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a b s t r a c t

We describe a fast and efficient numerical algorithm for the process of three-dimensional narrow
volume reconstruction from scattered data in three dimensions. The present study is an extension of
previous research [Li et al., Surface embedding narrow volume reconstruction from unorganized points,
Comput. Vis. Image Underst. 121 (2014) 100–107]. In the previous work, we modified the original Allen–
Cahn equation by multiplying a control function to restrict the evolution within a narrow band around
the given surface data set. The key idea of the present work is to perform the computations only on a
narrow band around the given surface data set. In this way, we can significantly reduce the storage
memory and CPU time. The proposed numerical method, based on operator splitting techniques, can
employ a large time step size and exhibits unconditional stability. We perform a number of numerical
experiments in order to demonstrate the efficiency of this method.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this study, we consider a fast and efficient numerical
algorithm for three-dimensional (3D) volume reconstruction from
scattered data in three dimensions. Scattered data is defined as a
set of data with no specified ordering and connectivity between
data points. In practice, the unorganized sample points in R3 for
surface reconstruction can stem from a variety of sources, includ-
ing medical imagery, laser range scanners, contact probe digitizers,
radar and seismic surveys, or mathematical models such as
implicit surfaces [1]. Volume reconstruction from scattered data
represents an important task. For example, a reverse engineering
problem involves reconstructing 3D models from unorganized
points that are generated by 3D surface scanning devices [2].
However, volume reconstruction is a challenging problem because
point clouds lack ordering information and connectivity, and are
usually noisy [3].

Many approaches to surface reconstruction from scattered
points exist. Most surface reconstruction methods for point clouds
can be classified as either explicit or implicit surface methods,
depending on the form of the representation of the surface [4]. In
explicit surface representations, the surface location and the
geometry are prescribed in an explicit manner. For example,

Boissonnat [5] suggested the use of Delaunay triangulations to
construct a single connected shape of a point set. This method
progressively eliminates tetrahedra from the Delaunay triangula-
tion based on their circumspheres. Typically, in implicit surface
reconstruction methods, a signed distance scalar function is
constructed on a fixed rectangular grid such that the given
scattered data are close to the zero level set of the function. The
final 3D shape is the zero isosurface of the signed distance
function [3,6–9]. Ye et al. [3] proposed a novel fast method for
implicit surface reconstruction from unorganized point clouds.
Their algorithm employs a computationally efficient multigrid
solver on a narrow band of the level set function that represents
the reconstructed surface.

In this study, we focus on implicit representations, and our
approach is based on a phase-field model defined by the Allen–
Cahn (AC) equation [10]. The AC equation has an intrinsic smooth-
ing effect on interfacial transition layers and the motion by mean
curvature. In the level set framework, an explicit time integration
scheme is a general choice for the mean curvature flow, which
requires small time steps in order to ensure numerical stability.
However, for the AC equation a fast and accurate hybrid numerical
solver is available [11], which is the main reason why we choose
this equation. In our previous work [12], we presented a fast and
accurate numerical method for surface embedding narrow volume
reconstruction with a fixed distance from an unorganized surface
data set. Fig 1(a), (b), (c), and (d) shows a given set of scattered
data, its 3D reconstruction, and the cut view and cross view of the
reconstructed volume, respectively.
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Note that our problem is also similar to the offset surface
reconstruction problem, which can also be defined as a surface
whose points are at a fixed normal distance from a given surface.
Many algorithms have been proposed for solving offset surface
reconstruction problems. For example, by using an implicit func-
tion, Liu and Wang [13] approximated both the zero-level surface
and its offset surface. Subsequently, they also developed a fast
offset surface generation method via a narrow band signed
distance-field [14]. In addition, Chen and Wang proposed thicken-
ing operations for converting a surface to a solid [15], and
introduced a uniform offsetting model that enables the generation
of both enlarged and contracted models from an arbitrary offset
distance [16]. Lien [17] and Varadhan and Manocha [18] proposed
a method that generates point-based Minkowski sum boundaries.
Curless and Levoy developed two important techniques for recon-
structing complex and accurate models from scanned objects. The
first is spacetime analysis, a ranging method based on analyzing
the time evolution of the structured light reflections [19], and the
second is a volumetric space carving technique for integrating
several data into a single geometric model [20]. In order to obtain
high-quality offsets, an adaptive octree-structure was used for
distance bounds in [21]. Small and thin features were detected
using subdivisional methods [22,23]. For some other methods of
offset surface reconstruction, we also refer the reader to [24–30].

The main purpose of the present work is to perform the
computations only on a narrow band around the given surface
data set, in order to achieve significant reduction in both the
storage memory and the CPU time. In addition, the proposed
numerical method can use large time step sizes, and exhibits
unconditional stability. The proposed numerical scheme has the
advantage that the narrow domain can be theoretically defined,
and its boundary condition can be defined simply as a Dirichlet
boundary condition without loss of accuracy. It should be pointed

out that the proposed method is simpler and more efficient than
the standard adaptive octree-structure method.

