condition, it may not be parallel to the curved 
surface and causes the nonphysical velocity distribution. To avoid this, the following velocity correction method is used: 
First, let m be the unit normal vector to the curved surface and λ be a coefficient to make the vector λm be the component 
of u∗∗ . Then, we can easily have the relation (u∗∗ − λm) · m = 0, which implies λ = u∗∗ · m. The corrected velocity field can 
be obtained by

un+1 = u∗∗ − (u∗∗ · m)m.

A schematic illustration of velocity correction is shown in Fig. 3. The steps 1 − 5 complete the numerical solution of the NS 
equation in one time cycle.
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Fig. 3. Schematic illustration of velocity correction step.

Fig. 4. Temporal evolutions of circumfluence with velocity projection (a) and without velocity projection (b). The computational times from left to right in 
each row are: t = 0, 1.92, and 3.52.

4. Numerical results

In the following parts, various numerical tests are performed to investigate the practicability and the convergence rate 
of the proposed method. Unless otherwise indicated, tol = 0.001 is used.

4.1. Divergence-free test

The divergence-free condition (i.e., ∇ · u = 0) is an important issue for incompressible NS equation. In order to show 
the accuracy of our proposed method, we consider the divergence-free condition on a curved surface. The evolution of 
circumfluence is investigated on a sphere with the following numerical parameters: h = 1/25, �t = 0.2h2, and Re = 50 in 
the computational domain � = (0, 2)3. The initial conditions are:

u(x, y, z,0) = y − 1, v(x, y, z,0) = 1 − x, w(x, y, z,0) = 0. (12)

The spherical surface is defined by the zero level-set of the distance function d(x, y, z) = √
(x − 1)2 + (y − 1)2 + (z − 1)2 −

0.8. Fig. 4(a) and (b) show the temporal evolutions of velocity field on a sphere with and without velocity correction step, 
respectively.

If the velocity correction is absent, then the velocity field passes through the surface with time even if the initial velocity 
field is parallel to the surface. With the correction of velocity field, we can find that the velocity field always keeps parallel 
to the surface. To study the effect of the proposed velocity correction step on the divergence-free condition, we consider 
the temporal evolution of discrete divergence Div(un) which is defined as:

Div(un) = 1

#�h
δ

∑
x ∈�h

∣∣∣∇d · un
i jk

∣∣∣ . (13)
i jk δ
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Fig. 5. Temporal evolution of divergence, Div(un). The insets represent the snapshots at the corresponding computational moments.

Table 1
Discrete divergence Div(un) before and after correction step.

Case t = 0.64 t = 0.96 t = 1.28 t = 1.60

Before Step 5 0.405 0.409 0.350 0.267
After Step 5 2.435e-4 2.364e-4 2.298e-4 2.232e-4

Table 2
Discrete divergence at specific moments with respect to different tol-
erances.

Case t = 0.13 t = 0.19 t = 0.64

tol = 1.0e-3 7.482e-4 3.079e-4 2.492e-4
tol = 1.0e-4 7.480e-4 3.063e-4 2.497e-4
tol = 1.0e-5 7.482e-4 3.063e-4 2.498e-4

The result is shown in Fig. 5, where the insets represent the evolutions of velocity field. Note that the divergence-free 
condition is not rigorously satisfied with the present grid arrangement. We use an approximate projection method, where 
�d p ≈ ∇d · ∇d p is satisfied in general. For more details about the approximate projection method, we refer to [31]. To 
practically satisfy the divergence-free condition, an augmented correction step, i.e., Step 5 is used to enforce the velocity 
field in narrow band domain to be the tangential direction of the surface. In Table 1, we plot the values of discrete diver-
gence Div(un) before and after Step 5 at some specific temporal steps. As we can observe, the divergence-free condition is 
approximately satisfied by using the correction step.

4.2. Test of tolerance

To verify the present tolerance (tol = 0.001) is small enough for this work, we consider flow on a sphere surface. The 
initial velocity field and numerical parameters are the same as those in Section 4.1. A series of decreasing tolerances (tol =
1.0e-3, 1.0e-4, and 1.0e-5) are used. Table 2 lists the values of discrete divergence at some specific temporal steps with 
respect to different tolerances. Although the value of discrete divergence converges with the decrease of tolerance, the 
difference between them are not significant. For the purpose of saving computational time, we will use tol = 0.001 in the 
following tests.

4.3. Effect of mesh size on the discrete divergence

Next, we investigate the effect of mesh size on the values of discrete divergence. The sphere surface with radius 0.6 is 
considered. The initial velocity field, and numerical parameters are the same as those in Section 4.1 except the mesh size. 
Here, a series of increasing finer mesh sizes (h = 1/10, 1/20, and 1/40) are considered. The values of discrete divergence 
at t = 0.16, 0.4, 0.8 with respect to different mesh sizes are listed in Table 3. We can find that the value of discrete 
divergence decreases with the increase of mesh size.
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Table 3
Discrete divergence at specific moments with respect to different 
mesh sizes.

