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Abstract We present a projection method for the conservative discretizations of parabolic
partial differential equations. When we solve a system of discrete equations arising from the
finite difference discretization of the PDE, we can use iterative algorithms such as conjugate
gradient, generalized minimum residual, and multigrid methods. An iterative method is a
numerical approach that generates a sequence of improved approximate solutions for a system
of equations. We repeat the iterative algorithm until a numerical solution is within a specified
tolerance. Therefore, even though the discretization is conservative, the actual numerical
solution obtained froman iterativemethod is not conservative.Wepropose a simple projection
method which projects the non-conservative numerical solution into a conservative one by
using the original scheme. Numerical experiments demonstrate the proposed scheme does
not degrade the accuracy of the original numerical scheme and it preserves the conservative
quantity within rounding errors.

Keywords Projection method · Conservative discretization · Iterative methods

1 Introduction

There aremany conservative parabolic partial differential equations such as diffusion equation
and the Cahn–Hilliard equation [1–3]. In those equations, conservation is important, i.e., the
conservation of total mass. It is generally known that the conservative schemes are better than
the nonconservative ones [4]. For some cases, the nonconservative schemes can generate
blow-up of the numerical solution. Authors in [5–19] used conservative finite difference
schemes for
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– Nonlinear Schrödinger equation [5–9]: iUt +Uxx + a|U |2U = 0,
– Regularized long wave equation [10]: Ut +Ux + βUUx − γ 2Uxxt = 0,
– Sine–Gordon equation [11]: Utt −Uxx + sinU = 0,
– Klein–Gordon equation [12]: Utt −Uxx + f (U ) = 0,
– Zakharov equation [13,14]: iUt −Uxx − NU = 0, Ntt − (N + |U |2)xx = 0,
– Cahn–Hilliard equation [15–18]: ct = �μ, μ = c3 − 3

2c
2 + 1

2c − ε2�c,
– Convective Cahn–Hilliard equation [19]: ct + ∇ · (cu) = 1

Pe∇ · (M(c)∇μ),

μ = c3 − 3
2c

2 + 1
2c − ε2�c.

To numerically approximate the solution of the equations, we normally use iterative
methods such as Jacobi [20], Gauss–Seidel [20], successive over relaxation [20], multigrid
[21–24], conjugate gradient [20], GMRES (Generalized Minimal Residual) [25] methods. In
the iterative methods, we iterate an algorithm until the norm of the residual reaches within
a given tolerance and then we define the final solution as the next time step solution. We
also use the norm of the difference of the consecutive solutions instead of the residual. Typ-
ically, the given tolerance is much larger than the rounding errors. Therefore, the numerical
approximation does not satisfy the discrete system of equations within rounding errors. In
that sense, most conservative schemes with iterative methods are in fact not conservative. The
main purpose of this paper is to propose a conservative projection scheme for existing con-
servative schemes. The proposed scheme conserves conservative quantities within rounding
errors.

This paper is organized as follows. In Sect. 2, we proposed a projection method for
conservative numerical schemes. In Sect. 3, we present several numerical results showing the
performance of the proposed scheme with the heat equation and the Cahn–Hilliard equation.
Then, we summarize our results in Sect. 4.

2 Conservative Projection Scheme

For simplicity of exposition, we consider a one-dimensional diffusion equation on a unit
domain.

ut (x, t) = uxx (x, t), 0 < x < 1, t > 0, (1)

with the homogeneous Neumann boundary condition

ux (0, t) = ux (1, t) = 0, t > 0 (2)

and initial conditions u(x, 0), 0 ≤ x ≤ 1. For the solution u of the diffusion equation (1)
with the boundary condition (2), the following conservation property holds

d

dt

∫ 1

0
u(x, t)dx =

∫ 1

0
ut (x, t)dx =

∫ 1

0
uxx (x, t)dx = ux (1, t) − ux (0, t) = 0.

We want to point out that our results can be extended to more general parabolic partial
differential equations. Let us first discretize the given computational domain Ω = (0, 1)
with a uniform space step h = 1/Nx and a time step �t = T/Nt . Here, Nx and Nt are the
number of grid points in the x- and t-direction, respectively. Furthermore, let us denote the
numerical approximation of the solution by uni ≡ u(xi , tn) = u ((i − 0.5)h, n�t) , where
i = 1, . . . , Nx and n = 0, . . . , Nt . The backward-time central-space difference scheme for
the diffusion equation (1) is
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un+1
i − uni

�t
= �du

n+1
i = un+1

i−1 − 2un+1
i + un+1

i+1

h2
, 1 ≤ i ≤ Nx . (3)

The homogenous Neumann boundary condition (2) is discretized as

un+1
0 = un+1

1 , un+1
Nx+1 = un+1

Nx
. (4)

This scheme is second-order accurate in space and first-order in time. We rewrite Eq. (3) as

− αun+1
i−1 + (1 + 2α) un+1

i − αun+1
i+1 = uni , 1 ≤ i ≤ Nx , (5)

whereα = �t/h2. Then, we can represent the system of discrete equation (5) in matrix form
as

Aun+1 = un, (6)

where u = (u1, . . . , uNx )
T and A is a tridiagonal matrix constructed from Eq. (5) with the

homogeneous Neumann boundary condition, i.e.,

A =

⎛
⎜⎜⎜⎜⎜⎝

1 + α −α 0
−α 1 + 2α −α

. . .
. . .

