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a b s t r a c t

We present a new phase-field fluid model and computation with minimized Cahn–Hilliard

(CH) dynamics. Using the CH equation, the internal structure of the interface layer is deter-

mined by explicit smoothing flow discontinuities. This method greatly simplifies gridding,

discretization, and handling of topological changes. The original CH equation, however, has

intrinsic dynamics such as interface length minimization, i.e., the motion by minus the Lapla-

cian of the mean curvature. When the CH equation is applied to the modeling of multiphase

fluid flows, we want to minimize its interface length minimization property. The surface ten-

sion formulation also requires the multiphase fluid interface to be a hyperbolic tangent profile.

Typically, under the advection of flow, the interfacial transition is not a hyperbolic tangent pro-

file, i.e., it is too compressed or sharpened. Even though the original CH dynamics conserves

the total mass, the enclosed area obtained by its interface is not preserved. To overcome these

shortcomings, we propose a modified CH equation with an interfacial profile correction term.

Several numerical examples are presented to show the accuracy of the proposed method.

The numerical results demonstrate that the proposed modified CH equation preserves the

enclosed area better than the original CH equation.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

We present a phase-field fluid model and computation with minimized Cahn–Hilliard (CH) dynamics. The original CH equa-

tion was introduced to model spinodal decomposition in binary alloys [1] and arises from the Helmholtz free energy functional

ECH(φ) =
∫
�

(
F(φ) + ε2

2
|∇φ|2

)
dx,

where � ⊂ R
d (d is the space dimension), F(φ) = 0.25(φ2 − 1)2, and ε is a positive constant. The quantity φ(x, t) is defined as

the difference between the mole fractions of binary mixtures. The CH equation takes the form

∂φ

∂t
(x, t) = M�μ(x, t), x ∈ �, 0 < t ≤ T, (1)
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Fig. 1. Schematic illustration of the computational problem. (a) Two fluids. (b) Phase-field.
μ(x, t) = F ′(φ(x, t)) − ε2�φ(x, t), (2)

n · ∇μ(x, t) = 0, x ∈ ∂�, (3)

where M is the positive constant mobility and n is the outward normal vector at the boundary. The CH equation can be derived

from a constrained gradient flow in the Ḣ−1 Hilbert space. It guarantees that the total free energy ECH(φ) decreases in time t

[2]. The solution φ(x, t) to Eqs. (1)–(3) possesses the properties that the total mass is conserved, i.e., d(
∫
� φdx)/dt = 0, and

the total energy ECH(t) decreases with time. Governing equations for the flow are obtained by coupling the momentum and CH

equations. The CH equation has been successfully applied to a wide range of problems in materials science [5,6], biology [7,8],

image processing [9,10], surface/volume reconstruction [11], and fluid dynamics [12–23,25–44] (see the recent review paper [32]

and the references therein). Using the CH equation, the internal structure of the interface layer can be determined by explicit

smoothing flow discontinuities. This method greatly simplifies gridding, discretization, and handling of topological changes. The

momentum equation is a modified Navier–Stokes equation:

ρ(φ)(ut + u · ∇u) = −∇p + ∇ · (η(φ)(∇u + ∇uT )) + σSF(φ) + ρ(φ)g, (4)

∇ · u = 0, (5)

where u is the velocity, p is the pressure, σ is the surface tension coefficient, and g = (0, −g) is the gravity. The density ρ(φ) and

viscosity η(φ) are assumed to be linearly related to the concentration φ:

ρ(φ) = ρ1(1 − φ)/2 + ρ2(1 + φ)/2 and η(φ) = η1(1 − φ)/2 + η2(1 + φ)/2,

where ρ1 and ρ2 are the densities of fluid 1 and fluid 2, respectively. η1 and η2 are the viscosities of fluid 1 and fluid 2, respec-

tively. A schematic illustration of the computational problem is shown in Fig. 1.

The interfacial force SF(φ) satisfying the Laplace–Young condition is defined as SF(φ) = −κ(φ)δ(φ)ns(φ), where ns(φ) is

the outward unit normal vector to the interface of the two phases, κ(φ) is the mean curvature, and δ(φ) is the surface Dirac-

delta distribution. Furthermore, ns, κ and δ are given by ns = −∇φ/|∇φ|, κ = ∇ · ns, and δ = εα|∇φ|2 [3], respectively. The CH

dynamics is characterized by transition layers between two phases with an equilibrium profile [4]:

φeq(r) = tanh (r/(
√

2ε)). (6)

The local coordinate r is from the outside of the surface to the inside normally and is zero at the interface. With the equilibrium

composition profile, α can be computed as α = 3
√

2/4 by solving εα
∫ ∞
−∞ (φeq

r )2dr = 1. Thus, the interface of the two phases

should be a hyperbolic tangent profile to accurately calculate the surface tension force. However, when an advection term is

added, the interface of the two phases may not be a hyperbolic tangent profile. The original CH equation has intrinsic dynamics

such as interface length minimization, i.e., the motion by minus the Laplacian of the mean curvature [45]. Thus, when the CH

equation is applied to model multiphase fluid flows, we want to minimize its interface length minimization property. In practice,

when a large time step or coarse grid is used, the interface length minimization property of the CH equation is significant.

