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a b s t r a c t

In this article, we develop a new linear, decoupled, second-order accurate, and energy stable numerical
method for a modified phase-field surfactant model (Xu et al., 2020). The proposed scheme is a simple
and efficient variant of stabilized-scalar auxiliary variable (S-SAV) method. The proposed scheme not
only retains all advantages of S-SAV method but also simplifies the solution algorithm. The phase-field,
surfactant, and auxiliary variables are totally decoupled in time, thus we can solve the whole system
in a step-by-step manner. The phase-field function φ and surfactant ψ can be separately updated by
solving two linear semi-implicit systems with constant coefficients and then the auxiliary variable
is directly updated in an explicit way. We analytically prove the energy stability and the unique
solvability of the proposed method. The numerical experiments show the desired temporal accuracy
and energy stability. We numerically investigate the proper stabilization coefficients for the present
scheme with specific parameters. Furthermore, various two- and three-dimensional benchmark tests
are performed to study the dynamics of surfactant-laden phase separation.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The surfactant is an amphiphilic organic compound, which
ontains a hydrophilic head and a hydrophobic tail. Due to its
pecial structure, the surfactant has various applications in in-
ustrial fields, such as food processing [1], liquid emulsion [2],
nd oil recovery [3,4], etc. To numerically study the dynamics
f surfactant, some successful works had been performed based
n volume-of fluid method [5], level-set method [6,7], immersed
oundary method [8], lattice Boltzmann method [9], and phase-
ield method [3,10,11] in the past twenty years. In a pioneering
ork, Laradji et al. [12] studied the effect of surfactant on phase
eparation. Recently, Engblom et al. [13] used the phase-field
ethod to simulate the dynamics of surfactant in two-phase

low systems. In phase-field model, many governing equations
an be derived from a free energy functional. In general, the
ree energy functional has a basic physical property, i.e., energy
issipation law. To preserve this important property in computa-
ional simulation, researchers recently developed energy dissipa-
ion preserving numerical methods for the phase-field surfactant
odels.

✩ The review of this paper was arranged by Prof. D.P. Landau.
∗ Corresponding author.

E-mail address: cfdkim@korea.ac.kr (J. Kim).
URL: http://math.korea.ac.kr/~cfdkim (J. Kim).
ttps://doi.org/10.1016/j.cpc.2021.107825
010-4655/© 2021 Elsevier B.V. All rights reserved.
Based on the convex splitting approach, Gu et al. [14] de-
veloped an energy stable finite difference method for the bi-
nary phase-field surfactant system. Recently, the invariant energy
quadratization (IEQ) approach and the scalar auxiliary variable
(SAV) approach become popular for phase-field models. Based
on the IEQ approach, Yang [15] developed linear and energy
stable method for a phase-field surfactant model. However, the
analytical energy estimation only holds for temporally first-order
scheme. Later, Yang and Ju [16] constructed second-order accu-
rate and energy stable method for a modified model by using the
IEQ approach. Zhu et al. [17] proposed an efficient and energy
stable scheme for a phase-field surfactant with Flory–Huggins
potential by using the classical SAV approach, however the strict
energy estimation is valid only for first-order accurate scheme.
Zhu et al. [18] later extended their method to the phase-field sur-
factant model with incompressible fluid flows. Based on the SAV
approach, Sun et al. [19] numerically investigated the dynamics
of phase-field surfactant system on various curved surfaces.

In this study, we consider a recently developed phase-field
surfactant model [20]. Let φ be the phase-field variable which
is close to 1 in one phase and −1 in the other phase. The total
energy functional on Ω can be expressed as

E(φ,ψ) = E1(φ) + E2(ψ) + E3(φ,ψ), (1)

where

E1(φ) =

∫ (γ1
|∇φ|

2
+ F (φ)

)
dx, (2)
Ω 2
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Fig. 1. Schematic illustration of surfactant distribution across two-phase fluid
interface.

E2(ψ) =

∫
Ω

(γ2
2

|∇ψ |
2
+ G(ψ)

)
dx, (3)

3(φ,ψ) =

∫
Ω

(
−
θ

2
ψ |∇φ|

2
+
ξ

4
|∇φ|

4
)
dx, (4)

F (φ) =
1

4ϵ2
(
φ2

− 1
)2
, (5)

G(ψ) =
1

4η2
ψ2(ψ − ψs)2. (6)

The parameters γ1, γ2, θ, ξ , ϵ, and η are all positive. In E1(φ),
the fourth-order polynomial potential F (φ) describes the phase
separation and the gradient term |∇φ|

2 leads to the mixing. In
E2(ψ), G(ψ) is another fourth-order polynomial potential which
makes the surfactant concentration equal to zero in the bulk
phases (φ = ±1) and reach its maximum ψs at the interface
φ = 0. Here, ψs is considered as the density of condensed
hydrocarbon chains of surfactant [20]. The one-dimensional il-
lustration of surfactant-laden two-phase system at equilibrium
state is shown in Fig. 1. In E3(φ,ψ), the coupling term −

θ
2ψ |∇φ|

2

s important in the interaction of fluid mixture and surfactant.
t describes the concentration of surfactant accumulates on the
nterface. However, this part is not strictly bounded from below
ecause ψ is positive. Hence, Xu et al. [20] added the term ξ

4 |∇φ|
4

o fix this problem. Similar idea can also be found in [21]. Note
or any ξ > 0, we have

θ

2
ψ |∇φ|

2
+
ξ

4
|∇φ|

4
=
ξ

4
(|∇φ|

2
−
θ

ξ
ψ)2 −

θ2

4ξ
ψ2. (7)

It is obvious that the last negative term can be bounded by the
fourth-order polynomial term in E2(ψ).

