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Tissue engineering scaffolds provide temporary mechanical support for tissue regeneration. To
regenerate tissues more efficiently, an ideal structure of scaffolds should have appropriate porosity
and pore structure. In this paper, we generate the Schwarz primitive (P) surface with various
volume fractions using a phase-field model. The phase-field model enables us to design various
surface-to-volume ratio structures with high porosity and mechanical properties. Comparing the
Schwarz P surface’s von Mises stress with that of triply periodic cylinders and cubes, we draw
conclusions about the mechanical properties of the Schwarz P surface.

1. Introduction

In tissue engineering scaffolds, we should consider the sufficient mechanical strength and
stiffness for the scaffold to support to the growing tissue [1]. In addition to mechanical
properties, the permeability of the scaffold should be high enough to provide superior
diffusion which would facilitate the inflow of nutrients and the disposal of metabolic waste
[2]. And the sufficient permeability of scaffold pore architectures increases degree of seeding
with cell or growth factors prior to implantation. A large surface area enables cell attachment
and growth, whereas a large pore volume is required to accommodate and subsequently
deliver a cell mass sufficient for tissue repair. Therefore, it is important for the scaffold to
have the suitable pore size, high surface-to-volume ratio, sufficient porosity, and high pore
interconnectivity [1].

Fabricating solid freeform scaffolds [3, 4]with cubic lattice pores has shown that sharp
corners pose machining difficulties. However, fabricating scaffolds with curved pores does
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Figure 1: The maximum and minimum curvatures (κ1 and κ2, resp.) at a point on a surface.

not have these manufacturing hurdles. And triply periodic minimal surfaces (TPMS) in
general and Schwarz P surface in particular have circular cross-sections throughout their
extent making them the ideal pore morphologies for scaffold fabrication [5]. And Schwarz
P porous medium has the largest fluid permeability among all of the other triply periodic
porous media [6]. From among various pore architectures which have been studied, this
study simulated pore microstructure by TPMS for the construction of tissue engineering
scaffolds. The objective of this paper is to investigate the mechanical performance of TPMS
compared to other configurations.

Scaffolds with a high porosity provide more space for cells to move into and begin
to thrive. Scaffold porosity greater than 75% is to ensure cell proliferation [7, 8]; however,
the maximum porosity is limited by the required mechanical strength of the scaffold.
Furthermore, pores that are too small will become clogged and cause a decrease in nutrient
diffusion, cellular penetration, and possibly cell death; pores that are too large form gaps
that the cells cannot cross. This balance often presents a tradeoff between a denser scaffold
providing better function and a more porous scaffold providing better biofactor delivery.
This paper reviews what is the best scaffold porosity under mechanical forces. We also accept
for the optimal fluid permeability at a porosity volume ratio 1/2 [6] and pore size 1000
micrometers for bone cell proliferation [9–12]. This leads to the conjecture that the maximal
stability for a triply periodic porous medium at a porosity volume ratio 1/2 is achieved by
the structure that globally minimizes the specific surface.

We also note that it is possible that different size pores and/or channels may be needed
in different regions of the implant to facilitate the formation of different types of tissue and/or
for development of the tissue’s blood supply. But we observe that orthogonally oriented pores
with thick walls may be strong, while may not open towards the portion of the host tissue
from which new tissue must invade. If that is the case then, the scaffold will act as a barrier
to host tissue invasion. Thus, an optimal model of triply periodic scaffold should be chosen
which has a smooth surface such as constant mean curvature surfaces.

The contents of this paper are as follows. In Section 2, we describe how constant mean
curvature surface can be obtained through a phase-field algorithm. We introduce a new finite
element mesh generation procedure. Geometric models, loading, and materials condition
are stated in Section 3. Then Section 4 presents test results and discussion of numerical
simulation. Finally, conclusions are given in Section 5.
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Figure 2: Examples of triply periodic constant mean curvature surfaces. (a) Schwarz P, (b) Schwarz D, and
(c) Schoen G surfaces.

2. Constant Mean Curvature Surfaces with Volume Constraint

2.1. The Schwarz P Surface with a Given Volume Fraction

The maximum and minimum values of the normal curvature at a point on a regular surface
are called the principal curvatures κ1 and κ2, respectively (see Figure 1). The mean curvature
H is defined as the arithmetic mean of the principal curvatures: H = (κ1 + κ2)/2.

Next, we introduce a remarkable class of triply periodic constant mean curvature
surfaces (i.e., periodic in three directions). These constant mean curvature surfaces offer great
attractions to physical scientists, biologists, and mathematicians. Examples of surfaces are
the Schwarz primitive (P), the Schwarz diamond (D), and the Schoen gyroid (G) surfaces as
shown in Figure 2.

The triply periodic embedded Schwarz P porous medium is more permeable than
other Schwarz models. It also has a smooth surface to open the portion of the host tissue from
which new tissue must invade due to its constant mean curvature.
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Figure 3: Phase-field φ at each step.