Furthermore, although the CH dynamics conserves the total mass over the entire domain, it typically does not preserve the area

enclosed by the interface of the two phases. Yue et al. [46] noted that the equilibrium solution of the CH equation is similar to, but

not equal to a hyperbolic tangent profile; the solution to the CH equation is in [−1 + β, 1 + β], where β is a small value related

to the thickness ε, the volume of the whole computational domain and drop. This is because the total energy can be reduced by

shrinking the drop while simultaneously shifting the bulk φ slightly away from the initial values (see Fig. 2). Therefore, the CH
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Fig. 2. Schematic illustration of the shifting of a circular drop. (a) The plots of φ in two-dimensional view. The solid, dashed, and dotted lines denote the zero

level set of the initial φ, steady state of φ obtained by the original CH equation, and the hyperbolic tangent profile (Eq. (6)), respectively. (b) The plots of φ in

cross view. Note that a similar schematic illustration can be found in [46].
dynamics typically does not preserve the enclosed mass computed by the zero level of the two phases. Theoretically, as ε → 0,

the CH dynamics conserves the mass. In actual implementation, however, the interface has a small but finite thickness.

Since the CH equation satisfies the total conservation of mass, if the values in the bulk of each component are almost ± 1

and if the interface of the two phases is a hyperbolic tangent profile, then the mass is conserved in each component. The mass

loss in the original CH equation works by shifting the interface of the two phases and then shrinking the bulk φ. This forces the

hyperbolic tangent profile to reduce the mass loss (see Fig. 2) and improve the accuracy of the surface tension force.

The objective of this paper is to propose a new conservative numerical method for the CH equation with an interfacial profile

correction term. The CH equation is discretized using a finite difference scheme. The resulting scheme is solved by a fast multigrid

method. Several numerical examples are presented to demonstrate the accuracy of the proposed method.

Note that in a different context, Folch et al. [22,23] presented a phase-field model for the dynamics of the interface between

two immiscible fluids with arbitrary viscosity contrast in a rectangular Hele–Shaw cell. The Allen–Cahn (AC) equation [24] was

used as the phase-field model together with an additional term, −ε2∇ · (∇φ/|∇φ|)|∇φ| in order to cancel out the local AC

dynamics of the interface, i.e., the motion by mean curvature. The modified phase-field model yields the Hele–Shaw equation

in the sharp-interface limit. Another modified phase-field approach is proposed to study the interaction between a vesicle and

an external hydrodynamic flow lies in the free-boundary character of it vesicle shape [15], where a correction term is added to

make cells tumble precisely in order to reduce the dissipation when the cell concentration is low.

This paper is organized as follows. In Section 2, we describe the phase-field fluid model and computation with minimized

CH dynamics. In Section 3, we describe the numerical solution. We perform numerical experiments and present the results in

Section 4. Conclusions are presented in Section 5.

2. The proposed model

To force the interface of the two phases to be a hyperbolic tangent profile, we propose a new modified CH equation:

∂φ

∂t
= M�μ + λM

(
�φ − 1√

2ε
∇ ·

(
(1 − φ2)

∇φ

|∇φ|
))

, (7)

μ = F ′(φ) − ε2�φ, (8)

∂μ

∂n
= 0, x ∈ ∂�, (9)

where the positive constant λ is related to the gradient energy coefficient ε, which is a measure of the transition region between

two phases. Also, λ is related to the flow velocity when the advection term is added. The last term in Eq. (7) is the fidelity term

that forces the interface of the two phases to be a hyperbolic tangent profile. The new modified CH equation is derived from the

following total energy:

E(φ) = ECH(φ) + EF (φ)

=
∫
�

(
F(φ) + ε2

2
|∇φ|2

)
dx +

∫
�

λ

2

(
1 − φ2

√
2ε

− |∇φ|
)2

dx, (10)

where EF (φ) is an energy functional that forces the phase-field profile to be a hyperbolic tangent profile of the following form

[47]:

φ(x, t) = tanh

(
d(x, t)√

2ε

)
. (11)



Y. Li et al. / Commun Nonlinear Sci Numer Simulat 30 (2016) 84–100 87
In the above equation, d(x, t) is the signed distance function from the interface to x. Note that φ(x, t) varies from −0.95 to 0.95,

when d(x, t) is in ( − 2
√

2ε, 2
√

2ε), and φ(x, t) = d(x, t) = 0 is the interface of the two phases. Moreover, Eq. (11) is motivated

by the equilibrium profile obtained in the thermodynamically derived phase-field model [48–50]. From Eq. (11), we also can

compute

F(φ) = (φ2 − 1)2

4
= ε2

2
|∇φ|2, (12)

which implies |∇φ| = (1 − φ2)/(
√

2ε). Thus, minimizing EF (φ) forces the phase-field profile to be a hyperbolic tangent profile.

In the modified CH equation given in Eq. (7), the first and second terms are negative gradient descents with respect to the

Ḣ−1 and L2 inner products for the energies ECH(φ) and EF (φ), respectively. Note that Eq. (7) is neither a gradient flow in the Ḣ−1

inner product nor L2 inner product. For a discussion of CH and gradient flows in Ḣ−1, we refer to Taylor and Cahn [51]. For a

discussion of ECH in the Ḣ−1 inner product and EF in the L2 inner product, see Bertozzi et al. [9] and the references therein.

