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Regularized Dirac delta functions for phase field models
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SUMMARY

The phase field model is a highly successful computational technique for capturing the evolution and topo-
logical change of complex interfaces. The main computational advantage of phase field models is that an
explicit tracking of the interface is unnecessary. The regularized Dirac delta function is an important ingre-
dient in many interfacial problems that phase field models have been applied. The delta function can be used
to postprocess the phase field solution and represent the surface tension force. In this paper, we present and
compare various types of delta functions for phase field models. In particular, we analytically show which
type of delta function works relatively well regardless of whether an interfacial phase transition is com-
pressed or stretched. Numerical experiments are presented to show the performance of each delta function.
Numerical results indicate that (1) all of the considered delta functions have good performances when the
phase field is locally equilibrated; and (2) a delta function, which is the absolute value of the gradient of the
phase field, is the best in most of the numerical experiments. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multiphase fluid flows are used in a wide variety of applications such as extractors [1], polymer-
dispersed liquid crystals [2], polymer blends [3], reactors [4], separators [5], sprays [6], and
microfluidic technology [7, 8]. The fluids with changes in the interface topology are complex with
density, diffusivity, viscosity, and surface tension. The fluids play important roles in the transi-
tion process and affect both the post-transition structure of the flows and the dynamics of the
transition itself. The transition typically results from the competition between flow instabilities
(e.g., due to shear or density stratification) and stabilizing influences (e.g., due to surface tension
and/or viscosity). For this reason, modeling and numerical simulation of multiphase fluid flows is a
great challenge.

In simulating multiphase fluid flows, there are two main approaches: interface tracking and
interface capturing. In interface tracking methods (front tracking [9, 10] and immersed boundary
[11, 12]), Lagrangian particles are used to track the interface and are advected by the velocity
field. In interface capturing methods (volume of fluid [VOF] [11, 13, 14], level set [15–18], and
phase field [19–22]), the interface is implicitly captured by a contour of a particular scalar function.
Many numerical techniques, including immersed boundary [23–30], VOF [31–40], and level set
[41–48], use the concept of a regularized Dirac delta function to account for interfacial effects (this
is described in more detail in Section 2), and many previous studies show that an appropriate delta
function is required to obtain more accurate results. However, despite the large body of research
on delta functions, the performance of delta functions for phase field models has not been clearly
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addressed and compared. The purpose of this paper is to investigate the performance of regular-
ized Dirac delta functions as a postprocessing of the phase field solution and a representation of the
surface tension force for phase field models in interfacial flows undergoing topological transitions.

In a phase field model, the quantity c.x, t / is defined to be the mass concentration of one of the
components. The Cahn–Hilliard (CH) equation was introduced to model spinodal decomposition
and coarsening phenomena in binary alloys [49, 50]:

@c.x, t /

@t
DM��.c.x, t //, x 2�, 0 < t 6 T , (1)

�.c.x, t //D F 0.c.x, t //� �2�c.x, t /, (2)

where � � Rd .d D 1, 2, 3/. The coefficient M represents a constant mobility. We set M � 1 for
convenience. This equation arises from the Ginzburg–Landau free energy

E.c/ WD
Z
�

�
F.c/C

�2

2
jrcj2

�
dx, (3)

where F.c/ is the Helmholtz free energy and � represents a positive constant. In this paper, the
free energy is modeled by F.c/ D 0.25c2.1 � c/2, which represents a double well potential with
equilibrium values c D 0 and 1 (Figure 1). To obtain the CH equation, one introduces a chemical
potential � as the variational derivative of E ,

� WD
ıE
ıc
D F 0.c/� �2�c,

and defines the flux, J WD �Mr�. As a consequence of mass conservation, we have

@c

@t
D�r �J ,

which is the CH equation. The natural and no-flux boundary conditions are

@c

@n
D J � nD 0 on @�, where n is normal to @�.

We use an unconditionally gradient stable scheme [51–54] for solving Equations (1) and (2). The
scheme is solved by an efficient and accurate nonlinear multigrid method. For a detailed description
of the numerical solution, please refer to References [53, 55].
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Figure 1. A double well potential, F.c/D 0.25c2.1� c/2.
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This paper is organized as follows. In Section 2, we review the numerical methods for regularized
Dirac delta functions. We present various types of delta functions for phase field models and analyze
feature of delta functions by the interface profile in Section 3. Numerical experiments are described
in Section 4. In Section 5 conclusions are given.

2. REVIEW OF NUMERICAL METHODS FOR REGULARIZED DIRAC DELTA
FUNCTIONS

We briefly review the numerical methods for regularized Dirac delta functions. Delta functions with
immersed boundary [23–30], VOF [31–40], and level set [41–48] have been intensively studied.