. . .

−α 1 + 2α −α

0 −α 1 + α

⎞
⎟⎟⎟⎟⎟⎠

.

We can directly solve Eq. (6) by using the Thomas algorithm [20] and have a solution
exactly up to a machine precision or rounding errors. While the discrete system of Eq. (5)
can be solved by a direct method such as the Thomas algorithm, we consider an iterative
solver to illustrate our projection method. Although many iterative methods are available,
among them we choose a Gauss–Seidel (GS) iteration since it is one of simplest iterative
methods. Let un+1,0 = un be an initial guess. In the GS iteration, for m = 1, . . . , we iterate
the following algorithm until the updated solution converges under a specific condition:

un+1,m
1 =

(
un1 + αun+1,m−1

2

)
/(1 + α),

un+1,m
i =

[
uni + α

(
un+1,m
i−1 + un+1,m−1

i+1

)]
/(1 + 2α), 2 ≤ i ≤ Nx − 1,

un+1,m
Nx

=
(
unNx

+ αun+1,m
Nx−1

)
/(1 + α). (7)

If it converges, then we define un+1 = un+1,m .
Let r = (r1, . . . , rNx )

T be the residual vector for un+1 with respect to Eq. (3), i.e,

ri = un+1
i − uni

�t
− un+1

i−1 − 2un+1
i + un+1

i+1

h2
, 1 ≤ i ≤ Nx , (8)

where ri is a residual error, that is the magnitude by which the approximation un+1 fails to
satisfy the original problem (3). We define the discrete l2-norm and the maximum norm as

‖r‖2 =
√√√√ Nx∑

i=1

r2i /Nx , ‖r‖∞ = max
1≤i≤Nx

|ri |. (9)

However, the numerical approximation from the iterative method has non-zero residual
vector r despite use of conservative scheme.
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Therefore, in this paper, we propose the following projection method for the conservative
schemes: Letu∗ be a numerical solution from an iterativemethod for the discrete equation (3),
then it satisfies the following equation: (u∗

i − uni )/�t ≈ �du∗
i , 1 ≤ i ≤ Nx . Typically, we

do not keep the iteration until the residual norm reaches rounding errors. Instead, we iterate
it until the error is within a tolerance. Then, we define the conservative numerical solution
un+1 as

un+1
i = uni + �t�du

∗
i , 1 ≤ i ≤ Nx , (10)

where we applied the homogeneous Neumann boundary condition, i.e., u∗
0 = u∗

1, u
∗
Nx+1 =

u∗
Nx
. Summing Eq. (10) from 1 to Nx , we have

Nx∑
i=1

un+1
i =

Nx∑
i=1

(uni + �t�du
∗
i ) = −u∗

1 − u∗
0

h2
+ u∗

Nx+1 − u∗
Nx

h2
+

Nx∑
i=1

uni =
Nx∑
i=1

uni ,

where we have used the discrete homogeneousNeumann boundary conditions (4). Therefore,
the proposed conservative projection method is indeed numerically conservative. For the
conservative numerical schemes of the general parabolic equations, we can straightforwardly
define the conservative projection method.

3 Numerical Experiments

In this section, we report numerical experiments demonstrating the good conservation prop-
erty of our proposed conservative projection method. Unless otherwise specified, we use a
unit domain Ω = (0, 1).

3.1 Convergence Test

As the first numerical experiment, we perform convergence tests. The numerical scheme for
the diffusion equation (3) is second-order accurate in space and first-order accurate in time.
To obtain an estimate of the rate of convergence, we perform a number of simulations for
a sample initial problem on a set of increasingly finer grids. First, we perform the spatial
convergence test. We compute the numerical solutions on uniform grids, h = 0.1/2n for
n = 0, 1, . . . , 7. For each case, we run the calculation up to time T = 500�t with a fixed time
step,�t = 10−9 and a tolerance, tol = 1.0e–11. The initial condition is u(x, 0) = cos(2πx).
Then, the analytic solution of Eq. (1) is ũ(x, t) = cos(2πx)e−4π2t . Let e be the error vector
with components ei = ũ(xi , T )−uNt

i . Tables 1 and 2 demonstrate the l2-norm andmaximum
norm errors and rates of convergence of Thomas algorithm, GS, and GS with projection,
respectively. The results show that the numerical schemes are second-order accurate in space.

Next, we perform the temporal convergence test.We fix the spatial step size as h = 0.0025
and we run the simulation up to time T = 0.1 with �t = 0.01/2n for n = 0, 1, . . . , 7. The
other parameters are the same to the space convergence test. The l2- and maximum norm
errors and rates of convergence are given in Tables 3 and 4, respectively. The results show that
the schemes are first-order accurate in time. From these spatial and temporal convergence
tests, we can confirm that the proposed conservative projection method does not degrade the
accuracy of the original numerical scheme.