Now, we review the derivation of the proposed equation in a ‘gradient flow’:

φt = M�
δECH

δφ
− M

δEF

δφ
, (13)

where μ = δECH/δφ is the chemical potential that is obtained via the variational derivative of the free energy functional (ECH)
with respect to φ, such that

d

dξ
ECH(φ + ξψ)

∣∣∣
ξ=0

=
∫
�

(ψF ′(φ) + ε2∇ψ · ∇φ)dx

=
∫
�

(F ′(φ) − ε2�φ)ψdx +
∫
∂�

ε2 ∂φ

∂n
ψds =

∫
�

(F ′(φ) − ε2�φ)ψdx,

where ψ satisfies
∫
� ψdx = 0 and ∂φ/∂n is zero on ∂�. Now, we obtain the chemical potential

μ = δECH

δφ
= F ′(φ) − ε2�φ. (14)

By applying the variational derivative of the energy functional EF (φ) with respect to φ,

d

dξ
EF (φ + ξψ)

∣∣∣
ξ=0

= λ

∫
�

ψ

(
φ(

√
2ε|∇φ| − (1 − φ2))

ε2
+ ∇ ·

(
−∇φ + (1 − φ2)√

2ε

∇φ

|∇φ|
))

dx,

where the Neumann boundary for φ, i.e., n · ∇φ = 0, is used. Thus,

δEF

δφ
= λ

φ(
√

2ε|∇φ| − (1 − φ2))

ε2
+ λ∇ ·

(
−∇φ + (1 − φ2)√

2ε

∇φ

|∇φ|
)

. (15)

Substituting Eqs. (14) and (15) into Eq. (13) yields

∂φ

∂t
= M�μ − λMφ(

√
2ε|∇φ| − (1 − φ2))

ε2
+ λM∇ ·

(
∇φ − (1 − φ2)√

2ε

∇φ

|∇φ|
)

. (16)

The total mass conservation d
dt

∫
� φdx = 0 is important when we solving the incompressible two-phase flows. Verifying mass

conservation in Eq. (16) yields

d

dt

∫
�

φdx =
∫
�

φt dx =
∫
�

−λMφ(
√

2ε|∇φ| − (1 − φ2))

ε2
dx �= 0.

Thus, Eq. (16) does not precisely conserve the mass. However, as mentioned the above, when the phase-field across the interface

is a hyperbolic tangent profile, |∇φ| is equal to (1 − φ2)/(
√

2ε). The rate of convergence for the total mass conservation in Eq.

(16) is reduced. Furthermore, by inspection of Eq. (15), both terms force the interface to be a hyperbolic tangent profile. The first

term is to compare the difference between the left side and right side of Eq. (12). The other term is related to diffusion. To achieve

total mass conservation and only consider the diffusion effect of the interface, we ignore the second term in Eq. (16) and propose

the new modified CH equation given in Eq. (7).

Note that by using Eq. (16), the total free energy E(φ) does not strictly decrease in time because ECH(φ) and EF (φ) are min-

imized in different spaces. Furthermore, Eq. (7) does not force the total energy to be nonincreasing. In fact, to preserve mass

conservation and minimize ECH(φ), a fourth-order derivative function in the Ḣ−1-gradient flow of the total free energy E(φ) is

obtained. However, special care should be taken when discretizing the more complex fourth-order derivative term.

Together with the continuity, phase-field equations, and Navier–Stokes equations, the non-dimensional governing equations

are

ρ(φ)(ut + u · ∇u) = −∇p + 1

Re
∇ · (η(φ)(∇u + ∇uT )) + 1

We
SF + ρ(φ)

Fr
g, (17)

∇ · u = 0, (18)
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Fig. 3. (a) φ and p are defined at the cell center. u and v are defined at the cell edges. (b) Computational polygonal area A(φ) with boundary points Xl = (Xl ,Yl)

that are located on the zero level of the phase fields, i.e., A(φ) = ∑N
l=1 (XlYl+1 − Yl Xl+1)/2.
φt + ∇ · (φu) = 1

Pe
�μ + λ

Pe

(
�φ − 1√

2ε
∇ ·

(
(1 − φ2)

∇φ

|∇φ|
))

, (19)

μ = φ3 − φ − ε2�φ. (20)

The dimensionless parameters are the Reynolds number, Re = ρcUcLc/ηc, the Weber number, We = ρcLcU
2
c /σ, the Frounde num-

ber, Fr = Uc/
√

Lcg, and the Peclet number, Pe = UcLc/(Mμc), where Lc is the characteristic length that is taken to be the shortest

length of the problem domain in the axial direction, Uc is the characteristic velocity, ρc and ηc are the characteristic density and

viscosity, respectively, defined as those of fluid 1, i.e., ρc = ρ1 and ηc = η1, and g = (0, −1) is the gravitational acceleration.

3. Numerical method

An efficient approximation is obtained by decoupling the solution of the momentum equations from the solution of the con-

tinuity equation using a projection method [52–54]. We focus on describing this idea in two-dimensional space. The extension

to axisymmetric and three-dimensional domains is straightforward. The staggered marker-and-cell (MAC) mesh of Harlow and

Welch [55] is used; in this mesh, the pressure and phase fields are stored at the cell centers, and the velocities are stored at cell

interfaces (see Fig. 3(a)).