By taking the variational derivatives of Eq. (1) with respect to
φ and ψ , we have

φt = Mφ∆µφ, (8)

µφ = −γ1∆φ − ξ∇ · (|∇φ|
2
∇φ) + F ′(φ) + θ∇ · (ψ∇φ), (9)

ψt = Mψ∆µψ , (10)

µψ = −γ2∆ψ + G′(ψ) −
θ

2
|∇φ|

2, (11)

here the subscript t indicates the time derivative, F ′(φ) =
1
ϵ2
(φ3

−φ), G′(ψ) =
1
η2
ψ(ψ−ψs)(ψ−

ψs
2 ), Mφ and Mψ are positive

and constant mobilities. On all boundaries of domain Ω , we can
use the periodic boundary condition or zero-Neumann boundary
condition, i.e., ∂nφ|∂Ω= ∂nψ |∂Ω= ∇µφ · n|∂Ω= ∇µψ · n|∂Ω= 0,
where n represents the unit normal vector to the boundary ∂Ω .
We can prove that the system (8)–(11) combining with the above
2

boundary conditions satisfies the mass conservation, i.e.,
d
dt

∫
Ω

φdx =
d
dt

∫
Ω

ψdx = 0. (12)

hen, we define the operations (·, ·) and ∥ · ∥ be the L2-inner
roduct and its norm. By taking the L2-inner product of Eq. (8)
ith µφ , Eq. (9) with −φt , of Eq. (10) with µψ , of Eq. (11) with
ψt , and combining them together, we can show the following
nergy law
d
dt

E(φ,ψ) = −Mφ∥∇µφ∥
2
− Mψ∥∇µψ∥

2
≤ 0, (13)

here the integration by parts is used. This indicates the system
atisfies the energy dissipation.
To solve this phase-field surfactant model (8) and (9), Xu

t al. [20] presented an efficient, second-order accurate, and
inear numerical scheme by using the stabilized-scalar auxiliary
ariable (S-SAV) approach. In their work, the phase-field func-
ions and auxiliary variables are still coupled with each other.
n this study, we develop an alternative numerical scheme based
n a recently developed step-by-step solving SAV approach [22].
n the proposed method, the phase-field function, surfactant, and
uxiliary variable are totally decoupled in time. We only need to
olve two semi-implicit systems with constant coefficients and
hen directly update auxiliary variable by an explicit way. For
he SAV type method, the basic idea is to change the original
quations into an equivalent form by using a time-dependent
uxiliary variable. In actual computation, all nonlinear terms are
reated explicitly for the purpose of efficiency. However, explicit
onlinear terms will affect the accuracy if time step is large
nough or the nonlinear effect is dominant. To maintain the
esired accuracy at some larger time steps, the stabilization tech-
ique [20,23,24] is adopted, where two extra linear stabilization
erms are added to suppress the nonlinear effects and enhance
he stability. We numerically validate this in Section 4.1. The
rrors caused by the extra linear stabilization terms are of the
rder Cφ(∆t)pφ(·) and Cψ (∆t)pψ(·) [20], where Cφ and Cψ are
onstants,∆t is the time step, p = 1 or 2 with respect to the first-
r second-order time-accurate scheme. Note that these errors are
he same order as the errors caused by the first- or second-order
pproximation of nonlinear parts. In fact, our proposed scheme
s an efficient variant of S-SAV method in [20], which retains all
dvantages of S-SAV method and simplifies the algorithm. To the
est of author’s knowledge, this is the first work focusing on this
ariant S-SAV approach for a new modified phase-field surfactant
odel [20].
The outline of this paper is as follows. We describe the equiv-

lent governing equations in Section 2. We construct the linear,
ecoupled, and energy stable numerical scheme and analytically
rove the discrete energy dissipation law and unique solvability
n Section 3. Various computational experiments are presented in
ection 4. The conclusions are given in Section 5.

. Equivalent governing equations

The basic idea of SAV approach [25–27] is to change the origi-
al governing equations into equivalent version by using a scalar
uxiliary variable, and then construct various linear, energy stable
emporal schemes based on the equivalent governing equations.
n this study, we define the following auxiliary variable r(t) as

(t) =

∫
Ω

(
F (φ) + G(ψ) −

θ

2
ψ |∇φ|

2
+
ξ

4
|∇φ|

4
)
dx + C, (14)

here C is a large enough positive constant such that r(t) is
positive. Thus, C should satisfy the following relation

>

[
−

∫ (
F (φ) + G(ψ) −

θ
ψ |∇φ|

2
+
ξ
|∇φ|

4
)
dx
]

,

Ω 2 4 max
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here the subscript ‘max’ indicates the maximum value. Because
he minimum values of F (φ), G(ψ), and ξ

4 |∇φ|
4 are zero, we have

>

[∫
Ω

θ

2
ψ |∇φ|

2dx
]
max

.

In the thermodynamical phase-field model [28], the equilibrium
profile satisfies |∇φ|

2

2 =
(φ2−1)2

4ϵ2
. Because the maximum value of

ψ is approximately ψs = 1, we can rewrite the above inequality
as follows

C >
θ |Ω|

4ϵ2
[
(φ2

− 1)2
]
max =

θ |Ω|

4ϵ2
,

here |Ω| represents the area (volume) of the computational
omain in 2D (3D) space. This provides a criterion for choosing
he value of C . Practically, C ≥ 1e4 is used, which is a large
nough value in the most of numerical computations [20,21]. The
umerical results in Section 4 indicate this value works well for
ll simulations. Using r(t), we can rewrite the original energy
unctional (1) as

(φ,ψ, r) =

∫
Ω

(γ1
2

|∇φ|
2
+
γ2

2
|∇ψ |

2
)
dx + r − C . (15)

y taking the variational derivatives of the above equivalent
nergy with respect to φ andψ , we drive the following equivalent
overning equations

φt = Mφ∆µφ, (16)

µφ = −γ1∆φ + Pr, (17)

ψt = Mψ∆µψ , (18)

µψ = −γ2∆ψ + Qr, (19)

rt =

∫
Ω

(Pφt + Qψt) rdx, (20)

where

P =
−ξ∇ · (|∇φ|

2
∇φ) + F ′(φ) + θ∇ · (ψ∇φ)∫

Ω

(
F (φ) + G(ψ) −

θ
2ψ |∇φ|

2
+

ξ

4 |∇φ|
4) dx + C

, (21)

=
G′(ψ) −

θ
2 |∇φ|

2∫
Ω

(
F (φ) + G(ψ) −

θ
2ψ |∇φ|

2
+

ξ

4 |∇φ|
4) dx + C

. (22)