The rest of this paper is organized as follows. In Section 2, we
briefly describe the main governing equation. We describe the
numerical solution algorithm in Section 3. In Section 4, we
perform some characteristic numerical experiments for volume
reconstruction. Finally, our conclusions are presented in Section 5.

2. Phase-field method

For scattered surface data points S¼ fXp ¼ ðXp;Yp; ZpÞA
R3 jp¼ 1;…;Mg, where M is the number of data points, we want
to reconstruct a uniform narrow volume with a distance l from the
given unorganized surface data. In order to find a smooth narrow
volume, we presented the following partial differential equation in
our previous study [12]:

∂ϕðx; tÞ
∂t

¼ gðxÞ �F 0ðϕðx; tÞÞ
ϵ2

þΔϕðx; tÞ
� �

; ð1Þ

ϕðx;0Þ ¼ tanh
l�dðxÞffiffiffi

2
p

ξ

� �
; ð2Þ

gðxÞ ¼ 1�ϕ2ðx;0Þ; ð3Þ
where ϕA ½�1;1� is the order parameter with ϕ¼ 1 and ϕ¼ �1
inside and outside of the reconstructed narrow volume, respec-
tively. ϕ¼ 0 is interpreted as the surface of the volume.
FðϕÞ ¼ 0:25ðϕ2�1Þ2; ϵ and ξ are positive constants. dðxÞ is the
unsigned distance function from the surface. From (2), we can
see that if dðxÞ ¼ l, then ϕðx;0Þ ¼ 0, which means that the initial
guess of ϕ is sufficiently close to the exact solution. If gðxÞ � 1, then
(1) becomes the classical AC equation [10].

Fig. 1. (a) Point data set, (b) reconstruction, (c) cut view, and (d) cross view of a reconstructed volume.

Fig. 2. (a) S is the given scattered data, V is the volume embedding S, and Ω is the global domain containing V. (b) Narrow band domain Ωnb ¼ xj jϕðx;0Þjo1�δ
� �

⋂Ω. Here,
δ is a small positive value. (c) Sectional view of the new edge stopping function gðxÞ.
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In this study, we propose a narrow band computation of (1)
with the following new edge stopping function:

gðxÞ ¼ ð1�jϕðx;0Þj Þjϕðx;0Þj : ð4Þ
For practical computations, (4) yields better results than (3). Let S
be the given scattered data, V be the volume embedding S, and Ω
be the global domain containing V (see Fig. 2(a)). To reduce the
computational cost, we only perform the evolution within a
narrow band domain Ωnb ¼ xj jϕðx;0Þjo1�δ

� �
⋂Ω (Fig. 2(b)).

Here, δ is a small positive value, and in particular we choose
δ¼ 0:01. Fig. 2(c) shows the new edge stopping function gðxÞ. The
following Dirichlet boundary condition is used on ∂Ωnb:

ϕðx; tÞ ¼ 1�δ if xAfxjϕðx;0Þ40g⋂∂Ωnb;

�1þδ if xAfxjϕðx;0Þo0g⋂∂Ωnb:

(
ð5Þ

This narrow band calculation will reduce the computational cost,
without compromising the resolution.

3. Numerical solution algorithm

For simplicity of exposition, let us first consider one-dimensional
space. For an equilibrium phase-field profile, tanh½r=ð

ffiffiffi
2

p
ϵÞ�, of (1),

the phase-field varies from �0:99 to 0.99 over a distance of

approximately η¼ 2
ffiffiffi
2

p
ϵ tanh�1ð0:99Þ [12,31] (refer to Fig. 3).

Therefore, if we want this value to constitute 2m grid points, i.e.,
η¼ 2mh, then the ϵ value needs to be taken as ϵm ¼mh=

½
ffiffiffi
2

p
tanh�1ð0:99Þ�, where h is a space step size [31]. From the

definition of ϕðr;0Þ in (2), we see that if dðrÞ ¼ j r�Rp j is larger than
lþη=2 or smaller than l�η=2, then ϕðr;0Þ takes values of �0:99 or
0.99, respectively. Here, Rp is a given data point. In one-dimensional
space, the narrow band region is ðRp� l�η=2; Rpþ lþη=2Þ�
ðRp� lþη=2;Rpþ l�η=2Þ (see the gray region in Fig. 3).