Let φn
i j

be an approximation to φ(xi, yj, n�t), where xi = (i − 0.5)h, y j = ( j − 0.5)h, h is the space step, and �t is the time

step. The cell vertices are located at (x
i+ 1

2
, y

j+ 1
2
) = (ih, jh). The discrete differentiation operators are

Dxφi+ 1
2 , j = (φi+1, j − φi j)/h, Dyφi, j+ 1

2
= (φi, j+1 − φi j)/h,

where ∇dφi j = (Dxφi+ 1
2

, j
, Dyφi, j+ 1

2
) represents the discrete gradient of φ at the cell edges. The discrete divergence operator is

defined at cell-center points using values from the cell edges

∇d · (u, v)i j = (ui+ 1
2 , j − ui− 1

2 , j)/h + (vi, j+ 1
2

− vi, j− 1
2
)/h.

The discrete five point Laplacian operator (�d) and nine point Laplacian operator (�e
d
) can now be defined as

�dφ
n+1
i j

= (φi+1, j + φi−1, j + φi, j+1 + φi, j−1 − 4φi j)/h2,

�e
dφ

n+1
i j

= (φn+1
i+1, j+1

+ φn+1
i+1, j−1

+ φn+1
i−1, j+1

+ φn+1
i−1, j−1

+ 4φn+1
i, j−1

+ 4φn+1
i, j+1

+ 4φn+1
i+1, j

+ 4φn+1
i−1, j

− 20φn+1
i j

)/(6h2).

We define the total mass, m(φ) and the polygonal area, A(φ) by

m(φ) =
Nx∑

i=1

Ny∑
j=1

φi jh
2 and A(φ) =

M∑
l=1

(XlYl+1 − YlXl+1)/2,

where (XM+1,YM+1) = (X1,Y1). Here (Xl, Yl) for l = 1, . . . , M are the points that are located on the zero level of the phase fields

(see Fig. 3(b)). We obtain these points using the ‘contour’ commend in MATLAB. At the beginning of each time step, given un, φn,

and pn, we want to find un+1, φn+1, and pn+1 that solve the following temporal discretization of dimensionless form of motion
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Eqs. (17)–(20):

ρn un+1 − un

�t
= −ρn(u · ∇du)

n − ∇d pn+1 + 1

We
SFn + ρn

Fr
g + 1

Re
∇d · (η(φ)(∇du + ∇duT ))n, (21)

∇d · un+1 = 0,

φn+1
i j

− φn
i j

�t
= 1

Pe
�e

dμ
n+1
i j

− ∇d · (φu)n + λ

Pe

(
�e

dφ
n − 1√

2ε
∇̃c

d ·
(

(1 − φ2)
∇c

d
φ

|∇c
d
φ|

)n)
, (22)

μn+1
i j

= (φn
i j)

3 − 3φn
i j + 2φn+1

i j
− ε2�e

dφ
n+1
i j

. (23)

The surface tension force SF is discretized as

SF(φi j) = −3
√

2ε

4
∇̃c

d ·
(

m

|m|
)

i j

|∇̃c
dφi j|∇̃c

dφi j.

Note that m = ∇c
d
φ is a gradient vector at the cell corner, and ∇̃c

d
φi j is the gradient vector at grid ij from the cell corner. To

discretize the surface tension term, we use nine point terms from the vertex-centered normals:

∇̃c
d ·

(
m

|m|
)

i j

= 1

2h

(
mx

i+ 1
2 , j+ 1

2

|mi+ 1
2 , j+ 1

2
| +

mx
i+ 1

2 , j− 1
2

|mi+ 1
2 , j− 1

2
| −

mx
i− 1

2 , j+ 1
2

|mi− 1
2 , j+ 1

2
| −

mx
i− 1

2 , j− 1
2

|mi− 1
2 , j− 1

2
|

+
my

i+ 1
2 , j+ 1

2

|mi+ 1
2 , j+ 1

2
| +

my

i− 1
2 , j+ 1

2

|mi− 1
2 , j+ 1

2
| −

my

i+ 1
2 , j− 1

2

|mi+ 1
2 , j− 1

2
| −

my

i− 1
2 , j− 1

2

|mi− 1
2 , j− 1

2
|

)
,

where m
i+ 1

2
, j+ 1

2
is the normal vector at the top right vertex of cell (i, j), which is given by

mi+ 1
2 , j+ 1

2
= (mx

i+ 1
2 , j+ 1

2

, my

i+ 1
2 , j+ 1

2

) =
(

φi+1, j + φi+1, j+1 − φi j − φi, j+1

2h
,
φi, j+1 + φi+1, j+1 − φi j − φi+1, j

2h

)
.

The other normal vectors are defined in a similar manner. Then, ∇̃c
d
φi j can be computed as the average of the vertex gradient

vector,

∇̃c
dφi j =

(
mi+ 1

2 , j+ 1
2

+ mi+ 1
2 , j− 1

2
+ mi− 1

2 , j+ 1
2

+ mi− 1
2 , j− 1

2

)
/4.