2.1. Immersed boundary method

In the immersed boundary method, the elastic boundary is represented by a set of Lagrangian points,
and the singular force at the Lagrangian points is determined by the generalized Hooke’s law. This
force is spread to the surrounding Eulerian points using a delta function. In the immersed boundary
method, most commonly used delta functions are 2-point [25, 28, 30], 3-point [27, 28, 30], 6-point
[23, 24, 28, 29], 4-point cosine [26, 30], and 4-point [24, 26, 28, 30] functions. For all r , where r is
the parameter representing the position of the submerged boundary point and is scaled with respect
to the grid size h, the one-dimensional delta functions are listed as follows.

� 2-point delta function

ı.r/D

²
1� jr j if jr j6 1,
0 otherwise.

� 3-point delta function

ı.r/D

8̂̂<
ˆ̂:

1
3

�
1C
p
�3r2C 1

�
if jr j6 0.5,

1
6

�
5� 3jr j �

p
�3.1� jr j/2C 1

�
if 0.56 jr j6 1.5,

0 otherwise.

� 6-point delta function

ı.r/D

8̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂:

61
112
� 11
42
jr j � 11

56
jr j2C 1

12
jr j3C
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3

336
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� 748jr j2 � 1560jr j3C 500jr j4C 336jr j5 � 112jr j6
�1=2

if 06 jr j6 1,
21
16
C 7

12
jr j � 7

8
jr j2C 1

6
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2
ı.jr j � 1/ if 16 jr j6 2,

9
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� 23
12
jr j C 3

4
jr j2 � 1

12
jr j3C 1

2
ı.jr j � 2/ if 26 jr j6 3,

0 otherwise.

� 4-point cosine delta function

ı.r/D

´
1
4

�
1C cos

�
 r
2

��
if jr j6 2,

0 otherwise.

� 4-point delta function

ı.r/D
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ˆ̂:

1
8

�
3� 2jr j C

p
1C 4jr j � 4r2

�
if 06 jr j6 1,

1
8

�
5� 2jr j �

p
�7C 12jr j � 4r2

�
if 16 jr j6 2,

0 otherwise.
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Figure 2. Five types of delta functions used in the immersed boundary method.

The aforementioned five types of delta functions are shown in Figure 2. Shin et al. [28] analyzed
the stability regimes of the feedback forcing gains in the feedback forcing method for several types
of delta functions and showed that non-growing oscillations became smaller for the delta function
supported by more points. Yang et al. [30] found that the nonphysical oscillations are mainly because
the derivatives of the regular discrete delta functions do not satisfy certain moment conditions and
demonstrated that the smoothed discrete delta functions can effectively suppress the nonphysical
oscillations in the volume forces and improve the accuracy of the immersed boundary method with
direct forcing in moving boundary simulations.

2.2. Volume of fluid method

The VOF method was proposed by Hirt and Nichols [56]. In VOF method, the interface is recon-
structed from the values of a color function that represents the volume fraction of one of the fluids in
each cell. The continuum surface force (CSF) of Brackbill et al. [57] has been widely used to model
surface tension in multiphase fluid flows in VOF method. In the CSF model [33, 34, 40, 58–61], the
surface tension force is converted into a volume force via a delta function, fD ��nı, where � is the
surface tension coefficient, � is the curvature, n is the normal to the surface, and ı is a delta function.
In VOF method, the most commonly used delta function is ı. Qc/D jr Qcj, where Qc is a smoothed ver-
sion of the volume fraction. The CSF model is simple and robust, and it involves only the solving of
a field equation for a smoothed phase field Qc. However, the method is known to produce strong and
spurious currents near the interface. For this reason, many researchers have developed new methods
to reduce spurious currents [37, 40, 62–64]. Meier et al. [37] reduced spurious currents using the
piecewise-linear interface construction VOF method. In Reference [64], a parabolic reconstruction
of surface tension algorithm is used to gain higher-order accuracy for the surface tension force.

2.3. Level set method

In the level set method, first devised and introduced by Osher and Sethian [65], delta functions are
often used to distribute a singular force or to compute a surface area [46, 66–68]. Most commonly
used delta functions are listed as follows. Here, � is proportional to the grid size, that is, � Dmh for
a positive number m.

� Delta function in References [41, 43, 45, 47, 48]

ı�.x/D

´
1
�

�
1�

ˇ̌
x
�

ˇ̌�
if jxj6 �,

0 otherwise.
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� Delta function in References [41–44, 46–48]

ı�.x/D

´
1
2�

�
1C cos

�
 x
�

��
if jxj6 �,

0 otherwise.