Remarks. We claim Eqs. (16)–(20) are equivalent to Eqs. (8)–
11). We can observe that the numerators in Eqs. (21) and (22) are
he nonlinear and coupling terms in Eq. (9) and (11), respectively.
he denominator in Eqs. (21) and (22) is the right-hand side of
q. (14). By using the definition of r in Eq. (14), it is clear that
qs. (16)–(19) indeed are the original equations, Eqs. (8)–(11). As
or the ordinary differential equation, Eq. (20), it can be observed
hat its solution satisfies the definition of r in Eq. (14) if we take
he integral of Eq. (20) with respect to time.

heorem 2.1. The equivalent governing Eqs. (16)–(20) satisfy the
ollowing energy dissipation law d

dt E(φ,ψ, r) ≤ 0, where
(φ,ψ, r) =

γ1
2 ∥∇φ∥

2
+

γ2
2 ∥∇ψ∥

2
+ r − C.

roof. Taking the L2-inner product of Eq. (16) with µφ and using
he integration by parts, we have

φt , µφ) = −Mφ∥∇µφ∥
2. (23)

aking the L2-inner product of Eq. (17) with −φt , we have

(φt , µφ) = (γ1∆φ, φt ) − (Pr, φt ) = −
γ1

2
d
dt

∥∇φ∥
2
− (Pr, φt ).

(24)
3

Taking the L2-inner product of Eq. (18) with µψ and using the
integration by parts, we have

(ψt , µψ ) = −Mψ∥∇µψ∥
2. (25)

Taking the L2-inner product of Eq. (19) with −ψt , we have

−(ψt , µψ ) = (γ2∆ψ,ψt ) − (Qr, ψt ) = −
γ2

2
d
dt

∥∇ψ∥
2
− (Qr, ψt ).

(26)

From Eq. (20), we have

rt = (Pr, φt ) + (Qr, ψt ). (27)

Combining Eqs. (23)–(27) together, we derive

γ1

2
d
dt

∥∇φ∥
2
+
γ2

2
d
dt

∥∇ψ∥
2
+ rt = −Mφ∥∇µφ∥

2
− Mψ∥∇µψ∥

2
≤ 0,

(28)

which indicates the equivalent governing equations still satisfy
the energy dissipation law.

3. Numerical scheme

In this study, we develop the following linear, temporally
second-order accurate, and decoupled numerical scheme for Eqs.
(16)–(20) based on the Crank–Nicolson (CN) temporal discretiza-
tion
φn+1

− φn

∆t
= Mφ∆µ

n+ 1
2

φ , (29)

µ
n+ 1

2
φ = −γ1

(
∆φn+1

+∆φn

2

)
+ P∗r∗

+
Sφ
ϵ2

(
φn+1

+ φn

2
− φ∗

)
, (30)

ψn+1
− ψn

∆t
= Mψ∆µ

n+ 1
2

ψ , (31)

µ
n+ 1

2
ψ = −γ2

(
∆ψn+1

+∆ψn

2

)
+ Q ∗r∗

+
Sψ
η2

(
ψn+1

+ ψn

2
− ψ∗

)
, (32)

rn+1
− rn

∆t
=

∫
Ω

[
P∗r∗

(
φn+1

− φn

∆t

)
+Q ∗r∗

(
ψn+1

− ψn

∆t

)]
dx, (33)

here the time step is ∆t = Tt/Nt , Tt and Nt are the total com-
putational time and the number of time iteration, respectively.
Sφ and Sψ are positive and constant stabilization coefficients.
The superscript ‘‘ ∗ " represents the explicit extrapolation for
the information at n +

1
2 time level. Here, we will use φ∗

=
3
2φ

n
−

1
2φ

n−1, ψ∗
=

3
2ψ

n
−

1
2ψ

n−1, P∗
=

3
2P

n
−

1
2P

n−1, Q ∗
=

3
2Q

n
−

1
2Q

n−1, and r∗
=

3
2 r

n
−

1
2 r

n−1.
Note that the phase-field function φ, surfactant ψ , and auxil-

ary variable r are decoupled with each other, thus we can first
pdate φn+1 from Eqs. (29) and (30), then update ψn+1 from
qs. (31) and (32). Here, both Eqs. (29)–(30) and Eqs. (31)–(32)
re linear and semi-implicit systems with constant coefficients,
ny fast spatial solver (FFT [29], multigrid [30], etc.) can be used.
inally update rn+1 by Eq. (33) in an explicit way. Thus, our
lgorithm in one time iteration is easy to implement. Because our
cheme needs the information at n− 1 and n time levels, we can
se the temporally first-order scheme as the ignition step. Please
efer to Appendix for the description of temporally first-order
cheme.
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emarks. In this subsection, the temporally second-order accu-
ate and energy stable scheme is designed based on the equiv-
lent Eqs. (16)–(20). In fact, if we want to solve the original
qs. (8)–(11), the simplest time marching numerical methods are
he fully explicit and fully implicit schemes, however it is well
nown that fully explicit or fully implicit scheme do not satisfy
he energy stability due to the existence of nonlinear and coupling
erms if a large time step is used. Especially, the coupling term
n the last part of Eq. (9) causes difficulties in analysis if one
ants to develop a second-order time accurate and uncondition-
lly energy stable scheme. This problem has been reported in
revious works [15,17]. Furthermore, the implicit treatment of
onlinear or coupling term will lead to a tedious and coupled
ystem, which makes the numerical computation be complex and
ostly. Based on the original Eqs. (8)–(11), a linear, decoupled, and
emporally second-order scheme can be proposed by using the
inear stabilization approach as follows

φn+1
− φn

∆t
= Mφ∆µ

n+ 1
2

φ , (34)

µ
n+ 1

2
φ = −γ1

(
∆φn+1

+∆φn

2

)
− ξ∇ · (|∇φ∗

|
2
∇φ∗)

+ F ′(φ∗) + θ∇ · (ψ∗
∇φ∗) +

S1
ϵ2

(
φn+1

+ φn

2
− φ∗

)
(35)

ψn+1
− ψn

∆t
= Mψ∆µ

n+ 1
2

ψ , (36)