Furthermore, the unit normal vector is defined by ni j = ∇̃c
d
φi j/|∇̃c

d
φi j|. In a similar way, the last term of Eq. (22) at the cell centers

from the vertex-centered normals is calculated by

∇̃c
d ·

(
(1 − φ2)

∇c
d
φ

|∇c
d
φ|

)
i j

= 1

2h

(
(1 − φ2

i+ 1
2 , j+ 1

2

)
mx

i+ 1
2 , j+ 1

2

|mi+ 1
2 , j+ 1

2
| + (1 − φ2

i+ 1
2 , j− 1

2

)
mx

i+ 1
2 , j− 1

2

|mi+ 1
2 , j− 1

2
|

−(1 − φ2
i− 1

2 , j+ 1
2

)
mx

i− 1
2 , j+ 1

2

|mi− 1
2 , j+ 1

2
| − (1 − φ2

i− 1
2 , j− 1

2

)
mx

i− 1
2 , j− 1

2

|mi− 1
2 , j− 1

2
|

+(1 − φ2
i+ 1

2 , j+ 1
2

)
my

i+ 1
2 , j+ 1

2

|mi+ 1
2 , j+ 1

2
| + (1 − φ2

i− 1
2 , j+ 1

2

)
my

i− 1
2 , j+ 1

2

|mi− 1
2 , j+ 1

2
|

−(1 − φ2
i+ 1

2 , j− 1
2

)
my

i+ 1
2 , j− 1

2

|mi+ 1
2 , j− 1

2
| − (1 − φ2

i− 1
2 , j− 1

2

)
my

i− 1
2 , j− 1

2

|mi− 1
2 , j− 1

2
|

)
,

where φ
i+ 1

2
, j+ 1

2
= (φi j + φi+1, j + φi, j+1 + φi+1, j+1)/4, and the other terms are similarly defined. Note that since the last term

in Eq. (22) is a fitting term, the same points should be used for the Laplacian operator and divergence operator to reduce nu-

merical errors. Since we are interested in long time simulations, mass conservation is an important factor. Therefore, we use a

conservative discretization of the convective part of the phase-field equation in Eq. (22).
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2h
.

At the beginning of each time step, given un and φn, we want to find un+1, pn+1, and φn+1 by solving the following discretized

equations in time with a projection method.
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The outline of the main procedure in one time step is as follows:

Step 1. Initialize φ0 and u0, the divergence-free velocity field.

Step 2. Solve an intermediate velocity field ũ without the pressure gradient term,

ρn ũ − un

�t
= −ρnun · ∇dun + 1

Re
�dun + 1

We
SFn + ρn

Fr
. (24)

Step 3. Solve the Poisson equation for the pressure,

∇d ·
(

1

ρn
∇d pn+1

)
= 1

�t
∇d · ũ. (25)

The resulting linear system of Eq. (25) is solved using a multigrid method [56]. Note that Eq. (25) can be derived by applying the

divergence operator to Eq. (26), which is divergence-free:

ρn un+1 − ũ

�t
= −∇d pn+1. (26)

Step 4. Update the divergence-free velocity:

un+1 = ũ − �t

ρn
∇d pn+1. (27)

Step 5. Implement the proposed numerical scheme in Eqs. (22) and (23) with a nonlinear multigrid method. For a detailed

description of the numerical method used to solve these equations, please refer to [57,58]. Steps 1–5 complete one time step.

To satisfy the mass conservation property, i.e.,
∑Nx

i=1

∑Ny

j=1
φn+1

i j
= ∑Nx

i=1

∑Ny

j=1
φn

i j
, we require

0 =
Nx∑

i=1

Ny∑
j=1

φn+1
i j

− φn
i j

�t

=
Nx∑

i=1

Ny∑
j=1

(
�e

dμ
n+1
i j

+ λ

(
�e

dφ
n − 1√

2ε
∇̃c

d ·
(

(1 − φ2)
∇c

d
φ

|∇c
d
φ|

)n))
. (28)

For h2
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where Eq. (22) and telescoping cancelation are used. h2
∑Nx

i=1
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j=1
�e

d
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i j
= 0 can be proved in a similar manner.
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Because of the Neumann boundary condition for φ, mx

Nx+ 1
2

, j+ 1
2

is zero, and the other terms can be similarly defined. This yields

the mass conservation property, which is summarized in Eq. (28).

4. Numerical results

We performed several numerical simulations to demonstrate the performance of our proposed scheme. In particular, we

considered translation of a drop, an equilibrium solution with two drops, a convergence test, drops under shear flow, falling



Y. Li et al. / Commun Nonlinear Sci Numer Simulat 30 (2016) 84–100 91

0 1 2 3 4
−1

0

1

x

y

t = 0 t = 2.5

0 1 2 3 4
−1

0

1

x

y

t = 0 t = 2.5

0 1 2 3 4
−1

0

1

x

y

t = 0 t = 2.5

(a)
0 1 2 3 4

−1

0

1

x

y

t = 0 t = 2.5

(b)

Fig. 4. Translation of a drop with three models. The top and bottom rows are the results from using Eqs. (29) and (30), respectively. (a) Comparison between the

zero level of the phase field (line) and exact solution (circle). A constant velocity u = (u, v) = (1, 0) is used. Note that the exact solution at time t is defined as

(0.2 cos (2π l/N) + 0.25 + t, 0.2 sin (2π l/N)), where l is 1, 2, . . . , N = 400. (b) Contours are from −0.9 to 0.9 and the lines represent the phase field at plane y = 0.
droplets, and the Rayleigh-instability problem. Across the interfacial region, the concentration field varied from −0.9 to 0.9 over

a distance of approximately 2
√

2ε tanh
−1 (0.9). We used ε = εm = hm/[2

√
2 tanh

−1 (0.9)], i.e., there were approximately m grid

points in the interfacial transition layer.