Tornberg and Engquist [69] pointed out that the most common technique for regularization of
delta functions in level set simulations is not consistent and analyzed the accuracy of regularization
of delta functions. Smereka [45] presented methods for constructing consistent approximations to
Dirac delta measures concentrated on piecewise smooth curves or surfaces. Towers [70] proposed
second-order finite difference methods for approximating Heaviside functions and showed that the
methods are more accurate than a commonly used approximate Heaviside function.

3. REGULARIZED DIRAC DELTA FUNCTIONS FOR PHASE FIELD MODELS

In this section, we present eight types of delta functions for phase field models. From the Ginzburg–
Landau free energy (3), the phase field c at the equilibrium state satisfies the following equation:

1

4
c2.1� c/2 D

�2

2
jrcj2. (4)

By using Equation (4) and delta functions used in phase field models [19, 21, 71–73], we get new
delta functions for the present model. In this paper, eight types of delta functions are chosen:

� delta function in References [19, 71] ı1.c/D 6
p
2�jrcj2;

� new delta function ı2.c/D 3
p
2c2.1� c/2=�;

� delta function in References [72, 73] ı3.c/D 0.5 .ı1.c/C ı2.c//;
� delta function in Reference [21] ı4.c/D 30

p
2�c.1� c/jrcj2;

� new delta function ı5.c/D c.1� c/=.
p
2�/;

� new delta function ı6.c/D jrcj;
� new delta function ı7.c/D 0.5.ı5.c/C ı6.c//; and
� new delta function ı8.c/D 630

p
2�c3.1� c/3jrcj2.

For a flat interface with an equilibrium profile,Z 1
�1

ıi .c
eq/ dx D 1 for all i D 1, 2, : : : , 8,

where ceq.x,y/ D 0.5.1C tanh.x=.2
p
2�/// is an equilibrium profile in the infinite domain when

the chemical potential is given by Equation (2) [74], and it is a good approximation in the finite
domain. Figure 3 shows delta functions used in this paper. We note that new delta functions ı5.c/
and ı8.c/ have wider and narrower supports than ı1.c/ and ı4.c/, respectively.
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Figure 3. Delta functions for phase field models.
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We now consider a line of unit length on a unit domain �D .0, 1/� .0, 1/:

c.x,y/D
1

2

�
1C tanh

�
0.5� x

2
p
2a

��
(5)

for different values of a. The value of a is related to the interface thickness. For aD 0.5�, �, and 2�,
the length of line is given by

fi .a/D

Z
�

ıi .c/ dx dy.

This integral is calculated using the Mathematica (Wolfram Research, Inc., Champaign, IL, USA)
code given in Appendix A. The results are given in Table I. Next, we consider a circle of radius 0.25
at the center of a domain �D .0, 1/� .0, 1/:

c.x, y/D
1

2

 
1C tanh

 
0.25�

p
.x � 0.5/2C .y � 0.5/2

2
p
2a

!!
.

The circumference for the different values of a is given in Table I. In both cases, ı6.c/ is insensitive
to the value of a. This means that the length of line or circle can be computed accurately using ı6.c/
regardless of the interface thickness. We will numerically discuss this in more details in Section 4.
Figure 4 shows the graphs of fi .a/ for i D 1, 2, : : : , 8.

Table I. The length of line and circle with different interface thicknesses for each delta function.

Case 1: line Case 2: circle

a a

0.5� � 2� 0.5� � 2� fi .a/

ı1 2 1 0.5   0.5  0.25  f1.a/D 1=a
ı2 0.5 1 2 0.25  0.5    f2.a/D a
ı3 1.25 1 1.25 0.625  0.5  0.625  f3.a/D .1=aC a/=2
ı4 2 1 0.5   0.5  0.25  f4.a/D 1=a
ı5 0.5 1 2 0.25  0.5    f5.a/D a
ı6 1 1 1 0.5  0.5  0.5  f6.a/D 1
ı7 0.75 1 1.5 0.375  0.5  0.75  f7.a/D .aC 1/=2
ı8 2 1 0.5   0.5  0.25  f8.a/D 1=a
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Figure 4. The graphs of fi .a/ for i D 1, 2, : : : , 8.
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4. NUMERICAL EXPERIMENTS

We now present numerical results to show the performance of regularized Dirac delta functions as
(1) a postprocessing of the phase field solution, that is, length of line and circle, Rayleigh–Taylor
instability, deformation of a circle by a single vortex, a three-dimensional deformation field, and
triply periodic minimal surfaces (TPMS); and (2) a representation of the surface tension force, that
is, reduction of spurious velocities and pressure jump across the drop. And we also demonstrate
relation between the interfacial width and grid size. Across the interfacial region, the concentration
field varies from 0.1 to 0.9 over a distance of approximately 4

p
2� tanh�1.0.8/. Therefore, if we

want this value to be approximatelym (> 0) grid points, the � value needs to be taken as �m D hm=h
4
p
2 tanh�1.0.8/

i
. Figure 5 shows the concentration c.x/ D 0.5

�
1C tanh

�
x=.2
p
2�m/

��
with

mD 4, 8, 12, and 16. We will use various � that is suitable for each problem.