Case t = 0.16 t = 0.4 t = 0.8

h = 1/10 8.2e-3 3.2e-3 1.6e-3
h = 1/20 1.5e-3 4.915e-4 4.558e-4
h = 1/40 1.689e-4 1.635e-4 1.544e-4

Table 4
L2-errors and convergence rates at t = 3.5.

Case u v w

203 − 403 0.641 0.598 0.464
Rate 2.134 2.179 2.025
403 − 803 0.146 0.132 0.114

4.4. Convergence test

To test the second-order accuracy in space. We consider the following initial conditions in the computational domain 
� = (0, 11)2:

u(x, y, z,0) = − ŷ − 2x̂ẑ

8
(
x̂2 + ŷ2

) , v(x, y, z,0) = x̂ − 2 ŷ ẑ

8
(
x̂2 + ŷ2

) ,

w(x, y, z,0) =
√

x̂2 + ŷ2 − 2

4
√(

x̂2 + ŷ2
) , (14)

where x̂ = x − 5.5, ŷ = y − 5.5, ẑ = z − 5.5. The distance function of a torus is d(x, y, z) =
√(√

x̂2 + ŷ2 − 2
)2 + ẑ2 − 0.5. 

The following numerical parameters are used: h = 11/(20 × 2n), �t = 0.01h, and Re = 1000. Here, n = 0, 1, and 2 are 
considered. We define the L2-error between two different mesh sizes to be

‖uh,�t − uh/2,�t/4‖
L2(�

h/2
δ )

=
√√√√ 1

(#�
h/2
δ − Nh/2)

∑
xi jk∈ �h

δ

∣∣∣uh,�t
i jk − uh/2,�t/4

2i−1,2 j−1,2k−1

∣∣∣2
.

Here, Nh/2 represents the total numbers of the even grid points in the narrow band domain with finer mesh size h/2, uh,�t

represents the solution obtained with a space step h and a time step �t . The convergence rate is defined as

Rate = log2

(
‖uh,�t − uh/2,�t/4‖

‖uh/2,�t/4 − uh/4,�t/16‖

)
.

We list the convergence rates in Table 4 at t = 3.5. The results show the second-order accuracy in space.

4.5. Energy dissipation with different mesh sizes

For the incompressible NS equation, the total energy is non-increasing with time since the effect of viscosity term. In 
this part, we consider the kinetic energy dissipation with respect to different mesh size. The initial harmonic velocity field 
is defined as:

u(x, y, z,0) = − ŷ − 2x̂ẑ

8(x̂2 + ŷ2)
, v(x, y, z,0) = x̂ − 2 ŷ ẑ

8(x̂2 + ŷ2)
,

w(x, y, z,0) =
√

x̂2 + ŷ2 − 2

4
√

(x̂2 + ŷ2)
,

where x̂ = x − 4, ŷ = y − 4, ẑ = z − 4. The simulation is performed on a torus in the computational domain � = (0, 8)3. 

The signed distance function of torus is d(x, y, z) =
√

(
√

x̂2 + ŷ2 − 2)2 + ẑ2 − 0.5. Different mesh sizes h = 8/20, 8/40, and 
8/60 are considered and we fix the Reynolds number Re = 10 and time step �t = 4.4e-3 in this simulation. Figs. 6(a)–(c) 
show the temporal evolution of velocity field on a torus with the mesh size h = 8/60. Note that the magnitude of velocity 
field is properly scaled at each time step for the better views. The discrete energy is defined as
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Fig. 6. Temporal evolutions of velocity field on a torus. The computational times are indicated below each figure.

Fig. 7. Temporal evolutions of normalized discrete energy Ēn
d with respect to different mesh sizes.

Fig. 8. Temporal evolution of velocity field on a torus.

En
d = η

2#�h
δ

∑
xi jk∈�h

δ

(
u2

i jk + v2
i jk + w2

i jk

)
, (15)

where the superscript n indicates the time steps and η represents the viscous coefficient which is set to be 1 in this work 
for convenience. The normalized discrete energy is defined as Ēn

d = En
d/E0

d . Fig. 7 illustrates the temporal evolutions of 
normalized discrete energy Ēn

d with respect to different mesh sizes. We can find that the discrete energy is non-increasing 
for each mesh size.