4.1. Translation of a drop

We consider a translation of a drop with the following two models:

φt + ∇ · (φu) = 1

Pe
�μ, (29)

φt + ∇ · (φu) = 1

Pe
�μ + λ

Pe

(
�φ − 1√

2ε
∇ ·

(
(1 − φ2)

∇φ

|∇φ|
))

. (30)

The initial shape is defined as φ(x, y, 0) = tanh ( 0.5−
√

(x−0.75)2+y2√
2ε

), on the domain (0, 4) × ( − 1, 1). A constant velocity u =
(u, v) = (1, 0) is given. Furthermore, the parameters h = 1/128, ε5 ≈ 0.00938, Pe = 1/ε5, and λ = 0.1/ε5 are used. We run the

simulations up to time t = 2.5 with a time step �t = 5h2. A comparison of the two models is shown in Fig. 4. The top and bottom

rows are the results from using Eqs. (29) and (30), respectively. In Fig. 4(a), we compare the models to the exact solution. Note

that the exact solution at time t is defined as (Xl ,Yl) = (0.5 cos (2π l/N) + 0.75 + t, 0.5 sin (2π l/N)), where l is 1, 2, . . . , N and

N = 400. Both the CH model and our proposed method yield good results. However, as shown in Fig. 4(b), by using the CH model,

the values of φ are slightly larger than 1 or smaller than −1 due to the large time step or high velocity. On the other hand, our

proposed model completely eliminates numerical errors.

4.2. Effect of parameter λ

In this section, we study the effect of parameter λ in Eq. (30) on the dynamics of a translating droplet with λ = 1/ε5, 0.1/ε5,

0.01/ε5 and �t = 0.5h2. The other parameters and initial condition are the same as those in Section 4.1. To compare the exact

solution with the numerical solutions obtained by using different values of λ at time t = 2.5, we put them together in Fig. 5. In

the case of λ = 1/ε5, the drop does not preserve a circular shape. The reason is likely that the larger λ leads to reduce the effect

of the CH equation, because |∇φ| is approximately, but not exactly, equal to (1 − φ2)/(
√

2ε) in Eqs. (7) and (12). The CH equation

reduces these differences as evidenced by the definition of ECH(φ). Furthermore, theoretically, φ should be in [−1, 1]; however,

this may be violated when the advection term is added. If φ is much larger than 1 or smaller than −1, the second term in Eqs.

(7) and (10) does not force φ to be 1 or −1, since both 1 − φ2 and −|∇φ| are negative. Thus, the CH equation should be used to

force φ to be 1 or −1. In the case of λ = 0.01/ε5, the accuracy is slightly lower than that obtained by using λ = 0.1/ε5.

Furthermore, we investigate the effect of λ on the results with different Pe and ε. All parameters is the same as above except

the value of parameters for λ, Pe and ε. Table 1 shows the l2-norm errors with λ = 1/ε, 0.1/ε, 0.01/ε and Pe = 10/ε, 1/ε, 0.1/ε.

Here ε = ε5 is fixed. The discrete l2-norm of error is defined as

√
1
N

∑N
l=1 (

√
(Xl − 3.25)2 + Y 2

l
− 0.5)2, where Xl and Yl are nu-
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Fig. 5. Mesh plots of φ obtained using λ = 0.01/ε5, 0.1/ε5, and1/ε5 at time t = 2.5. (a) Whole view. (b) and (c) Closeup views.

Table 1

l2-norm errors with various λ and Pe. Here ε = ε5 is fixed.

Case λ = 1/ε λ = 0.1/ε λ = 0.01/ε

Pe = 10/ε 8.395E−3 6.671E−3 1.030E−2

Pe = 1/ε 5.288E−3 2.404E−3 5.941E−3

Pe = 0.1/ε 7.572E−3 5.753E−3 9.697E−3
merical results. From Table 1 we can see that the larger Pe or smaller Pe will low the accuracy of numerical solutions. For a fixed

Pe, λ = 0.1/ε is a better choice than 1/ε and 0.01/ε.

Fig. 6 (a) shows the l2 normal errors at time t = 2.5 with different ε = ε3, ε5, ε8, and ε10. For a chosen ε, we perform the

numerical experiments with five different values λ = 1/ε, 0.5/ε, 0.1/ε, 0.05/ε, and 0.01/ε. The solid lines in Fig. 6(a) are poly-

nomial fittings of data points and the circle symbol denotes the minimal l2 errors obtained from the polynomial fitting profile.

For a chosen ε, we also can find the best value of λ, which corresponds to circle symbol. Fig. 6(b) shows the fitting plot of the

approximate best value of λ and 1/ε. To compare with the profile of λ = 0.1/ε, we put them together. We can see that the values

are similar for small ε, but deviate significantly for large ε. Also note that for much larger ε may give unphysical values of surface

tension because the thickness ε should be small and theoretically approach to zero. For the rest of the paper, we will simply use

λ = 0.1/ε.