To construct the Schwarz P triply periodic constant mean curvature surface with
volume constraint, we use a phase-field model. In a phase-field model, the quantity φ(x, t)
is defined to be the mass concentration (with a volume mass) of one of the components. We
take the periodic nodal surface (PNS) expansion [13] of the Schwarz P surface as an initial
configuration with a desired symmetry, topology, and volume fraction:

P
(
x, y, z

)
= cos 2πx + cos 2πy + cos 2πz + 0.5. (2.1)
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Figure 4: Triply periodic cylinder: (a) A ∪ B ∪ C, (b) C, (c) A ∩ C, and (d) A ∩ B ∩ C.
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Figure 5: Triply periodic cube: (a) A ∪ B ∪ C and (b) C.

Now, we describe our algorithm for constructing the Schwarz P surface with a given
volume fraction. For clarity of exposition, let us consider a one-dimensional version of the
Schwarz P surface and a desired volume fraction α which is greater than 0.5. Please refer to
[14] for more details.

Step 1. Initialize a phase-field φ as φstep 1
i = cos 2πxi + 0.5 for i = 1, . . . ,N.

Step 2. Truncate nonphysical values such as negative and greater-than-one values: φstep 2
i = 1

if φstep 1
i > 1, φstep 2

i = 0 if φstep 1
i < 0, and φ

step 2
i = φ

step 1
i otherwise.
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(a) Edges of one surface (b) Closed surface with edges

Figure 6: Generation of the closed surface mesh.

Step 3. Relax φstep 2 by solving the following equation: (φstep 3
i − φ

step 2
i )/Δt = Δd(f(φ

step 3
i ) −

(5ε)2Δdφ
step 3
i ) − (1/4)Δdφ

step 2
i , where the nonlinear function f(φ) = φ3 − (3/2)φ2 + (3/4)φ

and we assume that the periodic boundary condition holds for φ. The above discrete system
is solved by a nonlinear multigrid method. Numerical solution is described in [14].

Step 4. Find a parameter β which makes a volume fraction of φstep 3 to α. We define the
average volume fraction Vave(φstep 3, α, β) as Vave(φstep 3, α, β) =

∑N
i=1 φ̃i/N, where φ̃i = 1 if φi >

β and φ̃i = φi otherwise. Taking different β values, we can generate various average volume
fractions within a prescribed tolerance. Find an approximate solution to Vave(φstep 3, α, β) = α
by taking the bisection algorithm [15]. Then we define the phase-field φstep 4 with β: φstep 4 = 1
if φstep 3

i > β and φstep 4 = φ
step 3
i otherwise.

Step 5. Adjust a volume fraction by shifting φ
step 4
i : φstep 5

i = φ
step 4
i +α− (1/N)

∑N
k=1 φ

step 4
k for

i = 1, . . . ,N.

Step 6. Relax φstep 5 by solving the following equation: (φstep 6
i − φ

step 5
i )/Δt = Δd(f(φ

step 6
i ) −

ε2Δdφ
step 6
i ) − (1/4)Δdφ

step 5
i .

Figure 3 shows the phase-field φ at each step.

2.2. Triply Periodic Cylinder and Cube

The volume of the triply periodic cylinder in a unit cubic cell is calculated as follows. Let A,
B, and C be the cylinders which are parallel to x, y, and z axis, respectively, and V (A) denote
the volume of A. Then,

V (A ∪ B ∪ C) = V (A) + V (B) + V (C) − V (A ∩ B) − V (B ∩ C) − V (C ∩A) + V (A ∩ B ∩ C),
(2.2)
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(a) Partition (b) Mesh

Figure 7: Mesh generation in ABAQUS.

where A ∪ B ∪ C, C,A ∩ C, and A ∩ B ∩ C are shown in Figures 4(a), 4(b), 4(c), and 4(d),
respectively. Let a be the radius of the cylinder. Then, volume of each part is given as

V (C) = πa2, V (A ∩ C) = 8
∫a

0

∫√
1−x2

0

√
1 − x2dy dx =

16
3
a3,

V (A ∩ B ∩ C) = 8
∫π/4

−π/4

∫a

0
r
√
1 − r2cos2(θ)dr dθ = 8

(
2 −

√
2
)
a3.

(2.3)

Therefore, V (A ∪ B ∪ C) = 3πa2 − 8
√
2a3. Similarly, we can find the formula for the

triply periodic cube with an edge length b (see Figure 5) as V (A ∪ B ∪ C) = 3b2 − 2b3.

3. Numerical Simulation

In this section, we investigate the effect of volume fraction of scaffolds in each shape.

3.1. Model and Material

The 3D scaffold models in three shapes such as triply periodic cube, triply periodic cylinder,
and Schwarz P were developed by commercially available software ABAQUS 6.8.1 (Dassault
Systems, Providence, RI) [16]. And thematerial of the cube, cylinder, and Schwarz P unit cells
are assumed to be homogeneous, isotropic, and linearly elastic poly-DL-lactide (PDLLA). In
Table 1, the values of the density (δ), Young’s modulus (E), and Poisson’s ratio (ν) of this
material are listed. The values for the material were obtained from the literature [17].