We also consider the effect of the tolerance, tol, on the numerical soluts ions by the GS
and GS with projection scheme. Table 5 shows l2-norm error ‖e‖2, maximum norm error
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Table 1 l2-norm error and convergence rates for numerical solution at T = 500�t with respect to h

Thomas GS GS with projection

h ‖e‖2 Rate ‖e‖2 Rate ‖e‖2 Rate

0.10000000 4.5318e–07 4.5318e–07 4.5318e–07

0.05000000 1.1442e–07 1.9858 1.1442e–07 1.9858 1.1442e–07 1.9858

0.02500000 2.8675e–08 1.9964 2.8676e–08 1.9964 2.8676e–08 1.9964

0.01250000 7.1735e–09 1.9991 7.1735e–09 1.9991 7.1735e–09 1.9991

0.00625000 1.7939e–09 1.9996 1.7939e–09 1.9996 1.7939e–09 1.9996

0.00312500 4.4873e–10 1.9992 4.4887e–10 1.9987 4.4869e–10 1.9993

0.00156250 1.1235e–10 1.9979 1.1237e–10 1.9980 1.1238e–10 1.9973

0.00078125 2.8239e–11 1.9922 2.8335e–11 1.9877 2.8302e–11 1.9894

Here, we use �t = 10−9

Table 2 Maximum norm error and convergence rates for numerical solution at T = 500�t with respect to h

Thomas GS GS with projection

h ‖e‖∞ Rate ‖e‖∞ Rate ‖e‖∞ Rate

0.10000000 6.0953e–07 6.0953e–07 6.0953e–07

0.05000000 1.5982e–07 1.9312 1.5982e–07 1.9312 1.5982e–07 1.9312

0.02500000 4.0428e–08 1.9830 4.0428e–08 1.9830 4.0428e–08 1.9830

0.01250000 1.0137e–08 1.9957 1.0137e–08 1.9957 1.0137e–08 1.9957

0.00625000 2.5365e–09 1.9988 2.5365e–09 1.9987 2.5364e–09 1.9988

0.00312500 6.3458e–10 1.9989 6.3518e–10 1.9976 6.3451e–10 1.9991

0.00156250 1.5892e–10 1.9975 1.5892e–10 1.9988 1.5893e–10 1.9973

0.00078125 3.9992e–11 1.9905 4.0259e–11 1.9809 4.0025e–11 1.9894

Here, we use �t = 10−9

Table 3 l2-norm error and convergence rates for numerical solution with respect to �t

Thomas GS GS with projection

�t ‖e‖2 Rate ‖e‖2 Rate ‖e‖2 Rate

0.010000000 1.1732e–2 1.1732e–2 1.1732e–2

0.005000000 5.6212e–3 1.0615 5.6213e–3 1.0615 5.6212e–3 1.0615

0.002500000 2.7393e–3 1.0371 2.7393e–3 1.0371 2.7393e–3 1.0371

0.001250000 1.3507e–3 1.0200 1.3508e–3 1.0200 1.3507e–3 1.0200

0.000625000 6.7087e–4 1.0096 6.7089e–4 1.0096 6.7087e–4 1.0096

0.000312500 3.3470e–4 1.0032 3.3472e–4 1.0031 3.3470e–4 1.0032

0.000156250 1.6758e–4 0.9980 1.6759e–4 0.9980 1.6758e–4 0.9980

0.000078125 8.4262e–5 0.9919 8.4273e–5 0.9918 8.4262e–5 0.9919

Here, we use h = 0.0025 and T = 0.1

‖e‖∞, and total mass change M =
∣∣∣∑Nx

i=1 u
0
i − ∑Nx

i=1 u
Nt
i

∣∣∣ for numerical solutions at time

T with respect to tol. In this test, we use h = 5.0e–3, �t = 1.0e–4, and T = 0.1. Both
the methods generate more accurate results as tol decreases. However, Gauss–Seidel method
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Table 4 Maximum norm error and convergence rates for numerical solution with respect to �t

Thomas GS GS with projection

�t ‖e‖∞ Rate ‖e‖∞ Rate ‖e‖∞ Rate

0.010000000 1.6592e–2 1.6592e–2 1.6592e–2

0.005000000 7.9494e–3 1.0615 7.9495e–3 1.0615 7.9494e–3 1.0615

0.002500000 3.8738e–3 1.0371 3.8738e–3 1.0371 3.8738e–3 1.0371

0.001250000 1.9102e–3 1.0200 1.9102e–3 1.0200 1.9102e–3 1.0200

0.000625000 9.4872e–4 1.0096 9.4877e–4 1.0096 9.4872e–4 1.0096

0.000312500 4.7332e–4 1.0032 4.7336e–4 1.0031 4.7332e–4 1.0032

0.000156250 2.3699e–4 0.9980 2.3701e–4 0.9980 2.3699e–4 0.9980

0.000078125 1.1916e–4 0.9919 1.1918e–4 0.9918 1.1916e–4 0.9919

Here, we use h = 0.0025 and T = 0.1

Table 5 l2-norm error, maximum norm error, and total mass change for numerical solution at T with respect
to tol