4.1. The Dirac delta function as a postprocessing of the phase field solution

In this section, we investigate the performance of each delta function as an interface length or a
surface area calculation tool. The interface length L and surface area A are defined as

L .c/D

NxX
iD1

NyX
jD1

ı.cij /h
2 and A .c/D

NxX
iD1

NyX
jD1

N´X
kD1

ı.cijk/h
3,

where Nx , Ny , and N´ are the number of grid points in the x, y, and ´ directions, respectively. The
discrete composition field cij (or cijk) is located at cell centers, and h is the uniform mesh size.

When there is no theoretical value of an interface length or a surface area, we need a reason-
able value corresponding to the theoretical value. To obtain a reasonable value, we take the initial
condition as

c.x,y, 0/D
1

2

 
1C tanh

 
0.25�

p
.x � 0.5/2C .y � 0.5/2

2
p
2�4

!!

on the computational domain � D .0, 1/ � .0, 1/, which represents a circle with a radius 0.25. We
calculate the length of a 0.5-level contour using MATLAB (The MathWorks, Inc., Natick, MA, USA).
The results with increasingly finer grids are given in Table II.
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Figure 5. The concentration c.x/D 0.5.1C tanh.x=.2
p
2�m/// with mD 4, 8, 12, and 16.

Table II. Comparison between the theoretical value and the length of contour.

Mesh 162 322 642 1282 Theoretical value

Interface length 1.565632 1.569770 1.570572 1.570778 2 r � 1.570796
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Table III. Comparison between the theoretical value and the area of isosurface.

Mesh 323 643 1283 2563 Theoretical value

Surface area 0.781695 0.784493 0.785185 0.785364 4 r2 � 0.785398

Next, the initial condition is

c.x,y, ´, 0/D
1

2

 
1C tanh

 
0.25�

p
.x � 0.5/2C .y � 0.5/2C .´� 0.5/2

2
p
2�4

!!

on � D .0, 1/ � .0, 1/ � .0, 1/, which represents a sphere with a radius 0.25. We compute the area
of an isosurface by summation of the areas of all triangle tiles in the isosurface using MATLAB. The
results with increasingly finer grids are given in Table III. The results in Tables II and III suggest
that the length of contour and the area of isosurface agree well with the theoretical value.

4.1.1. Test 1: length of line and circle. In Section 3, we explored the performance of delta functions
by the interface profile using Mathematica. To numerically explore the performance, we consider
two initial conditions on �D .0, 1/� .0, 1/:

c.x, y, 0/D
1

2

�
1C tanh

�
0.5� x

2
p
2a

��
and

c.x, y, 0/D
1

2

 
1C tanh

 
0.25�

p
.x � 0.5/2C .y � 0.5/2

2
p
2a

!!

for aD 0.5�8, �8, and 2�8. We choose hD 1=128 and �t D 10h.
Figures 6(a)–(c) (case of line) and 7(a)–(c) (case of circle) show the contour lines of concentration

with a D 0.5�8, �8, and 2�8, respectively. The length of line and circle for each delta function is
given in Table IV. From Table IV, it is observed that ı6 accurately calculates the length of line and
circle regardless of whether an interface transition is compressed (aD 0.5�8) or stretched (aD 2�8).
Figures 6(d) and 7(d) show the percentage error of each delta function of cases of line and circle by
representing them as histograms of various sizes, respectively.
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Figure 6. The length of line. The contour lines of concentration with (a) a D 0.5�8, (b) a D �8, and (c)
aD 2�8. Contour levels are 0.1, 0.2, : : : , 0.9. (d) The percentage error of each delta function.
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Figure 7. The length of circle. The contour lines of concentration with (a) aD 0.5�8, (b) aD �8, and
(c) aD 2�8. Contour levels are 0.1, 0.2, : : : , 0.9. (d) The percentage error of each delta function.

Table IV. The length of line and circle for each delta function.