4.3. Equilibrium solution with two drops

We consider the equilibrium solution for two drops without fluid. The initial shape is defined as

φ(x, y, 0) = tanh

(
0.2 −

√
(x − 0.3)2 + (y − 0.5)2

√
2ε

)
+ tanh

(
0.1 −

√
(x − 0.75)2 + (y − 0.5)2

√
2ε

)
+ 1,

on the domain (0, 1) × (0, 1). The parameters h = 1/128, �t = 0.1h2, ε5, and Pe = 1 are used. Fig. 7 shows the zero contour plots

of the phase field, which are obtained by the CH model and our proposed model. Clearly, by using the CH model, the small drop

shrinks and the large one grows. This is because the CH model was originally proposed to simulate the spinodal decomposition

of a binary mixture [59]. Spinodal decomposition is a mechanism by which a solution of two or more components separates

into different phases. The CH model works by shifting the interface of two divided drops as shown in Fig. 7(a). In the absence of

viscous, gravitational, surface tension force, or other external forces, the divided drops are gathered together, which is perfectly
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Fig. 7. Mesh plots of the phase-field profiles for the CH equation (a) and proposed equation (b). The whole view is on the left, and the plane view is on the right.
permissible within the CH framework but would be impossible in the physical context. On the other hand, with the interface

correction term, the two divided drops remain as shown in Fig. 7(b).

Fig. 8 shows comparison of total energy obtained by the CH model and our proposed method. Note that for better visualization

purposes, we multiply EF by 100 (see solid line). With the original CH equation, the total energy ECH is decreasing in time. The

total energy is generally reduced by shrinking the bulk φ and shifting the location of the interface. While our propose model

forces the interfacial profile to remain a hyperbolic tangent profile. Thus in this numerical test, the total energy ECH obtained by

our proposed method is almost constant and the two divided drops remain.
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Fig. 9. A rotated disk by background fluids flows. (a) Evolution of the disk, where the velocity field and drop coincide. (b) Convergence of the numerical results

with refined spatial and temporal grids.

Table 2

Error and convergence results with various mesh grids and time steps (�t = h2).

Case 128 × 128 256 × 256 512 × 512

Proposed method: l2-error 2.746E−2 6.334E−3 1.602E−3

Proposed method: rate 2.11 1.98

Original CH : l2-error 7.335E−2 2.012E−2 5.125E−3

Original CH : rate 1.87 1.97
4.4. Convergence test

To obtain an estimate of the convergence rate, we perform a number of simulations on a set of increasingly finer grids h = 1/2n

for n = 6, 7, and 8 on the domain � = (0, 1) × (0, 1). We consider the passive advection of a disk by the background velocity field,

such as

u = (u, v) = (16π(y − 0.5),−16π(x − 0.5)). (31)

The disk with radius 0.1 is centered at (0.5, 0.3). The other parameters are set as ε5 and �t = h2. The circle is returned to its initial

position by inverting the velocity field at time t = 1/8. Note that the circle should not change its shape as a result of the rotation.

Fig.9(a) illustrates the evolution of the drop by the background fluid flow. In Fig. 9(b), we compare the results obtained using

different mesh grids at time t = 1/4. By observation, the convergence of the results under spatial and temporal refinements is

evident.

We define the error of a grid as the discrete l2-norm of the difference between the numerical solution and the exact solution

as follows: ehi j := φhi j − φh
0
i j . The rate of convergence is defined as the ratio of successive errors: log2 (‖eh‖2/‖e h

2

‖2). Since we

refined the spatial and temporal grids by a factor of 4 and 2, respectively, the ratio of successive errors increases by a factor of 2.

The errors and rates of convergence obtained using these definitions are given in Table 2. Second-order accuracy with respect to

space and first-order accuracy with respect to time is observed, as expected from the discretization. To compare with the original
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Fig. 11. Drop shape under shear flow obtained by the CH model and the proposed model at time t = 2.44. (a) CH model, (b) Proposed model. The contours are

from −0.9 to 0.9 for (a) and (b). (c) Overlay of both results at the zero level. (d) Plots of φ(x, 0.6) obtained by two mentioned methods. (e) Normalized polygonal

area with the CH model and proposed model.
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Fig. 12. Comparison between delta functions δ and δ̄. (a) Zero contour of φ at time 2.44. (b) Plots of φ(x, 0.6). (c) Temporal evolution of the normalized polygonal

areas.
CH model, we put them together in Table 2. These results suggest that the numerical scheme for the original CH model is indeed

second order accurate in space. While its l2-error compared with our proposed method is higher.

4.5. Drops under shear flow

Next, we investigate the deformation of drops under shear flow. The top moves to the right with velocity u and the bottom

moves to the left with velocity −u in the computational domain � = (0, H) × (0, H). Fig. 10 shows a schematic illustration of the

initial condition.

We begin with a drop of radius 0.15 positioned at the center of the computational domain � = (0, 1) × (0, 1). In this simula-

tion we take the following parameters: Re = 50, We = 100, Pe = 1/ε5, and u = 1. The ratios of the density and viscosity are both

equal to 1. A mesh size of 128 × 128 and a time step of �t = 5h2 are used. Fig. 11 shows the drop shape under shear flow obtained

by the CH model and proposed model at time t = 2.44. In Fig. 11 (a) and (b), the contours of the phase field are from −0.9 to 0.9.