GS GS with projection

tol ‖e‖2 ‖e‖∞ Mass loss ‖e‖2 ‖e‖∞ Mass loss

1.0e–3 3.0958e–1 4.4281e–1 2.1547e–3 5.8452e–4 2.4260e–3 1.0492e–16

1.0e–4 6.0997e–2 8.9848e–2 1.3709e–3 4.1592e–5 1.8559e–4 1.0922e–16

1.0e–5 4.6259e–3 7.2884e–3 3.0182e–4 9.0322e–5 1.2939e–4 1.4447e–16

1.0e–6 4.4400e–4 7.2683e–4 4.1756e–5 1.0961e–4 1.5511e–4 1.3864e–16

1.0e–7 1.3752e–4 2.0686e–4 4.9663e–6 1.1081e–4 1.5670e–4 1.0936e–16

1.0e–8 1.1315e–4 1.6144e–4 5.5875e–7 1.1090e–4 1.5682e–4 1.4759e–16

1.0e–9 1.1111e–4 1.5727e–4 6.0961e–8 1.1091e–4 1.5683e–4 1.3316e–16

Here, we use h = 5.0e–3, �t = 1.0e–4, and T = 0.1

results in change of the total mass and the proposed projection method conserves total mass
within rounding errors regardless of tol.

3.2 Stability Test

The proposed projection method consists of two steps. First step is to solve the governing
parabolic PDE by using an iterative algorithm. After then, we project the non-conservative
numerical solution into a conservative one by using the governing equation. The second step
is similar to the explicit Euler scheme. Now, we investigate a stability of numerical solution
by the proposed projection method. For simplicity of exposition, let us consider the one-
dimensional heat equation ut = �u. That is, the second step in the projection method is
given as

un+1 = un + �t�du
∗.

Here, u∗ denotes the numerical approximation of an implicit scheme,which is obtained by the
first step, not un . Since u∗ is evaluated by the iterative algorithm within a specified tolerance,
the value is nearly close to un+1. Therefore, it is different from the numerical solution from
the explicit scheme. The correction step does not have the same restriction of temporal
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Fig. 1 Temporal evolution of numerical solution by the proposed and explicit schemes with the stability
condition �t/h2. Here, we fix h = 0.01 and tol = 1.0e–5. Numerical results in a and b are obtained at
T = 900�t and T = 33�t , respectively. a �t/h2 = 0.51. b �t/h2 = 1

and spatial step sizes, unlike the explicit scheme. It is well known that the ratio �t/h2

should be smaller than 0.5 for stability of the numerical solution of the one-dimensional
heat equation ut = �u by the explicit scheme. Figure 1a, b show the temporal evolutions
of the numerical solutions by the proposed and explicit schemes with �t/h2 = 0.51 and
�t/h2 = 1, respectively. Here, we use h = 0.01 and tol = 1.0e–5. The initial condition is
set to u(x, 0) = 0.5+ cos(2πx). The results numerically demonstrate the proposed scheme
has better stability than the explicit scheme.

3.3 Comparison of Residual and Consecutive Errors

In this section, we perform comparison study of the residual and consecutive errors of the
Gauss–Seidel method. From the test results, we want to emphasize that unless we have
approximate solutions up to rounding errors of the residual norm, we lose the conservation
property even though we use conservative discretizations. With u0 = cos(2πx), h = 0.01,
�t = 0.01, and tol = 1.0e − 9, we calculate two l2-norm errors : ‖rm‖2 for residual error
and ‖u1,m-u1,m−1‖2 for consecutive error with respect to the iteration number m during one
time step. Here, rm = (u1,m −u0)/�t −�du1,m . The numerical results are shown in Fig. 2.

Note that we plot l2-norm of residual error and consecutive error versus m with y-axis
labeled on the right and the left, respectively. The values next to the circle and star symbols are
l2-norms of the residual and the consecutive errors withm = 10, 100, and 1000, respectively.
As shown in Fig. 2, the convergence of the consecutive error is faster than that of the residual
error.