4.6. Comparison with the previous results

We consider the temporal evolution of velocity field on a torus. Note that the similar simulations can be found in 
[20,21] which are performed by the discrete exterior calculus and surface finite element methods, respectively. The previous 
simulations illustrated that the maximum and minimum values of velocity field on a torus surface are 0.12 and 0.02, 
respectively. In the present simulation, the torus surface, computational, initial condition, and numerical parameters are set 
to be same like those in Section 4.5. The temporal evolution of velocity field is shown in Fig. 8 at t̃ = 0, 2.2, 29.9, 59.7 in 
the time scale of [21] which is related to ours by t̃ ≈ 1.5t . Here, the velocity field is properly scaled at each time step. As 
we can see from Fig. 8 and Table 5, the present results and previous simulations are in good agreement.
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Table 5
Comparison with the reference values in [20,21]. The maximum and 
minimum values of velocity field are |u|max and |u|min, respectively.

Reference Simulation

|u|max 0.12 0.118

|u|min 0.02 0.02

Fig. 9. Temporal evolutions of velocity field on a torus with different Re: (a) 10, (b) 50, (c) 100, and (d) 200. The computational times from the left to right 
in each row are: t = 0, 1.41, 5.63, and 35.20.

4.7. Energy dissipation with respect to Reynolds number

The Reynolds number Re plays an important role in the viscosity term of the NS equation. A larger value of Re indicates 
the weaker effect of viscosity, while a smaller Re indicates the viscosity is dominant. In this part, we investigate the effect 
of Re on the energy dissipation on a curved surface. The initial conditions, computational domain, and torus surface are 
similarly defined as in Section 4.5. We consider different Re = 10, 50, 100, and 200 with a fixed mesh size h = 8/60 in 
the simulation. Fig. 9(a)–(d) show the temporal evolutions of velocity field on a torus with respect to different Re. Note 
that the magnitude of velocity field is properly scaled at each time step for the better views. We can find that the velocity 
field quickly becomes parallel to x-y plane with the decrease of Re. This phenomenon can be explained by the results in 
Fig. 10 which illustrates the temporal evolutions of normalized discrete energy with different Re. As Re becomes smaller, 
the dominant effect of viscosity makes the energy dissipate quickly with time.

4.8. Flow on various surfaces

We consider the fluid field on the following three surfaces: S1, S2, and S3 (see Fig. 11). The simulations are performed 
in the domain � = (0, 4)3 with parameters: h = 4/60, �t = 0.1h2, Re = 50. The level-set functions of S1, S2, and S3 are 
defined in the following Eqs. (16), (17), and (18), respectively:

d1(x, y, z) =
√

(x − 2)2

0.52 + (y − 2)2

0.52 + (z − 2)2

1.52 − 0.6, (16)

d2(x, y, z) = ((z − 1.5) − f )2 + 1

0.82
(y − 2)2 + (x − 2)2 − 1, (17)

d3(x, y, z) =
(
(x − 2)2 − 1

)2 +
(
(y − 2)2 − 1

)2 +
(
(z − 2)2 − 1

)2 − 2
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Fig. 10. Temporal evolutions of normalized discrete energy Ēn
d with respect to different Re.

Fig. 11. Various curved surfaces: (a) S1, (b) S2, and (c) S3.

+
(
(x − 2)2 + (y − 2)2 − 1

)2 +
(
(x − 2)2 + (z − 2)2 − 1

)2

+
(
(y − 2)2 + (z − 2)2 − 1

)2
, (18)

where f = 0.375(x − 2)2
[
((x − 2) + 1)2(4 − 3(x − 2)) + 0.9((x − 2) − 1)2(4 + 3(x − 2))

]
. The initial velocity field is defined 

as: u0 = n × ∇ψ , where n is the unit normal vector to the surface and ψ = y + 0.1z is a scalar function. The evolutions of 
fluid field on various surfaces are shown in Fig. 12. The normalized discrete energy is illustrated in Fig. 13. We can observe 
that the proposed method can treat the fluid field on various surfaces and the energy dissipation is satisfied.

4.9. Flow on a bunny surface

We further consider the fluid flow on a bunny surface which has a more complex shape. The computational domain 
is: � = (0, 68.5)3 and the numerical parameters are: h = 0.5, �t = 0.1h2, Re = 50. The initial velocity field is define as: 
u0 = n × ∇ψ , where ψ = x + 0.1y is a scalar function. The evolutions from different perspectives are shown in Fig. 14. For 
better views, the velocity field at each time step are properly scaled. We can find that the proposed method can also be 
applied to simulate the fluid flow on a bunny surface.

4.10. Co-rotating vortex pair

In this part, we consider the co-rotating vortex pair on a sphere which is defined by the signed distance function 
d(x, y, z) = √

(x − 1)2 + (y − 1)2 + (z − 1)2 − 0.8 in the computational domain � = (0, 2)3. The initial conditions are given 
as
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Fig. 12. Temporal evolutions of velocity field on various surfaces: (a) S1, (b): S2, and (c): S3. The computational times from the left to right in each row 
are: 0, 0.89, 1.78. For better views, the velocity field at each time step is properly scaled.