µ
n+ 1

2
ψ = −γ2

(
∆ψn+1

+∆ψn

2

)
+ G′(ψ∗) −

θ

2
|∇φ∗

|
2

+
S2
η2

(
ψn+1

+ ψn

2
− ψ∗

)
, (37)

here S1 and S2 are two positive stabilization coefficients. The
bove scheme explicitly treats all nonlinear and coupling terms,
hus we can efficiently update φn+1 and ψn+1 because they are
otally decoupled with each other. A similar technique can be
ound in [31] where the authors used this method to simulate the
hase-field dendritic growth model. Although the above scheme
eemingly works well at numerical level with the properly chosen
alues of S1 and S2, it still cannot satisfy the unconditionally
nergy stability due to the existence of nonlinear and coupling
erms. In the following simulations, we will not consider the
bove scheme because this work only focuses on an energy stable
ethod. In the present S-SAV scheme (29)–(33), due to the extra
quation, Eq. (33), related to phase-field variables and auxiliary
ariable, all nonlinear and coupling terms can be eliminated when
e perform the energy estimation. Therefore, the unconditional
nergy stability can be easily proved by using our proposed
cheme, some details can be found in Section 3.1. When we
pdate φn+1 and ψn+1 by Eqs. (29)–(30) and Eqs. (31)–(32), the
otal computational cost will be larger than the original equation-
ased scheme (34)–(37). The equations in both schemes can be
hought as linear elliptic equations with constant coefficients. For
ur proposed scheme, the extra step is to update rn+1 by Eq. (33),
e note this step needs to calculate the inner products. Moreover,
he inner product on the right-hand side of Eq. (14) needs to be
pdated in each time cycle. Therefore, the total computation may
equire more time. We numerically validate this in Section 4.3
or a relatively long-time simulation, the results indicate the
omputational costs introduced by our scheme (29)–(33) and
riginal equation-based scheme (34)–(37) are of the same order.

.1. Discrete energy dissipation law

Next, we will show that our proposed scheme (16)–(20) sat-
sfies the temporally discrete energy dissipation law by proving
he following theorem.
4

Theorem 3.1. If φn+1, φn, φn−1, ψn+1, ψn, ψn−1, rn+1, and rn are
the solutions of Eqs. (16)–(20), then the following temporally discrete
nergy dissipation law is satisfied for any time step ∆t.

˜(φn+1, φn, ψn+1, ψn, rn+1) ≤ Ẽ(φn, φn−1, ψn, ψn−1, rn), (38)

here the modified energy functional at n and n− 1 time levels are
efined as

˜(φn, φn−1, ψn, ψn−1, rn) =
γ1

2
∥∇φn

∥
2
+
γ2

2
∥∇ψn

∥
2

+
Sφ
4ϵ2

∥φn
− φn−1

∥
2

+
Sψ
4η2

∥ψn
− ψn−1

∥
2
+ rn − C . (39)

Proof. Taking the L2-inner product of Eq. (29) with ∆tµ
n+ 1

2
φ , we

get

(φn+1
− φn) = −∆tMφ∥∇µ

n+ 1
2

φ ∥
2. (40)

Taking the L2-inner product of Eq. (30) with −(φn+1
− φn), we

obtain

−(µ
n+ 1

2
φ , φn+1

− φn) = γ1

(
∆φn+1

+∆φn

2
, φn+1

− φn
)

−(P∗r∗, φn+1
− φn)

−
Sφ
ϵ2

(
φn+1

+ φn

2
− φ∗, φn+1

− φn
)
, (41)

where

γ1

(
∆φn+1

+∆φn

2
, φn+1

− φn
)

= −
γ1

2
(∇φn+1

+∇φn,∇φn+1
− ∇φn)

= −
γ1

2
(∥∇φn+1

∥
2
− ∥∇φn

∥
2),

−
Sφ
ϵ2

(
φn+1

+ φn

2
− φ∗, φn+1

− φn
)

= −
Sφ
ϵ2

(
φn+1

+ φn

2
−

(
3
2
φn

−
1
2
φn−1

)
, φn+1

− φn
)

= −
Sφ
2ϵ2

(φn+1
+ φn, φn+1

− φn) +
Sφ
2ϵ2

(3φn
− φn−1, φn+1

− φn)

= −
Sφ
2ϵ2

(∥φn+1
∥
2
− ∥φn

∥
2) +

Sφ
2ϵ2

(∥φn+1
− ∥ φn

∥
2

−
1
2
(∥φn+1

− φn
∥
2
− ∥φn

− φn−1
∥
2
+ ∥φn+1

− 2φn
+ φn−1

∥
2
))

= −
Sφ
4ϵ2

(∥φn+1
− φn

∥
2
− ∥φn

− φn−1
∥
2
+ ∥φn+1

− 2φn
+ φn−1

∥
2
).

Therefore, we have

−(µ
n+ 1

2
φ , φn+1

− φn) = −
Sφ
4ϵ2

(∥φn+1
− φn

∥
2
− ∥φn

− φn−1
∥
2

+∥φn+1
− 2φn

+ φn−1
∥
2)

−
γ1

2
(∥∇φn+1

∥
2

−∥∇φn
∥
2) − (P∗r∗, φn+1

− φn). (42)

aking the L2-inner product of Eq. (31) with ∆tµ
n+ 1

2
ψ , we get

(ψn+1
− ψn, µ

n+ 1
2 ) = −∆tMψ∥∇µ

n+ 1
2
∥
2. (43)
ψ ψ
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Fig. 2. The initial profiles of (a) φ and (b) ψ .
Table 1
L2-errors and convergence rates of φ and ψ (data in parentheses bracket) with different time steps.
The numerical reference is obtained with ∆t r = 2.4096e-5 at t = 0.03.
∆t 4∆t r 8∆t r 16∆t r 32∆t r 64∆t r

S = 0: 8.11e-8 3.41e-7 1.38e-6 5.56e-6 7.90e-4
(1.97e-8) (8.31e-8) (3.39e-7) (1.38e-6) (4.10e-2)

Rate 2.07 2.02 2.01 7.15
(2.08) (2.03) (2.03) (14.86)

S = 2: 2.67e-7 1.08e-6 4.35e-6 1.75e-5 7.06e-5
(7.90e-9) (3.53e-8) (1.46e-7) (6.01e-7) (4.58e-6)