Case a Contour value ı1 ı2 ı3 ı4 ı5 ı6 ı7 ı8

Line 0.5�8 1.0000 1.8556 0.5000 1.1778 1.7929 0.5000 1.0000 0.7500 1.7353
�8 1.0000 0.9804 1.0000 0.9902 0.9720 1.0000 1.0000 1.0000 0.9645
2�8 1.0000 0.4975 2.0000 1.2488 0.4964 2.0000 1.0000 1.5000 0.4955

Circle 0.5�8 1.5849 2.9677 0.7854 1.8766 2.8927 0.7854 1.5708 1.1781 2.8278
�8 1.5855 1.5473 1.5708 1.5590 1.5373 1.5708 1.5706 1.5707 1.5284
2�8 1.5857 0.7823 3.1416 1.9619 0.7810 3.1413 1.5704 2.3558 0.7799

4.1.2. Test 2: Rayleigh–Taylor instability. When a heavy fluid is superposed over a light fluid in a
gravitational field, the fluid interface is unstable. Any perturbation of this interface tends to grow
with time, producing the phenomenon known as the Rayleigh–Taylor instability. This phenomenon
represents the penetration of both heavy and light fluids into each other. The Rayleigh–Taylor insta-
bility for a fluid in a gravitational field was originally introduced by Rayleigh [75] and later applied
to all accelerated fluids by Taylor [76]. In order to simulate the Rayleigh–Taylor instability, the
Navier–Stokes–Cahn–Hilliard equations (NSCH) are preferred. The NSCH equations can be written
in a dimensionless form

	.c/.ut C u � ru/D�rpC
1

Re
�uC

	.c/

Fr
g,

r � uD 0,
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ct Cr � .cu/D
1

Pe
��,

�D f .c/�C�c,

where u is the velocity, p is the pressure, 	.c/D 	1cC 	2.1� c/ is the variable density (	1 and 	2
are the densities of the heavier and lighter fluid, respectively), and g D .0,�1/. The dimensionless
parameters are the Reynolds number, Re D 	�U�L�=
, Froude number, Fr D U 2� =.gL�/, Peclet
number, Pe D U�L�=.M��/, and Cahn number, C D �2=.��L

2
�/. The values with lower � are

characteristic values of corresponding ones, 
 is the viscosity, and g is the acceleration due to grav-
ity. Here, the effect of the surface tension is negligible. For a detailed description of the numerical
method used in solving the NSCH equations, please refer to Reference [77].

We calculate the length of the interface with three different Peclet numbers. The initial condition is

c.x,y, 0/D
1

2

�
1C tanh

�
y � 2� 0.1 cos.2 x/

2
p
2�

��

on �D .0, 1/� .0, 4/, which represents a planar interface superimposed by a perturbation of wave
number k D 1 and amplitude 0.1. The density ratio is 	1 W 	2 D 3 W 1, and we use the simulation
parameters such as the uniform grids hD 1=128, �t D 0.00125, � D 0.01, and ReD 3000.

Figure 8(a) shows the evolution of the interface with PeD 1=� at times t D 0, 1, and 2. The results
are given in Table V. In the numerical simulations of the Rayleigh–Taylor instability, as the Pe num-
ber increases, the width of an interface transition becomes nonuniform (Figures 8(b)–(d)). As a
result, the percentage error of almost all delta functions is high (Figure 9). But, the result obtained
using ı6 is in better agreement with the contour value, regardless of the Pe number.
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Figure 8. (a) The evolution of the interface with PeD 1=� at times t D 0, 1, and 2. The effect of the
Peclet number on the temporal evolution of the interface at time t D 2: (b) PeD 0.1=�, (c) PeD 1=�, and

(d) PeD 10=�. Contour levels are 0.1, 0.2, : : : , 0.9.

Table V. Rayleigh–Taylor instability: the interface length for each delta function.

Pe Contour value ı1 ı2 ı3 ı4 ı5 ı6 ı7 ı8

0.1=� 5.169 4.955 5.478 5.217 4.953 5.798 5.097 5.447 4.950
1=� 5.832 6.385 5.532 5.958 6.222 4.611 5.924 5.267 6.150
10=� 6.455 10.38 4.387 7.386 9.596 2.974 6.901 4.938 9.328

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 91:269–288
DOI: 10.1002/nme



DELTA FUNCTIONS FOR PHASE FIELD MODELS 279

0

10

20

30

40

50

60

E
rr

or
(%

)

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

Pe = 10
Pe = 1
Pe = 0 .1

Figure 9. Rayleigh–Taylor instability: the percentage error of each delta function.