Observing the results in Fig. 11(b), the interface profile at the droplet ends are not uniform because of the high velocity. Thus,

the surface tension increases as the interface thins but decreases as the interface thickens. To force the interface to be uniform,

the CH diffusion effect, i.e., the motion by minus the Laplacian of the mean curvature is added in a non-physical context. Thus,

the droplet ends obtained by the original CH model are shorter compared to our proposed method as shown in Fig. 11 (c). Due

to the large time step or high velocity at the tip of drop, by using the CH model φ inside and outside of drop are significantly

smaller than −1 and 1, respectively, as shown in Fig. 11 (d). However with our proposed method, φ remains in [−1, 1]. In Fig. 11

(e), we show the area change with two methods. As can be seen that though two methods hold mass conservation property on

the whole domain, the area A(φ) obtained by the CH model is not conserved. On the other hand, approximate mass conservation

for the zero level is achieved using our proposed method.

Since the used delta function δ = εα|∇φ|2 scales with interface thickness, it may be not accurate if the interface profile

deviates from the desired tanh-profile. Here, we will consider a delta function δ̄ = 0.5|∇φ|, which scales independent of interface

thickness. All parameters and initial condition are the same as the above test except δ̄. Fig. 12 shows the comparison between

delta functions δ and δ̄. From these results, we can see that the result obtained by delta function δ̄, which is independent of

interface thickness, is more accurate than that from δ.

4.6. Falling droplet

In this section, we consider two falling droplets. A smaller drop with radius r = 0.05 is positioned at (0.5, 2.9) and a large

bubble with radius r = 0.15 is set at (0.5, 2.3) in the computational domain � = (0, 1) × (0, 3). The densities are ρ1 = 1 and

ρ2 = 3. The other parameters are defined as following: ε5, Re = 50, Pe = 1/ε5, Fr = 1, h = 1/128, and �t = 5h2. To simulate

the falling droplets, we use periodic boundary condition to the vertical boundaries and a no slip boundary condition to the top
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Fig. 15. A schematic illustration of the Rayleigh-instability problem.
and bottom boundaries. Fig. 13 shows that the drops fall due to buoyancy. To compare our proposed model with the CH model,

we put the results from the two models together. The solid and dashed lines are the results obtained by the CH model and the

proposed model, respectively. We can observe that the proposed model is better in preserving the area of the smaller droplet.

Fig. 14 shows the comparison of the polygonal areas from two methods. We can see that by using the CH model, the polygonal

area losses for the large and small drops are as large as 10.0% and 57.2%, respectively. On the other hand, our proposed method

significantly reduces the polygonal area loss.

4.7. Rayleigh-instability problem

Surface tension causes a fluid to have as little surface area as possible for a given volume. A long slender column of liquid

reduces its surface area by breaking up into a series of small droplets, which have less surface area than the cylinder [31].

This effect is known as Rayleigh-instability [60]. In this section, we consider a long cylindrical shape and simulate it in the

axisymmetric domain. A schematic illustration of the Rayleigh-instability problem is shown in Fig. 15.
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Fig. 16. Evolution of the Rayleigh-instability problem. (a) CH model. (b) Our proposed model. From top to bottom, the dimensional times are t = 0, 0.45, 0.75, 1.2,

and, 2.85.
The initial phase field and velocity fields are given by

φ(r, z, 0) = tanh

(
r − 0.5 − 0.05 cos (z)√

2ε

)
,

u(r, z, 0) = 0.

on the domain, � = {(r, z)|0 ≤ r ≤ π and 0 ≤ z ≤ 2π} with 128 × 256 mesh grids. For this computation, we choose the param-

eters: ε5, Re = 0.5, We = 0.01, Pe = 1/ε5, �t = 0.05h2, viscosity ratio 0.25 and density ratio 1. The interface profiles obtained

by the CH model and our proposed model are shown in Fig. 16. The zone of the minimum moves symmetrically off the center

(z = π ), giving rise to satellite drops. These satellite drop formations can be attributed to the nonlinear terms in the equations of

motion [61]. From Fig. 16(b), notice that by using our proposed method, the smaller drops rise from the effect of surface tension

and remain with long-time evolution. On the other hand, the divided smaller drops disappear when the CH equation is used. It is

well-known that the CH equation describes the process of phase separation, by which two components of a binary fluid sponta-

neously separate and form in each component [1,59]. Thus, it is difficult to maintain divided smaller drops with the original CH

equation.

5. Conclusions

In this paper, we presented a new phase-field fluid model and computation with minimized CH dynamics. The new modified

CH model was proposed with an interface correction term to force the interface profile to be a hyperbolic tangent function. As

we mentioned in Section 1, there are three drawbacks of the standard method. An interface with a hyperbolic tangent profile

is important because of the surface tension formulation. Under the advection of flow, the interface of two phases may be not a

hyperbolic tangent profile. To enforce the interface to be uniform, the CH diffusion effect, i.e., the motion by minus the Laplacian

of the mean curvature will be added in the non-physical context. Even though the original CH dynamics conserves the total mass,

the conservation of the enclosed area obtained by its interface can not remain. Several numerical examples such as translation

of a drop, an equilibrium solution with two drops, a convergence test, drops under shear flow, falling droplets, and the Rayleigh-

instability problem were presented to demonstrate that our present method reduce these three drawbacks. As a future research

work, it would be interesting to investigate the effect of surface tension formula on the fluid dynamics.
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