Rate 2.02 2.01 2.01 2.01
(2.016) (2.06) (2.04) (2.93)

S = 6: 6.63e-7 2.67e-6 1.07e-5 4.30e-5 1.74e-4
(2.19e-8) (8.42e-8) (3.35e-7) (1.34e-6) (5.44e-6)

Rate 2.01 2.00 2.01 2.02
(1.95) (1.99) (2.00) (2.02)

S = 10: 1.06e-6 4.26e-6 1.71e-5 6.88e-5 2.80e-4
(4.81e-8) (1.89e-7) (7.57e-7) (3.05e-6) (1.25e-5)

Rate 2.01 2.00 2.01 2.03
(1.98) (2.00) (2.01) (2.03)
F

r

d

r

+

+

T

Taking the L2-inner product of Eq. (32) with −(ψn+1
− ψn), we

btain

(µ
n+ 1

2
ψ , ψn+1

− ψn) = γ2

(
∆ψn+1

+∆ψn

2
, ψn+1

− ψn
)

−(Q ∗r∗, ψn+1
− ψn)

−
Sψ
η2

(
ψn+1

+ ψn

2
− ψ∗, ψn+1

− ψn
)
, (44)

where

γ2

(
∆ψn+1

+∆ψn

2
, ψn+1

− ψn
)

−
γ2

2
(∇ψn+1

+ ∇ψn,∇ψn+1
− ∇ψn)

= −
γ2

2
(∥∇ψn+1

∥
2
− ∥∇ψn

∥
2),

−
Sψ
η2

(
ψn+1

+ ψn

2
− ψ∗, ψn+1

− ψn
)

−
Sψ
η2

(
ψn+1

+ ψn

2
−

(
3
2
ψn

−
1
2
ψn−1

)
, ψn+1

− ψn
)

−
Sψ
2η2

(ψn+1
+ ψn, ψn+1

− ψn) +
Sψ
2η2

(3ψn
− ψn−1, ψn+1

− ψn)

= −
Sψ
2η2

(∥ψn+1
∥
2
− ∥ψn

∥
2) +

Sψ
2η2

(∥ψn+1
− ∥ ψn

∥
2

1
2
(∥ψn+1

− ψn
∥
2
− ∥ψn

− ψn−1
∥
2
+ ∥ψn+1

− 2ψn
+ ψn−1

∥
2))

−
Sψ (∥ψn+1

− ψn
∥
2
− ∥ψn

− ψn−1
∥
2
+ ∥ψn+1

− 2ψn
+ ψn−1

∥
2).
4η2

5

Therefore, we obtain

−(µ
n+ 1

2
ψ , ψn+1

− ψn) = −
Sψ
4η2

(∥ψn+1
− ψn

∥
2
− ∥ψn

− ψn−1
∥
2

+∥ψn+1
− 2ψn

+ ψn−1
∥
2)

−
γ2

2
(∥∇ψn+1

∥
2
− ∥∇ψn

∥
2)

−(Q ∗r∗, ψn+1
− ψn). (45)

rom Eq. (33), we have

n+1
− rn = (P∗r∗, φn+1

− φn) + (Q ∗r∗, ψn+1
− ψn). (46)

Combining Eqs. (40), (42), (43), (45), and (46) together, we can
erive that

n+1
− rn +

γ1

2
(∥∇φn+1

∥
2
− ∥∇φn

∥
2)

+
γ2

2
(∥∇ψn+1

∥
2
− ∥∇ψn

∥
2)

Sφ
4ϵ2

(∥φn+1
− φn

∥
2
− ∥φn

− φn−1
∥
2
+ ∥φn+1

− 2φn
+ φn−1

∥
2)

Sψ
4η2

(∥ψn+1
− ψn

∥
2
− ∥ψn

− ψn−1
∥
2

+∥ψn+1
− 2ψn

+ ψn−1
∥
2)

= −∆tMφ∥∇µ
n+ 1

2
φ ∥

2
−∆tMψ∥∇µ

n+ 1
2

ψ ∥
2

≤ 0. (47)

he proof is completed.
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Fig. 3. The initial profiles of (a) φ and (b) ψ .
Fig. 4. Snapshots of φ and ψ at t = 40 with respect to different time steps. The time steps are ∆t = 1, 0.5, 0.1, 0.05, 0.01, and 0.001 with respect to (a)–(f),
espectively.
w

µ

.2. Unique solvability

In this part, we will prove our proposed scheme admits unique

olution pairs (φn+1, µ
n+ 1

2
φ ) and (ψn+1, µ

n+ 1
2

ψ ). Because the vari-
bles φ, ψ , and r are decoupled in one time iteration, we can
rove them separately. We first focus on the proof for φ. Taking
he L2-inner product of Eq. (29) with 1, we get

φn+1dx =

∫
φndx = · · · =

∫
φ0dx. (48)
Ω Ω Ω

6

Let Vφ =
1

|Ω|

∫
Ω
φ0dx and Vµ =

1
Ω

∫
Ω
µ

n+ 1
2

φ dx be the mean values,
then we define

φ̂n+1
= φn+1

− Vφ, µ̂φ
n+ 1

2 = µ
n+ 1

2
φ − Vµ, (49)

here (φ̂n+1, µ̂φ
n+ 1

2 ) are the solutions of the following equations
with unknowns (φ,µφ)

1
Mφ∆t

φ −∆µφ = f , (50)

φ + Vµ +
γ1
∆φ −

Sφ
φ = g, (51)
2 2ϵ2
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w

Fig. 5. Temporal evolutions of normalized (a) original energy functional and (b) modified energy functional with respect to different time steps.
Fig. 6. The profiles of φ and ψ obtained by the LS and the S-SAV approaches. The left and right subfigures are at t = 4 and 40.
w

(

here f =
1

Mφ∆t φ̂
n and g = P∗r∗

−
Sφ
2ϵ2
φ̂n

−
γ1
2 ∆φ

n
−

Sφ
ϵ2
φ∗.