4.1.3. Test 3: deformation of a circle by a single vortex. In this test, a circle is deformed with a
velocity field defined by u D k sin2. x/ sin.2 y/ and v D �k sin.2 x/ sin2. y/. In order to
demonstrate the capability of each delta function in an extreme velocity field, we choose k D 100,
which is much larger than values used in the previous experiments. This flow satisfies u D v D 0

on the boundaries of the unit square domain. As shown in Figure 10(a) by the dotted line, initially,
the circle has a radius of 0.15 and is centered at .0.50, 0.75/ in the unit square domain. The phase
field is initialized to c D 1 and c D 0 inside and outside the circle, respectively. The advection by
the vorticity field causes the circle to evolve into a filament that spirals toward the vortex center at
.0.5, 0.5/. The numerical solutions are computed on the uniform grids h D 1=128, and the calcula-
tion is run with �t D 0.00125=k and � D 0.01. Figure 10(a) shows the evolution of the interface at
times t D 0, 0.0025, and 0.005. The results are given in Table VI. For most of delta functions, except
ı6, the error is large because of the compressed interfacial transition (Figure 10(b)). But, as seen in
Section 3, ı6 yields a good result even though the interfacial transition is compressed (Figure 10(c)).
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Figure 10. (a) The evolution of the interface at times t D 0, 0.0025, and 0.005. (b) Contour lines of
concentration. Contour levels are 0.1, 0.2, : : : , 0.9. (c) The percentage error of each delta function.

Table VI. Deformed circle: the interface length for each delta function.

Contour value ı1 ı2 ı3 ı4 ı5 ı6 ı7 ı8

1.968 3.192 1.246 2.219 3.117 1.218 1.919 1.568 3.060
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4.1.4. Test 4: three-dimensional deformation field. We consider the problem of a deforming sphere
in a velocity field given by uD 2 sin2. x/ sin.2 y/ sin.2 ´/, v D � sin.2 x/ sin2. y/ sin.2 ´/,
and w D� sin.2 x/ sin.2 y/ sin2. ´/ [78]. A simulation of this problem has previously been per-
formed by Enright et al. using the level set method [79]. This flow satisfies u D v D w D 0 on the
boundaries of the unit cube domain. A sphere of radius 0.15 is placed within a unit computational
domain at .0.35, 0.35, 0.35/. We take hD 1=256, �t D 2.5e-4, �3, and PeD 0.1=�3.

Figure 11 shows the evolution of the interface at times t D 0, 0.2, 0.4, and 0.6. Each figure
can be compared with the figures from the level set computation in Reference [79]. The sphere
is entrained by two rotating vortices and then is compressed into a pancake-like shape. The sur-
face of the pancake-like shape becomes stretched out. Parts of the interface thin out to about a few
grid, and almost all delta functions have difficulty to calculate exactly the surface area of this thin
interface (see the results in Table VII). But, ı6 has very little error even if the surface is deformed.
Figure 12 shows the percentage error of each delta function by representing them as histograms of
various sizes.

(a) t = 0 (b) t = 0.2

(c) t = 0.4 (d) t = 0.6

Figure 11. Deformation test: the evolution of the interface. (a) t D 0, (b) t D 0.2, (c) t D 0.4, and (d) t D 0.6.

Table VII. Deformed sphere: the surface area for each delta function.

Isosurface value ı1 ı2 ı3 ı4 ı5 ı6 ı7 ı8

0.586 0.565 0.567 0.566 0.545 0.634 0.596 0.615 0.528

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 91:269–288
DOI: 10.1002/nme



DELTA FUNCTIONS FOR PHASE FIELD MODELS 281

0

2

4

6

8

10

12

14

E
rr

or
(%

)

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

t=0
t=0.3
t=0.6

Figure 12. Deformed sphere: the percentage error of each delta function.

(a) (b) (c)

Figure 13. Triply periodic minimal surfaces: (a) Schwarz primitive, (b) Schwarz diamond, and
(c) Schoen gyroid.

4.1.5. Test 5: triply periodic minimal surfaces. Triply periodic minimal surfaces (Figure 13) are
of special interest because they appear in a variety of real structures such as silicates, bicontinu-
ous mixtures, lyotropic colloids, detergent films, lipid bilayers, and biological formations [80]. One
important application of TPMS is tissue scaffolds. Tissue scaffolds should have an optimal surface
area and pore size to restore function or regenerate tissue more efficiently. The TPMS morphol-
ogy has been successfully adapted to tissue scaffolds [81]. To calculate surface areas of TPMS,
we take the periodic nodal surface approximations of the primitive (P), diamond (D), and gyroid
(G) TPMS [82]:

P.x,y, ´/D cos 2 xC cos 2 y C cos 2 ´C 0.5,

D.x,y, ´/D cos 2 x cos 2 y cos 2 ´� sin 2 x sin 2 y sin 2 ´C 0.5,

G.x,y, ´/D sin 2 x cos 2 y C sin 2 ´ cos 2 xC sin 2 y cos 2 ´C 0.5.