Table 6 lists the iteration numbers required by the residual and consecutive l2-norm errors
to be smaller than the prescribed tolerance with various time step sizes �t = 0.1, 0.01,
and 0.001. Here, we fix h = 0.001, T = �t , and u0 = cos(2πx). We can also check that
the convergence speed of the consecutive error is faster than that of the residual error. With
the larger time step size and tolerance, the fast convergence of the consecutive error is more
evident.
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Fig. 2 Discrete l2-norms of the residual and consecutive errors with respect to the iteration number m during
one time step. Here, we use h = 0.01, �t = 0.01, and tol = 1.0e–9

Table 6 Iteration numbers required by the residual and consecutive l2-norm errors to be smaller than the
prescribed tolerance with various time step sizes �t = 0.1, 0.01, and 0.001

�t = 0.1 �t = 0.01 �t = 0.001

tol ‖rm‖2 ‖um − um−1‖2 ‖rm‖2 ‖um − um−1‖2 ‖rm‖2 ‖um − um−1‖2
1.0e-6 919958 67194 124026 23838 16471 3201

1.0e-7 1149987 113680 142757 40316 18684 5412

1.0e-8 1380015 161144 163391 56800 20896 7624

1.0e-9 1610092 244662 185388 73304 23116 9836

Here, we fix h = 0.001 and T = �t

3.4 Conservative Property

We now consider the main test problem of the conservation property. The numerical initial
condition is u0i = 0.5 + 10 cos(2πxi ) + α for i = 1, . . . , Nx , where α is a discrete mass

correction parameter so that
∑Nx

i=1 u
0
i h = 0.5 is satisfied. Here, we use Nx = 1000 and

T = 0.3.
Figures 3a, b show the temporal behavior of discrete total mass

∑Nx
i=1 u

n
i h of the numerical

solution by GS method and GS method with projection with different time step size �t and
tolerance tol, respectively. Here, we use the following parameters : tol = 1.0e–6 for Fig. 3a
and �t = 0.01 for Fig. 3b. The results from GS with projection are consistent to initial
discrete total mass as shown in Fig. 3. However, the results from GS have the deviation from
the initial discrete total mass. These deviations are getting larger as time step size or tolerance
is getting larger.

3.5 Conservative Property on the Complex Domain

In this section, we study how the proposed method behaves when the complex boundary is
described by a level-set function. As test problems, we consider the two-dimensional heat
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Fig. 3 Temporal behavior of discrete total mass of the numerical solution by GS and GS with projection with
different a time step size �t and b tolerance, tol

(a)

Ωin

Ω

Γ = ∂Ωin

(b)

Ωh
in

Ωh

Γh = ∂Ωh
in

(c)
Fig. 4 a Illustration of surface plot of level-set functionφ(x, y)with the zero contourφ(x, y) = 0. bComplex
domainΩin and its boundaryΓ = ∂Ωin embedded inΩ . cDiscrete complex domainΩh

in and its boundaryΓ h

equation on a complex domain with homogeneous Neumann boundary conditions. Figure 4b
shows the complex domain Ωin and its boundary Γ = ∂Ωin that is embedded in the whole
domain Ω . Here, the boundary curve Γ is determined by the level-set function φ(x, y) (see
Fig. 4a) such that φ is negative inside and positive outside the curve Γ = {(x, y)|φ(x, y) =
0}.

To solve the heat equation in the complex domain Ωh
in (see Fig. 4c), we propose the

following numerical scheme [38]:

un+1
i j − uni j

�t
= ∇d ·

(
Gi j Mi j∇du

n+1
i j

)
, (11)

for i = 1, . . . , Nx and j = 1, . . . , Ny . Here, Mi j denotes the diffusion coefficient at (xi , y j )
and the boundary control value Gi j is defined in Ωh as

Gi j = G(xi , y j ) =
{
1, if (xi , y j ) ∈ Ωh

in,

0, if (xi , y j ) ∈ Ωh
out = Ω\Ωh

in,
(12)
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where Ωh
in is an open region that consists of interior points of the union of the closed cells

whose centers are inside the interface Γ . By the central-space difference scheme, Eq. (11) is

un+1
i j − uni j

�t
= 1

h2

[
Gi+ 1

2 , j Mi+ 1
2 , j

(
un+1
i+1, j − un+1

i j

)

−Gi− 1
2 , j Mi− 1

2 , j

(
un+1
i j − un+1

i−1, j

)
+ Gi j+ 1

2
Mi j+ 1

2

(
un+1
i j+1 − un+1

i j

)

−Gi j− 1
2
Mi j− 1

2

(
un+1
i j − un+1

i j−1

)]
. (13)

Note that Gi+ 1
2 , j = (Gi+1, j + Gi j )/2, Mi+ 1

2 , j = (Mi+1, j + Mi j )/2, and the other terms
are similarly defined. Rewriting Eq. (13), we get(

1

�t
+

Gi+ 1
2 , j Mi+ 1

2 , j + Gi− 1
2 , j Mi− 1

2 , j + Gi j+ 1
2
Mi j+ 1

2
+ Gi j− 1

2
Mi j− 1

2

h2

)
un+1
i j

= uni j
�t

+
Gi+ 1

2 , j Mi+ 1
2 , j u

n+1
i+1, j + Gi− 1

2 , j Mi− 1
2 , j u

n+1
i−1, j

h2

+
Gi j+ 1

2
Mi j+ 1

2
un+1
i j+1 + Gi j− 1

2
Mi j− 1

2
un+1
i j−1

h2
.