For a mean zero variable ν, we can define the following inverse
Laplacian operation

ν̃ := ∆−1ν, ∆ν̃ = ν, (52)

where ν̃ is mean zero. Here, the periodic or zero-Neumann
boundary conditions will be used. By applying −∆−1 to Eq. (50)
and using Eq. (51), we obtain

−
1

Mφ∆t
∆−1φ − Vµ −

γ1

2
∆φ +

Sφ
2ϵ2

φ = −∆−1f − g. (53)

The above linear system can be recast to be A(φ) = b. For any
variables φ1 and φ2 satisfying the mean zero condition and proper
boundary condition, we get

(A(φ1), φ2) = −
1

Mφ∆t
(∆−1φ1, φ2) +

(
Sφ
2ϵ2

φ1 −
γ1

2
∆φ1, φ2

)
≤ B1(∥∇∆−1φ1∥ · ∥∇∆−1φ2∥ + ∥∇φ1∥ · ∥∇φ2∥

+∥φ1∥ · ∥φ2∥)
≤ B2∥φ1∥H1 · ∥φ2∥H1 , (54)

where B1 and B2 are constants that depend on parameters ∆t,
Mφ, Sφ, ϵ, and γ1, etc. The notation ∥ · ∥H1 is the H1(Ω) norm.
We find the bilinear form (A(φ ), φ ) is bounded for any φ and
1 2 1

7

Fig. 7. Computational costs required by the LS and the S-SAV approaches.

φ2 in H1(Ω). For any variable φ satisfying mean zero condition,
e have

A(φ), φ) =
1

Mφ∆t
∥∇∆−1φ∥

2
+
γ1

2
∥∇φ∥

2
+

Sφ
2ϵ2

∥φ∥
2

≥ B3∥φ∥
2
H1 ,

(55)
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Fig. 8. Temporal evolution of phase separation with φ̄ = −0.5. The subfigures (a)–(h) are at t = 0.4, 1, 2, 4, 10, 20, 30, 40.
4

a
c
E
s
A
[

0

here B3 is a constant that depends on some parameters ∆t,
φ, Sφ, ϵ, and γ1, etc. Therefore, the bilinear form is coercive. By
sing the Lax–Milgram theorem, we conclude that Eqs. (50) and
51) admit a unique solution in H1(Ω). Moreover, we also find
hat (A(φ1), φ2) = (φ1, A(φ2)), which means A is self-adjoint. From
q. (55), it is easy to find that (A(φ), φ) ≥ 0, where ‘‘ = " holds if
nd only if φ = 0. We can conclude that the linear operator A is
ositive definite. Now, we have proved the existence of unique
olution for Eqs. (29)–(30). Note that the same process can be
irectly used to prove the unique solvability of Eqs. (31)–(32) for
, we will omit them and leave those similar steps to interested
eaders. After φ and ψ are known, r can be directly updated by
q. (33) in an explicit manner, its unique solvability is obvious.

emarks. In this section, we can observe that the main contri-
utions of auxiliary variable r are at numerical computation and
nergy stable analysis: (i) Based on the equivalent equations, we
an treat all nonlinear and coupling terms in an explicit way,
hus the numerical scheme is linear, decoupled and very easy
o implement. (ii) Adding an auxiliary variable leads to an extra
overning equation. By using this extra equation related to phase-
ield variables and auxiliary variable, the unconditionally energy
tability of the whole system can be easily established because all
onlinear and coupling terms are eliminated in the proof.
 ψ

8

. Numerical experiments

In this work, we only focus on an efficient temporal scheme for
new modified phase-field surfactant model [20]. The spatial dis-
retization is based on the standard finite difference formulation.
fficient linear multigrid algorithm is used for solving the discrete
ystem. Please refer to [30] for some details of multigrid method.
ll tests are conducted on the two-dimensional domain Ω2

=

0, 2π ]
2 or the three-dimensional domain Ω3

= [0, 2π ]
3 with

mesh size h = π/64. The periodic boundary condition and the
following parameters: γ1 = γ2 = 1, Mφ = Mψ = 0.0001, ϵ =

.04, η = 0.04, θ = 0.5, ξ = 0.001, ψs = 1, C = 1e6 are used
without specific needs.

4.1. Accuracy test

To numerically verify the temporally second-order accuracy of
our scheme, we consider the following initial conditions

φ(x, y, 0) = tanh

(
0.4π −

√
(x − 0.6π )2 + (y − π )2

√
2ϵ

)

+ tanh

(
0.4π −

√
(x − 1.4π )2 + (y − π )2

√
2ϵ

)
+ 1, (56)

(x, y, 0) = 0.3. (57)
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Fig. 9. Temporal evolution of phase separation with φ̄ = 0. The subfigures (a)–(h) are at t = 0.4, 1, 2, 4, 10, 20, 30, 40.
able 2
2-errors and convergence rates of φ and ψ with different time steps. The
umerical reference is obtained with ∆t r = 0.001 at t = 1.28. Here, S = 6
s used.
∆t φ Rate ψ Rate

128∆t r 1.18e−1 – 1.80e−3 –
64∆t r 3.13e−2 1.88 4.81e−4 1.90
32∆t r 7.50e−3 2.06 1.15e−4 2.06
16∆t r 1.90e−3 1.98 2.96e−5 1.96
8∆t r 4.83e−4 1.98 7.39e−6 2.00
4∆t r 1.15e−4 2.07 1.76e−6 2.07

Table 3
L2-errors and convergence rates of φ and ψ with different time steps. The
umerical reference is obtained with ∆t r = 0.001 at t = 1.28. Here, S = 10 is

used.
∆t φ Rate ψ Rate

128∆t r 1.53e−1 – 2.80e−3 –
64∆t r 5.38e−2 1.51 8.60e−4 1.70
32∆t r 1.20e−2 2.16 1.87e−4 2.20
16∆t r 3.10e−3 1.95 4.75e−5 1.97
8∆t r 7.82e−4 1.99 1.20e−5 1.99
4∆t r 1.90e−4 2.04 2.91e−6 2.04

Figs. 2(a) and (b) show the initial profiles of ψ and ψ , respec-
ively. A series of different stabilization coefficients: S = S =
φ ψ

9

0, 2, 6, and 10 are used to study the effects of Sφ and Sψ . Since
Sφ and Sψ take the same value in this work, we will use S for con-
venience. At first, we define the reference result as the solution
obtained by a small enough time step ∆t f = 0.01h2

≈ 2.4096e-
5. Table 1 illustrates the L2-errors and convergence rates [32]
of φ and ψ at t = 0.03 with respect to different stabilization
coefficients. As we can observe, the case with S = 0 does not
satisfy the second-order accuracy with a larger time step; the case
S = 2 violates the desired accuracy for ψ with a larger time step;
the cases S = 6 and S = 10 satisfy the desired accuracy.