For these calculations, we employ the computational domain � D .0, 1/ � .0, 1/ � .0, 1/ with
h D 1=256, �t D 0.5h, and � D 0.01. We stop the numerical computations when the discrete
l2-norm of the difference between .nC 1/th and nth time step solutions becomes less than 10�6.
That is, jjcnC1 � cnjj 6 10�6. In Table VIII, we compare surface areas obtained using each delta
function with those obtained by Jung et al. [83]. As we can see from Figure 14, the error of ı6
is small.

4.2. The Dirac delta function in the surface tension force formulation

An accurate approximation of the surface tension force is essential for solving two-phase incom-
pressible fluid flows. The CSF model of Brackbill et al. [57] is employed extensively to model
the surface tension force of two-phase incompressible fluid flows in VOF [32, 61, 64, 84], level
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Table VIII. TPMS: the surface area for each delta function.

TPMS� ı1 ı2 ı3 ı4 ı5 ı6 ı7 ı8

P surface (2.34) 2.21 2.24 2.22 2.11 2.29 2.35 2.32 2.02
D surface (3.84) 3.57 3.63 3.60 3.39 3.80 3.82 3.81 3.22
G surface (3.10) 2.88 2.93 2.91 2.74 3.14 3.08 3.11 2.60

�From the results in Reference [83].
TPMS, triply periodic minimal surfaces; P, primitive; D, diamond; G, gyroid.
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Figure 14. Triply periodic minimal surfaces: the percentage error of each delta function. P, primitive; D,
diamond; G, gyroid.

set [46, 59], and phase field [19–21, 58, 60] methods. In the CSF model, surface tension forces
acting on the interface are transformed to volume forces in regions near the interface via a delta
function, SF D ��ın, where � is the surface tension coefficient, � is the curvature, ı is a delta
function concentrated on the interface, and n is the unit outward normal to the surface and defined
by nDrc=jrcj. We note the identity

r � nD��. (6)

For a derivation of Equation (6), see Reference [57]. The governing equations for two-phase
incompressible fluid flows can be written as [19–21]

	.ut C u � ru/D�rpC 
�u� �r �
�
rc

jrcj

�
ı.c/

rc

jrcj
,

r � uD 0,

ct Cr � .cu/DM��,

�D f .c/� �2�c.

(7)

For details of the numerical solution, we refer to Reference [19]. In this section, we present two tests
for the surface tension force.

4.2.1. Reduction of spurious velocities. Spurious or parasitic velocities are unphysical currents that
arise from a slight imbalance between stresses in the interfacial region. There are a number of papers
for spurious velocities in incompressible flow problems [35, 85–88]. Approximating and choosing
the surface tension force formulation accurately is important because an improper formulation will
lead to spurious velocities. In this section, we compare the performance of each delta function with
the similar test problem in Reference [64]. The computational domain is � D .0, 1/ � .0, 1/, and
the time step is �t D 10�5. The boundary conditions are zero velocity at the top and bottom walls,
and periodicity in x-direction. Initially, a circular drop is centered at .0.5, 0.5/, with radius a D 0.1
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and surface tension coefficient � D 0.357. Both fluids have equal density, 4, and viscosity, 1. The
initial velocity field is zero. The exact solution is zero velocity for all time. In dimensionless terms,
the relevant parameter is the Ohnesorge number OhD 
=

p
�	a 	 2.6463.

Table IX shows the convergence of spurious velocities as we refine the mesh size for each delta
function. Most delta functions show minor decreases as we refine the mesh. But, ı1, ı6, and ı7 show
a linear convergence of spurious velocities, and ı6 effectively eliminates spurious velocities than ı1
and ı7. In Figure 15, scaled velocity vector plots at 200th time step with �t D 10�5 are shown.
These show the locations of spurious velocities with mesh refinement, (a) h D 1=64, (b) 1=128,
and (c) 1=256 with � D 0.64h. Spurious velocities are mainly concentrated in the neighborhood of
the interface. The convergence of spurious velocities is evident as we refine the mesh size h and
interface parameter �.

4.2.2. Pressure jump across the drop. Let us consider the equilibrium of a drop placed within
another fluid. Let the drop composition be defined as

c.x,y/D
1

2

 
1C tanh

 
0.1�

p
.x � 0.5/2C .y � 0.5/2

2
p
2�

!!
.

In the equilibrium state of a droplet, the velocity vanishes (u� 0) and therefore Equation (7) reduces
to Equation (8) and therefore pressure gradient should balance surface tension force.

rp D��r �

�
rc

jrcj

�
ı.c/

rc

jrcj
. (8)

We solve Equation (9) numerically by taking the divergence operator to Equation (8) with � D 20,
128� 128 mesh, computational domain �D .0, 1/� .0, 1/, and � D 0.005.

�p D��r �

�
r �

�
rc

jrcj

�
ı.c/

rc

jrcj

	
. (9)

Table IX. l2-norm of velocity at 200th time step with � D 0.64h and �t D 10�5.