By the GS iterative method, we iterate the following algorithm until the updated solution
converges under a specific tolerance as

un+1,m
i j =

⎡
⎣uni j

�t
+

Gi+ 1
2 , j Mi+ 1

2 , j u
n+1,m−1
i+1, j + Gi− 1

2 , j Mi− 1
2 , j u

n+1,m
i−1, j

h2

+
Gi j+ 1

2
Mi j+ 1

2
un+1,m−1
i j+1 + Gi j− 1

2
Mi j− 1

2
un+1,m
i j−1

h2

⎤
⎦

/(
1

�t
+

Gi+ 1
2 , j Mi+ 1

2 , j + Gi− 1
2 , j Mi− 1

2 , j

h2

+
Gi j+ 1

2
Mi j+ 1

2
+ Gi j− 1

2
Mi j− 1

2

h2

)
(14)

for m = 1, . . .. Here, m denotes the iteration index of the GS method during one time step.
Then, for the mass conservation, we apply the following projection method as

un+1
i j = uni j + �t ∇d · (Gi j Mi j∇du

∗
i j ) for all i, j,

where u∗
i j is the numerical solution obtained from Eq. (11).

Now, we implement two tests about heat equation with constant and piecewise constant
diffusion coefficient functions.As thefirst test,we consider the heat equationwith the constant
diffusion function M(x, y) = 1 for all x and y. In the other test, we investigate dynamics of
the heat equation with a piecewise constant diffusion function as

M(x, y) =
{
0.1 if 0 ≤ x ≤ 0.5,
1 otherwise.

For numerical tests, we use h = 0.0025, �t = 0.001, T = 0.02, and the initial condition
u(x, y, 0) = sin(πx) sin(πy) on the complex domain Ωin ⊂ Ω = (0, 1) × (0, 1). Here, the
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Fig. 5 a Initial condition. Numerical solutions at T = 0.2 by the proposed method with b constant and c
piecewise constant diffusion coefficients. Bottom row represents the contour plot of numerical solutions

Table 7 Total mass change for numerical solution with respect to tol

Constant diffusion Piecewise constant diffusion

tol GS GS with projection GS GS with projection

1.00e–06 7.28987e–05 3.88578e–16 1.88394e–04 8.32667e–17

1.00e–07 1.49888e–05 1.94289e–16 3.28959e–05 5.55112e–17

1.00e–08 2.46454e–06 1.00000e–17 4.60941e–06 8.32667e–17

1.00e–09 3.65534e–07 1.38778e–16 6.07127e–07 1.11022e–16

1.00e–10 5.11809e–08 5.55112e–17 7.72303e–08 8.32667e–17

Here, we use h = 0.0025, �t = 0.001, and T = 0.2

complex domain is defined by zero contour φ(x, y) = 0 of a level set function as

φ(x, y) =
√

(x − 0.5)2 + (y − 0.5)2 − 0.3 − 0.1 cos(7θ) sin(3θ),

where θ = tan−1
(
y−0.5
x−0.5

)
.

Figure 5 shows the initial condition and numerical solutions at T = 0.2 by the proposed
methodwhen the diffusion coefficient is constant or piecewise constant. Table 7 represents the
results about change of total mass with respect to tolerance, tol. Similar to the previous test,

we calculate the total mass change M =
∣∣∣∑i

∑
j u

0
i j − ∑

i
∑

j u
Nt
i j

∣∣∣. As shown in Table 7,

the proposed projection method preserves the total mass under the rounding errors with any
tolerance, tol. However, the deviations of total mass in GS scheme are getting larger as tol
is getting larger.

3.6 The Cahn–Hilliard Equation

To verify the proposed conservative scheme, we consider the Cahn–Hilliard (CH) equation.
The equation was originally proposed by Cahn and Hilliard [1,2] to model binary alloys
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and has subsequently been adopted to model many other physical situations such as phase
transitions and interface dynamics in multiphase fluid [19]. There has been many numerical
studies of the CH equation using iterative methods [19,26–28]. In this section, we take a
two-dimensional CH equation as follows:

ct (x, y, t) = �μ(x, y, t), (15)

μ(x, y, t) = c3(x, y, t) − 3

2
c2(x, y, t) + 1

2
c(x, y, t) − ε2�c(x, y, t), (16)

for (x, y) ∈ Ω = (0, 1) × (0, 1) and t > 0. The boundary conditions for the CH equation
are ∂c/∂n = ∂μ/∂n = 0 on ∂Ω, where n is the normal unit vector pointing out of Ω . The
solution c(x, y, t) of the CH Eqs. (15) and (16) has the property that the total mass

∫
Ω
c dx

is conserved, that is,

d

dt

∫
Ω

c dx =
∫

Ω

∂c

∂t
dx =

∫
Ω

�μ dx =
∫

∂Ω

∂μ

∂n
ds = 0.