The finite element method was used to evaluate and simulate the distribution and
magnitude of the von Mises stress on three unit scaffolds under different conditions such as
loadings and volume fractions.
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Table 1: Values of the density (δ), Young’s modulus (E), and Poisson’s ratio (ν) of the material used in the
models.

Material Density (δ) Young’s modulus (E) Poisson’s ratio (ν)

PDLLA 316 g/cm3 3.3GPa 0.3

(a) Triply periodic cube (b) Triply periodic cylinder

(c) Schwarz P

Figure 8: The meshed models with hexahedral elements at a 50% volume fraction.

3.2. Mesh Design

First, we describe a mesh generation procedure for constant mean curvature surfaces in
ABAQUS. For the Schwarz P surface model, the outline of mesh generation procedures is
as follows.

As the phase-field φ is the value from 0 to 1, we divide one-half contour line into
regular intervals at some heights. The heights are determined by the circumference of the



Mathematical Problems in Engineering 9

Figure 9: Loading condition.

side and the arc of the cutting line, and connect the neighboring points. The Schwarz P surface
consists eight equivalent surfaces, generates the edges of one surface as shown in Figure 6(a),
and then makes closed surface by using reflections, see Figure 6(b). Note that the fan-shaped
edges in Figure 6(a) are adopted to make a closed surface. Increasing the division points at
the circumference and the arc, we can obtain more smooth surface. We use the eight division
points for both curves.

A three-dimensional volume part of the Schwarz P surface was created using the
closed edges in GAMBIT 2.2.30 (Ansys Inc., Canonsburg, PA). Using ABAQUS, a volume
made by GAMBIT was partitioned in order to reduce the misshapen mesh appearance.
Then, the solid model was meshed using hexahedral element to accommodate the irregular
geometry features (see Figure 7).

The other models were partitioned in the same way as the Schwarz P surface model.
The meshes were generated with hexahedral elements. A meshed model with a 50% volume
fraction is shown in Figure 8.

3.3. Loading Conditions

A quasistatic compression test was simulated by placing six rigid circle plates on each surface
of the unit-cell. As shown in Figure 9, each rigid plate moves down slowly by using three
concentrated forces (10N, 30N, 50N) to press each surface of the model, respectively. The
contact between the rigid plate and the unit cell model was modeled using the penalty model
with a friction coefficient of 0.3 due to the rubber-like alginate.
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Figure 10: The von Mises stress for three cases with different volume fractions with (a) 10N, (b) 30N, and
(c) 50N.

4. Results and Discussion

The von Mises stress is defined as

σe =

√√√
√

(
σx − σy

)2 +
(
σy − σz

)2 + (σz − σx)2 + 6
(
τ2xy + τ2yx + τ2zx

)

2
.

(4.1)

Values of von Mises stress equivalent stress at the unit cell scaffold were computed for
all variations such as shape of unit cell and different volume fraction.

Figures 10(a), 10(b), and 10(c) show the von Mises stress for three cases with different
volume fractions with the 10N, 30N, and 50N, respectively. The result of Figure 10 indicates
that the von Mises stresses on the three models have similar distribution independent of
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Figure 11: Continued.
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Figure 11: Von Mises stress distribution. Volume fractions are (a) 30%, (b) 40%, (c) 50%, (d) 60%, (e) 70%
with identical loading condition and material property for triply periodic cube (left), triply periodic
cylinder (middle), and Schwarz P (right).

volume fractions and loading forces. Furthermore, the von Mises stresses of the Schwarz P
model decreased faster as the volume fraction increased as did the other models.

Figure 11 shows the magnitude and distribution of the von Mises stress on loading
force 50N for the unit cells with different volume fractions, respectively. It is clearly seen
that the stress concentration along sharp edges of the cubic and cylinder unit cell has been
significantly reduced in the unit cells of Schwarz P model. The simulation also reveals the
stresses on the unit cells of Schwarz P model are more smoothly distributed than those on the
other models.

It is obvious from these results that in general, as the volume fractions increase for
given cells, the von Mises stress also increases. But results imply that Schwarz P scaffold has
more stable structures than each of the triply periodic-structures.

5. Conclusions

This study focuses on the determination of the relationship between porosity and structural
behavior of tissue scaffolds. Finite element analysis of scaffold compression has been
conducted to determine the relationship between scaffold porosity and structural behavior
under quasistatic loading. The analysis reveals the optimal stress distribution on the triply
periodic constant mean surface unit cells. We have evaluated the mechanical property
through three different periodic models. The key conclusion we draw in research is that the
Schwarz P surface has good stability as well as fluid permeability [6]. These results provide
insights into the reason behind the natural choice of constant mean curvature surface forms
by biological systems.
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