Case ı1 ı2 ı3 ı4 ı5 ı6 ı7 ı8

642 2.064e-5 4.460e-5 3.219e-5 3.010e-5 3.019e-5 2.232e-5 2.599e-5 4.463e-5
1282 1.112e-5 4.345e-5 2.663e-5 1.901e-5 1.820e-5 1.018e-5 1.389e-5 2.667e-5
2562 5.880e-6 4.264e-5 2.350e-5 1.325e-5 1.318e-5 4.653e-6 8.362e-6 2.137e-5
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Figure 15. Scaled velocity vector plots at 200th time step with �t D 10�5. These show the locations of
spurious velocities with mesh refinement, (a) hD 1=64, (b) hD 1=128, and (c) hD 1=256 with � D 0.64h.
The solid line in each figure represents the interface. The length of the arrow is proportional to the magnitude

of the velocity vector.
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Table X. The numerical pressure jump Œp� across the drop with � D 20 and RD 0.1.

Case ı1 ı2 ı3 ı4 ı5 ı6 ı7 ı8

Œp� 190.40 199.08 194.58 182.76 197.31 199.70 198.48 176.90

From Laplace’s formulation, we can obtain the theoretical prediction of the pressure jump inside
an infinite cylinder as �ptheo D �=R, where R is the drop radius. In this test, the pressure jump
�ptheo is 200. This value is compared with the difference between the maximum and the minimum
computed drop pressures obtained with each delta function, Œp�, defined as

Œp�Dmax
i ,j

pij �min
i ,j

pij .

As shown in Table X, the numerical pressure jump Œp� obtained using ı6 is in excellent agreement
with the theoretical prediction.

4.3. Relation between the interfacial width and grid size

With the mass conserving boundary condition (r� � n D 0 on @�), the differentiation of the total
mass yields

d

dt

Z
�

� dxD
Z
�

�t dxD
Z
�

�� dxD
Z
@�

r� � n ds D 0, (10)

where � is the phase field variable, and we redefine � as the difference between the concentration
of the two components. Equation (10) means that the solution of the CH equation conserves mass
over the entire domain. Even though the phase field variable is conserved globally, the mass of a
drop is liable to variations as the � evolves. Theoretically, such variations vanish as the interfacial
thickness approaches zero. But, in practice, the interfacial thickness is finite. This was pointed out
by Yue et al. [73]. To minimize the variations of mass, Yue et al. provided the guidelines on how to
pick the interfacial width and grid size relative to the radius of curvature. And the authors calculated
the shift of the phase field variable and found that the shift ı� is proportional to �=r0, where r0 is
the initial drop radius.

In this section, we perform numerical simulations of the spontaneous shrinking of a drop. A drop
with initial radius r0 D 0.75 and interfacial width �8.3281 (this value corresponds to the value in
Section 2.2 in Reference [73]) and �30 is simulated. The initial drop is at the center of the computa-
tional domain�D .�2, 2/�.�2, 2/, and a 128�128mesh is used. Figure 16(a),(b) shows the phase
field � at y D 0 for �8.3281 and �30, respectively. In the case of �8.3281, a grid size h is �8.3281=2,
and a 128 � 128 mesh is sufficient to guarantee numerical accuracy. Thus, we can see that � at the
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Figure 16. Each figure shows the phase field at y D 0. The interfacial width and grid size for each case are
as follows: (a) �8.3281 with a 1282 mesh, (b) �30 with a 1282 mesh, and (c) �30 with a 5122 mesh.
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Figure 17. Schematic illustration of the results of the five tests in Section 4.1.

equilibrium state shifts slightly away from the initial state. But, in the case of �30, a 128�128 mesh
is too coarse compared with that in �8.3281. As a result, the phase field disperses (Figure 16(b)). In
Figure 16(c), we use a 512� 512 mesh with �30 and obtain a more accurate result than the result in
Figure 16(b). Therefore, to guarantee numerical accuracy, we need to choose properly an interfacial
width and grid size.

5. CONCLUSION

In this paper, we presented and compared various types of delta functions for phase field models. In
particular, we analytically showed which type of delta function works relatively well regardless of
whether an interfacial phase transition is compressed or stretched. Numerical experiments were pre-
sented to show the performance of each delta function as a postprocessing of the phase field solution
and a representation of the surface tension force. Figure 17 summarizes the results of Section 4.1.
Numerical results indicated that (1) all of the considered delta functions have good performances
when the phase field is locally equilibrated; and (2) a delta function, which is the absolute value of
the gradient of the phase field, is the best in most of the numerical experiments.

APPENDIX A:

In this section, we present a Mathematica code to calculate the integral of regularized Dirac
delta functions.
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