3.6.1 Numerical Solution with the Projection Method

We discretiize the given domain Ω = (0, 1)× (0, 1) with a uniform space step h = 1/Nx =
1/Ny and a time step �t = T/Nt . Here, Nx , Ny , and Nt are the number of grid points
in the x-, y-, and t-direction, respectively. Let cni j be an approximation of c(xi , y j , n�t).
By applying the convex splitting scheme which is originally developed by Eyre [29], the
discretization of the CH Eqs. (15) and(16) is given by

cn+1
i j − cni j

�t
= �dμ

n+1
i j , (17)

μn+1
i j = f (cn+1

i j ) − 1

4
cni j − ε2�dc

n+1
i j . (18)

Here, the discrete Laplacian operator is defined by �dci j = (ci+1, j + ci−1, j + ci, j+1 +
ci, j−1 − 4ci j )/h2 and f (cn+1

i j ) = (cn+1
i j )3 − 3

2 (c
n+1
i j )2 + 3

4c
n+1
i j . For all n, the discrete

boundary condition is defined as

cn0 j = cn1 j , cnNx+1, j = cnNx , j , cni0 = cni1, cni,Ny+1 = cni,Ny
,

μn
0 j = μn

1 j , μn
Nx+1, j = μn

Nx , j , μn
i0 = μn

i1, μn
i,Ny+1 = μn

i,Ny
,

where i = 1, 2, . . . , Nx and j = 1, 2, . . . , Ny . The resulting non-linear system of the CH
Eqs. (17) and (18) can be solved using several iterative methods. It is well known that
classical iterative methods, such as Gauss–Seidel, Jacobi, SOR, or CG, converge very slowly
for solving large linear systems [30]. On the other hand, a multigrid method damps strongly
the oscillatory error components [31] and its solution is obtained in O(N ) time, where N
is the total number of grid points [32]. The multigrid method is widely used for solving the
CH equation in the two-dimensional [19,33], three-dimensional [34], and axisymmetric [35]
domains. In this test, we use a multigrid method as the numerical solver. See [36,37] for
more details about the multigrid method.

Given cn andμn , we calculate cn+1 andμn+1 using the multigrid method. Let cn+1,m and
cn+1,m+1 be the approximations of cn+1 before and after a V-cycle of the multigrid method.
Starting from initial values cn+1,0 = cn andμn+1,0 = μn , we iterate the multigrid cycle until
the discrete l2-norm of the two consecutive approximations is less than a given tolerance, i.e.,
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‖cn+1,m+1 − cn+1,m‖2 < tol. By the Gauss–Seidel iteration in a V-cycle of the multigrid
method, for m = 1, 2, · · · , we iterate the following algorithm

1

�t
cn+1,m,s+1
i j + 4

h2
μ
n+1,m,s+1
i j

= cni j
�t

+ μ
n+1,m,s
i+1, j + μ

n+1,m,s+1
i−1, j + μ

n+1,m,s
i j+1 + μ

n+1,m,s+1
i j−1

h2
,

−
(

∂ f

∂c
(cn+1,m,s

i j ) + 4ε2

h2

)
cn+1,m,s+1
i j + μ

n+1,m,s+1
i j = −cni j

4
+ f (cn+1,m,s

i j )

− ∂ f

∂c
(cn+1,m,s

i j )cn+1,m,s
i j − ε2

h2

(
cn+1,m,s
i+1, j + cn+1,m,s+1

i−1, j + cn+1,m,s
i j+1 + cn+1,m,s+1

i j−1

)
.

Here, the indices s and s+1 denote the current and the new approximations during a Gauss–
Seidel iteration. Since f (cn+1,m,s+1) is nonlinear with respect to cn+1,m,s+1, we linearize
f (cn+1,m,s+1) at cn+1,m,s , i.e.,

(
cn+1,m,s+1)3 ≈ (

cn+1,m,s)3 + 3
(
cn+1,m,s)2 (

cn+1,m,s+1 − cn+1,m,s) .

If the solution cn+1,m converges under the given tolerance, then we obtain new solution
cn+1 which is defined by cn+1 = cn+1,m . Now, we denote the residual error for cn+1

i j with
respect to Eq. (17), i.e,

ri j = cn+1
i j − cni j

�t
− μn+1

i+1, j + μn+1
i−1, j + μn+1

i j+1 + μn+1
i j−1 − 4μn+1

i j

h2
(19)

for i = 1, 2, · · · , Nx and j = 1, 2, · · · , Ny . We also define the discrete l2-norm and the
maximum norm as

e2 =

√√√√√ 1

Nx Ny

Nx∑
i=1

Ny∑
j=1

r2i j and e∞ = max
1≤i≤Nx
1≤ j≤Ny

|ri j |.

With the numerical solution c∗ obtained from an iterative method, we get the conservative
numerical solution cn+1 by the projection method as follows:

cn+1 = cn + �t�dμ
∗,

where we use the homogeneous Neumann boundary conditions: μ∗
0 j = μ∗

1 j , μ∗
Nx+1, j =

μ∗
Nx , j

, μ∗
i0 = μ∗

i1, and μ∗
i,Ny+1 = μ∗

i,Ny
.