To choose more proper stabilization coefficients, we consider
S = 6 and 10 with some large time steps. Here, the reference
result is obtained by the time step ∆t f = 0.001. The L2-errors
and convergence rates of φ and ψ at t = 1.28 are shown in
Tables 2 and 3. We can find that the case S = 10 slightly loses
some accuracy at a larger time step. In the case S = 6, the desired
second-order accuracy is satisfied even if larger time steps are
used. In the following tests, we will use the proper stabilization
coefficient S = 6.

4.2. Energy dissipation law

The energy dissipation law is a fundamental property of the
phase-field surfactant model. To verify the discrete energy dissi-
pation law of our scheme, we consider the phase separation with
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Fig. 10. Temporal evolution of phase separation with φ̄ = 0.2. The subfigures (a)–(h) are at t = 0.4, 1, 2, 4, 10, 20, 30, 40.
he following initial conditions

φ(x, y, 0) = 0.3 + 0.0001rand(x, y), (58)
(x, y, 0) = 0.2 + 0.0001rand(x, y), (59)

here rand(x,y) is the random number between −1 and 1.
igs. 3(a) and (b) show the initial profiles of φ and ψ , respectively.
series of increasing large time steps: ∆t = 0.001, 0.01, 0.05,
.1, 0.5, and 1 are used. The snapshots at t = 40 with respect
o different time steps are displayed in Fig. 4. The temporal
volutions of normalized original energy functional E(φn, ψn)/E
φ0, ψ0) and normalized modified energy functional Ẽ(φn,
n−1, ψn, ψn−1, rn)/Ẽ(φ0, ψ0, r0) are shown in Figs. 5(a) and (b).
e find that the discrete energy dissipation law is satisfied even

f larger time steps are used. In actual simulation, a smaller
ime step is necessary. Furthermore, the evolutions of original
nergy and modified energy are very similar, which indicates the
odified energy functional is a proper approximation of original
nergy functional.

.3. Comparison with the linear stabilization approach

As mentioned in Section 3, our propose scheme (29)–(33)
S-SAV) may require more computational cost than the original
quation-based scheme (34)–(37) (LS) because of the extra com-
utations for inner products. To numerically validate this, we use
he same initial conditions and parameters in Section 4.2. The
elatively long-time simulations until t = 40 are considered.
ig. 6 illustrates the profiles of φ and ψ at specific moments.
10
Fig. 11. Temporal evolutions of normalized energy functional with respect to
different φ̄.

Although the S-SAV approach is designed based on the equivalent
equations instead of the original equations, it can be observed
that the results obtained by the S-SAV approach and the original
equation-based LS approach are almost same. We list the CPU
time required by two schemes in Fig. 7, the results indicate that
our proposed scheme requires extra 13.78% CPU cost than the
original equation-based LS approach.
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Fig. 12. Temporal evolution of three droplets with θ = 0.01. The subfigures (a)–(d) are at t = 1, 4, 10, 20.

Fig. 13. Temporal evolution of three droplets with θ = 1. The subfigures (a)–(d) are at t = 1, 4, 10, 20.

Fig. 14. Temporal evolution of three droplets with θ = 2. The subfigures (a)–(d) are at t = 1, 4, 10, 20.

11
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Fig. 15. Temporal evolutions of normalized energy functional with respect to
different θ .

.4. Two-dimensional phase separation

In this section, we investigate the phase separation in two-
imensional space, which is a typical benchmark problem of the
ahn–Hilliard type model. The following initial conditions are
onsidered

φ(x, y, 0) = φ̄ + 0.001rand(x, y), (60)
(x, y, 0) = 0.2 + 0.001rand(x, y), (61)

here φ̄ = −0.5, 0, and 0.2 are used to generate different
volutional patterns. Here,∆t = 0.001 is used and all simulations
re performed until t = 40. From Figs. 8–10, we find φ̄ = 0 means
wo immiscible mixtures always occupy same concentration dur-
ng the evolution. With the increase of absolute value of φ,
e can find the mixture with lower concentration evolves to

orm some isolated parts, the mixture with higher concentration
ccupies main regions. In all cases, the local concentration of ψ
lways accumulates on the interface. We plot the normalized
nergy curves with respect to various values of φ̄ in Fig. 11. As
e can see, the discrete energy dissipation law is satisfied.

.5. Effect of θ

Next, we numerically show the effect of θ on the interfacial
ynamics. The initial conditions are defined as

φ(x, y, 0) = tanh

(
0.4π −

√
(x − 0.57π )2 + (y − 0.65π )2

√
2ϵ

)

+ tanh

(
0.4π −

√
(x − 1.43π )2 + (y − 0.65π )2

√
2ϵ

)

+ tanh

(
0.4π −

√
(x − π )2 + (y − 1.4π )2

√
2ϵ

)
+ 2, (62)

(x, y, 0) = 0.2 + 0.001rand(x, y). (63)

ere, ∆t = 0.001 is used. In free energy formula, Eq. (4), the
represents the strength of the coupling between φ and ψ .

or a surfactant-laden two-phase system, it is well known that
he surfactant can be used to affect the interfacial dynamics by
hanging the surface tension. In the simulation, a smaller value
f θ means the effect of surfactant is weak, then the strong
nterfacial tension will drive the interfaces to coalesce with each
ther. On the other hand, a larger value of θ increases the effect
f surfactant, then three droplets will keep separated for a long
ime. Fig. 12 presents the temporal evolution with θ = 0.01. We
12
can find the three droplets quickly merge into a big one. Fig. 13
illustrates the evolution with θ = 1, we find that a larger value
of θ obviously delays the interfacial dynamics. In Fig. 14, we plot
the results with θ = 2. We observe a large enough value of θ
overcomes the coarsening effect of interface, the three droplets
keep separated all long. Fig. 15 shows the evolutions of discrete
normalized energy with respect to three values of θ , the results
indicate the discrete energy dissipation law is satisfied.