Fig. 13. Temporal evolutions of normalized discrete energy Ēn
d on various surfaces.
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Fig. 14. Temporal evolutions of velocity field on a bunny surface: (a), (b), and (c) are the evolutions from different perspectives. The computational times 
from the left to right in each row are: 0, 50, 100. For better views, the velocity field at each time step is properly scaled.

u(x, y, z,0) =

⎧⎪⎨
⎪⎩

4(y − 1)e0.3(1−l21) if x < 1, z > 1,

4(y − 1)e0.3(1−l22) if x > 1, z > 1,

0 otherwise,

v(x, y, z,0) =

⎧⎪⎨
⎪⎩

−4(x − c1)e0.3(1−l21) if x < 1, z > 1,

−4(x − c2)e0.3(1−l22) if x > 1, z > 1,

0 otherwise,

w(x, y, z,0) = 0,

where l1 = √
(x − c1)2 + (y − 1)2/0.08, l2 = √

(x − c2)2 + (y − 1)2/0.08, c1 = 0.8, and c2 = 1.2. We use h = 1/30, �t = 2h2, 
and Re = 3 × 104 in this simulation. As illustrated in Fig. 15, the initial two vortexes deform and rotate away from each 
other. Because of the energy dissipation, the magnitude of vorticity field decreases in time.

Next, we change the initial distance between two vortexes to investigate the dynamics of co-rotating vortex pair. We 
use c1 = 0.9 and c2 = 1.1 in this simulation. Other parameters take the same values as above. Fig. 16 shows the temporal 
evolution of vortex pair. If a closer distance between two vortexes is used, then the two vortexes quickly merge with each 
other and the vorticity deforms and dissipates in time.

4.11. Taylor–Green vortices on a flat surface

For a flat surface, we define d(x, y, z) = z −π in the domain � = (0, 2π)3. The initial conditions of Taylor–Green vortices 
are defined as:

u(x, y, z,0) = − cos(x) sin(y),

v(x, u, z,0) = sin(x) cos(y),

w(x, y, z,0) = 0. (19)
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Fig. 15. Temporal evolutions of co-rotating vortex pair with c1 = 0.8 and c2 = 1.2. The computational times are illustrated below each figure.

Fig. 16. Temporal evolutions of co-rotating vortex pair with c1 = 0.9 and c2 = 1.1. The computational times are shown below each figure.

Here, we use h = 2π/60, �t = 3.2e-5, and Re = 100. The analytical decay of two-dimensional Taylor–Green vortices with 
time is expressed as [32,33]

u(x, y, t) = − cos(x) sin(y)e−2νt, (20)

v(x, y, t) = sin(x) cos(y)e−2νt, (21)
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Fig. 17. (a) Evolution of Taylor-Green vortices on a flat surface at t = 0.5. (b) Numerical and analytical velocities along y = π .

Fig. 18. Temporal evolutions of velocity field on a torus with different Re: (a) 1, (b) 10, (c) 100, and (d) 1000. The computational times from the left to 
right in each row are: t = 0, 0.11, 0.44, and 0.88.

where the viscosity ν = 0.01 is used. Fig. 17(a) illustrates the Taylor–Green vortices on a flat surface at t = 0.5. The numer-
ical and analytical velocity values at y = π are shown in Fig. 17(b). We can see that the simulation and analytical results 
are in good agreement with each other.

4.12. Stability test with respect to different Reynolds numbers

We then investigate the effect of Re on the flow on a torus surface combining with the second-order spatial accurate 
scheme. The torus surface is defined in Section 4.7 and we use h = 1/10, �t = 0.1h2 in the domain � = (0, 8)3. The 
following different values of Re are considered: Re = 1, 10, 100, and 1000. Fig. 18(a), (b), (c), and (d) illustrate the temporal 
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evolution of flow field on a torus with respect to different values of Re, we can observe that the proposed method can work 
well with a range of Re numbers.

5. Conclusions

A practical finite difference method for solving the incompressible NS equation on three-dimensional curved surfaces 
was proposed in this paper. The NS equation on surface was extended into a three-dimensional narrow band domain neigh-
borhood of a curved surface which is defined by the zero level-set of a signed distance function. By using the closet-point 
method and applying the pseudo-Neumann boundary condition, the standard Laplacian operator can be used to replace the 
discrete Laplace–Beltrami operator. To obtain the velocity field parallel to the surface, a velocity correction step was used. 
Various numerical tests were performed on curved surfaces, which demonstrated that our proposed method satisfies the 
divergence-free condition and the energy dissipation, and almost first-order accuracy in space and time. In the upcoming 
works, we will investigate the numerical schemes for simulating the two-phase fluid flows on curved surfaces with high 
order accuracy. Furthermore, we will use the staggered marker and cell (MAC) mesh to enforce the divergence-free velocity 
field.
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