3.6.2 Convergence Test

We have the convergence tests with the l2-norm and maximum norm of the errors to show
accuracy of the proposed scheme. However, it is well known that the CH equation does not
have non-trivial analytic solutions. Therefore, in this paper, we use a reference solution on
behalf of the analytic solution. The initial condition is c(x, y, 0) = 0.25(1− cos(2πx))(1−
cos(2πy)) in a domain Ω = (0, 1)× (0, 1). To compute the spatial accuracy of the proposed
projection method, we run simulations on increasingly finer grids, i.e., h = 1/2n+1 for
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Table 8 Maximum and l2 norm
of the errors and its convergence
rates for numerical solution with
respect to h

h ‖e‖∞ Rate ‖e‖2 Rate

1/32 9.60903e-4 3.38298e-4

1/64 2.49461e-4 1.94557 8.57879e-5 1.97945

1/128 6.52057e-5 1.93575 2.20716e-5 1.95858

1/256 1.87569e-5 1.79758 6.26686e-6 1.81638Here, we use �t = 0.0001 and
T = 0.01

Table 9 Maximum and l2 norm
of the errors and its convergence
rates for numerical solution with
respect to �t

h ‖e‖∞ Rate ‖e‖2 Rate

0.010000 1.6592e-2 1.1732e-2

0.005000 7.9494e-3 1.0615 5.6213e-3 1.0615

0.002500 3.8738e-3 1.0371 2.7393e-3 1.0371

0.001250 1.9102e-3 1.0200 1.3508e-3 1.0200

0.000625 9.4872e-4 1.0096 6.7089e-4 1.0096Here, we use h = 1/2048 and
T = 0.1

n = 5, 6, . . . , 10. The reference solution is obtained using h = 1/2048. For each case,
the calculation is run up to time T = 0.01 with the time step �t = 0.0001 and a fixed
ε = 0.00375.

Table 8 shows the errors and rates of spatial convergence. The results suggest that the
proposed scheme is second-order accurate in space as we expect from the discretization.

Next, we perform the temporal convergence test with h = 1/256. For each case, the
calculation is run up to time T = 0.01with the time step�t = 0.001/2n for n = 5, 6, . . . , 10.
Also, we use the reference solutionwith�t = 0.0001 and h = 1/2048. The results are shown
in Table 9. As we expected, the proposed scheme is first-order accurate in time.

3.6.3 Conservation of Total Mass

In this section, we test the conservative property of numerical solution of the CH equation.We
use the gradient energy coefficient ε = 0.00375, spatial step size h = 1/256, temporal step
size �t = 0.1, the computational domain Ω = (0, 1) × (0, 1), and the total time T = 100.
The numerical initial condition is c(x, y, 0) = 0.25(1 − cos(2πx))(1 − cos(2πy)).

Figure 6 represents the total mass with respect to time. To show the conservative property
of the proposed projection scheme, we also add the total mass (solid line) of the numerical
solution by the projection scheme with tol = 1.0e–3. As tolerance tol decreases, we can see
that the total mass of the numerical solution is conserved. However, the numerical solution
by the projection scheme is always conserved as 0.25 even if we use tol = 1.0e–3.

Next, Fig. 7 shows the CPU timewith respect to tolerance in both cases; without correction
and with correction. As shown in Fig. 7, the additional computational cost with correction is
negligible. This result implies the efficiency of the proposed projection method for conser-
vative problems. That is, we can achieve the conservation of the total mass with the larger
tolerance levels than the required one.

In addition, our proposed numerical scheme has good performance with low cost. To
show this, we represent the difference of reference solution c̄ and numerical solution c with
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Fig. 6 Total mass with respect to the tolerance tol. Here, we use h = 1/128, �t = 0.1, and T = 100
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Fig. 7 Comparison of CPU time without and with correction procedure

tol = 1.0e–3 in Fig. 8. Here, the reference solution c̄ is defined as the numerical solution
without correction scheme by using tol = 1.0e–7 and two numerical solutions are obtained
with and without correction scheme.

Figure 9a, b represent the relative error between the reference solution c̄ and numerical
solution c without and with correction schemes, respectively. As shown in Fig. 8, we obtain
similar behaviors except for the amplitude of the value.
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Fig. 8 Absolute difference between reference solution c̄ and numerical solution c a without and b with
correction scheme. Here, we use the reference value (without correction and tol = 1.0e–7) and two numerical
values (tol = 1.0e–3) at time T = 100
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Fig. 9 Relative error between reference solution c̄ and numerical solution c a without and b with correction
scheme. Here, we use the reference value (without correction and tol = 1.0e–7) and two numerical values
(tol = 1.0e–3) at time T = 100

4 Conclusion

In this paper, we proposed a conservative projection method for the conservative discretiza-
tions of parabolic PDEs. The proposed scheme conserves the conservative quantity within
rounding errors. The new algorithm can be usedwith pre-existing iterative algorithms because
we just add one explicit update. To verify the our proposed scheme, we test two problems: the
heat equation and the Cahn–Hilliard equation. Some directions for future research include
applying the proposed projection scheme to various conservative parabolic equations.
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