4.6. Three-dimensional phase separation

Finally, we investigate the phase separation in three-
dimensional space. The following initial conditions are used

φ(x, y, z, 0) = φ̄ + 0.001rand(x, y, z), (64)
ψ(x, y, z, 0) = 0.2 + 0.001rand(x, y, z). (65)

Here, we only consider two typical cases, i.e., φ̄ = 0, and 0.3. The
parameters ∆t = 0.001, ϵ = η = 0.06 are used. Figs. 16(a) and
(b) show the initial profiles of φ and ψ , respectively. We display
the temporal evolutions of φ andψ in Figs. 17 and 18 with respect
to φ̄ = 0 and 0.3, respectively. We can see that different values
of average concentration leads to different evolutional dynamics.
The local concentration of ψ always accumulates on the interface.
Fig. 19 shows the normalized energy curves with respect to φ̄ = 0
and 0.3. The results indicate that the discrete energy dissipation
law is satisfied in three-dimensional space.

5. Conclusions

In this study, we constructed a linear, decoupled, second-order
accurate, and energy stable numerical scheme for a new modified
phase-field surfactant model. As an efficient variant of S-SAV
approach, our scheme inherited all advantages of S-SAV method
but significantly simplified the algorithm. In the present version,
the phase-field function, surfactant, and auxiliary variable were
decoupled with each other. Thus, we could solve them in a
step-by-step way. Energy stability and unique solvability of our
proposed scheme were analytically proved. Various numerical
results showed that the proposed scheme had desired accuracy
and energy stability. In upcoming work, we will investigate the
hydrodynamically coupled phase-field surfactant model by using
our proposed scheme. To construct energy stable phase-field sys-
tem with fluid flow, please refer to some previous works [33,34].
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Fig. 16. The initial profiles of (a) φ and (b) ψ in 3D space.

Fig. 17. Temporal evolution of three-dimensional phase separation with φ̄ = 0.

13



J. Yang and J. Kim Computer Physics Communications 261 (2021) 107825
Fig. 18. Temporal evolution of three-dimensional phase separation with φ̄ = 0.3.
Fig. 19. Temporal evolutions of normalized energy functional with respect to
different φ̄.
14
Appendix

Here, we introduce the temporally first-order scheme by us-
ing our proposed method. The first-order scheme is constructed
based on the backward-Euler formulation

φn+1
− φn

∆t
= Mφ∆µ

n+1
φ , (66)

µn+1
φ = −γ1∆φ

n+1
+ Pnrn +

Sφ
ϵ2

(φn+1
− φn), (67)

ψn+1
− ψn

∆t
= Mψ∆µ

n+1
ψ , (68)

µn+1
ψ = −γ2∆ψ

n+1
+ Q nrn +

Sψ
η2

(ψn+1
− ψn), (69)

rn+1
− rn

∆t
=

∫
Ω

[
Pnrn

(
φn+1

− φn

∆t

)
+Q nrn

(
ψn+1

− ψn)]
dx. (70)
∆t
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N
t

T
p

E

=

ext, we will show the discrete energy dissipation law by proving
he following theorem.

heorem. Eqs. (66)–(70) satisfy the following discrete energy dissi-
ation law

(φn+1, ψn+1, rn+1) ≤ E(φn, ψn, rn), (71)

where E(φn, ψn, rn) =
γ1
2 ∥∇φn

∥
2
+

γ2
3 ∥∇ψn

∥
2
+ rn − C.

Proof. Taking the L2-inner product of Eq. (66) with ∆tµn+1
φ , we

get

(φn+1
− φn) = −∆tMφ∥∇µ

n+1
φ ∥

2. (72)

Taking the L2-inner product of Eq. (67) with −(φn+1
− φn), we

have

−(µn+1
φ , φn+1

− φn) = −γ1(∇φn+1,∇φn+1
− ∇φn)

−(Pnrn, φn+1
− φn)

= −
γ1

2
(∥∇φn+1

∥
2
− ∥∇φn

∥
2

+∥∇φn+1
− ∇φn

∥
2)

− (Pnrn, φn+1
− φn) −

Sφ
ϵ2

∥φn+1
− φn

∥
2. (73)

Taking the L2-inner product of Eq. (68) with ∆tµn+1
ψ , we have

(ψn+1
− ψn, µn+1

ψ ) = −∆tMψ∥∇µn+1
ψ ∥

2. (74)

Taking the L2-inner product of Eq. (69) with −(ψn+1
− ψn), we

obtain

−(µn+1
ψ , ψn+1

− ψn) = −γ2(∇ψn+1,∇ψn+1
− ∇ψn)

− (Q nrn, ψn+1
− ψn)

= −
γ2

2
(∥∇ψn+1

∥
2
− ∥∇ψn

∥
2

+∥∇ψn+1
− ∇ψn

∥
2)

− (Q nrn, ψn+1
− ψn)

−
Sψ
η2

∥ψn+1
− ψn

∥
2. (75)

From Eq. (70), we have

rn+1
− rn = (Pnrn, φn+1

− φn) + (Q nrn, ψn+1
− ψn). (76)

Combining Eqs. (66)–(70), we derive that
γ1

2
(∥∇φn+1

∥
2
− ∥∇φn

∥
2) +

γ2

2
(∥∇ψn+1

∥
2
− ∥∇ψn

∥
2)

+rn+1
− rn

−∆tMφ∥∇µ
n+1
φ ∥

2
−∆tMψ∥∇µn+1

ψ ∥
2

−
Sφ
ϵ2

∥φn+1
− φn

∥
2
−

Sψ
η2

∥ψn+1
− ψn

∥
2

−
γ1

2
∥∇φn+1

− ∇φn
∥
2
−
γ2

2
∥∇ψn+1

− ∇ψn
∥
2

≤ 0. (77)

The desired result is proved.
15
The proving process of unique solvability in Section 3.2 can
be used for the first-order scheme (66)–(70) in a similar way, we
will omit those similar steps for convenience.
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