Let Ω¼ ðXmin;XmaxÞ � ðYmin;YmaxÞ � ðZmin; ZmaxÞ be a 3D domain
that embeds the given scattered data Xp ¼ ðXp;Yp; ZpÞ for
p¼ 1;…;M. The space step size h is defined as

h¼ Xmax�Xmin

Nx
¼ Ymax�Ymin

Ny
¼ Zmax�Zmin

Nz
. Here, Nx, Ny, and Nz

are the numbers of cells in the x-, y- and z-directions, respectively.
The center of each cell is located at xijk ¼ ðxi; yj; zkÞ where

xi ¼ Xminþði�1Þh; yi ¼ Yminþðj�1Þh, and zk ¼ Zminþðk�1Þh, for
i¼ 1;…;Nx; j¼ 1;…;Ny, and k¼ 1;…;Nz . Let ϕijk be an approxima-
tion to ϕðxi; yj; zkÞ. Then, let us define a truncated unsigned
distance function dijk on Ωh ¼ fxijk j i¼ 1;…;Nx; j¼ 1;…;Ny;

and k¼ 1;…;Nzg as

dijk ¼
min

1rprM
Jxijk�Xp J if min

1rprM
Jxijk�Xp Jr lþη=2;

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

x þN2
yþN2

z

q
otherwise:

8><
>: ð6Þ

The discrete narrow band domain is defined as Ωnb
h ¼ fxijk j l�

η=2rdijkr lþη=2g. In order to avoid the computation of the distance
function in the whole domain, we define Ωnb as the union of a

collection of domains Ωp
nb, i.e., Ωnb ¼⋃M

p ¼ 1Ω
nb
p . Here, we have

ðxi; yj; zkÞ jxi�Xp jr lþ η

2
; jyj�Yp jr lþ η

2
; j zk�Zp jr lþ η

2

���n o
� ðxi; yj; zkÞ Jxijk�xp Jr l�mh

��n o
� ðxi; yj; zkÞ

Xp�Xmin� l�ðm�1Þh
h

r irXp�Xminþ lþðmþ1Þh
h

;

����
�
Yp�Ymin� l�ðm�1Þh

h
r jrYp�Yminþ lþðmþ1Þh

h
;

Zp�Zmin� l�ðm�1Þh
h

rkrZp�Zminþ lþðmþ1Þh
h

	

� ðxi; yj; zkÞ Jxijk�Xp Jr l�mh
��n o

� ðxi; yj; zkÞ
Xp�Xmin� l�ðm�1Þh

h


 �
r ir Xp�Xminþ lþðmþ2Þh

h


 �����
�

;

Yp�Ymin� l�ðm�1Þh
h


 �
r jr Yp�Yminþ lþðmþ2Þh

h


 �
;

Zp�Zmin� l�ðm�1Þh
h


 �
rkr Zp�Zminþ lþðmþ2Þh

h


 �	

� ðxi; yj; zkÞ Jxijk�xp Jr l�mh
��n o

¼Ω
nb
h;p: ð7Þ

In the above, we have used the definition of xijk and ½x� is the largest
integer not greater than x. We order ϕijk on Ωh

nb by using lexicogra-
phical ordering for ði; j; kÞ, i.e., ϕs ¼ ϕijk for s¼ 1;…; L and some ijk.
Here, L is the total number of computational cells in Ωh

nb. Next, we
present an operator splitting-based hybrid numerical scheme for (1)
on the discrete narrow band domain Ωh

nb. We split the original
problem (1) into a sequence of simpler problems as

∂ϕðx; tÞ
∂t

¼ gðxÞΔϕðx; tÞ; ð8Þ

∂ϕðx; tÞ
∂t

¼ �gðxÞF 0ðϕðx; tÞÞ
ϵ2

: ð9Þ

As a first step, we solve Eq. (8) by applying an implicit method and
Dirichlet boundary condition (5). That is,

ϕnþ1=2
s �ϕn

s

Δt
¼ gsΔdϕ

nþ1=2
s for s¼ 1;…; L; ð10Þ

where gs ¼ ð1�jϕ0
s j Þjϕ0

s j and the discrete Laplacian operator is given
as

Δdϕs ¼ ðϕxls þϕxhs þϕyls þϕyhs þϕzls þϕzhs �6ϕsÞ=h2: ð11Þ
Here, ϕxls ¼ ϕi�1;jk and ϕxhs ¼ ϕiþ1;jk are the values of the left and right
cells of ϕs in the x-direction, respectively. The other terms are similarly
defined. For the boundary values, we use either 0.99 or �0.99
depending on the sign of ϕs. The data structure and initialization
steps are described in the box below.

In the first step, we set f ð xÞ ¼ 0 and IðxÞ ¼ 0 everywhere in the
computational domain Ω. Here, the index function I is used to store

Fig. 3. A phase-field profile, tanh½ðl�dðrÞÞ=ð
ffiffiffi
2

p
ϵÞ�. Here, η¼ 2mh and Rp is a given

data point in one-dimensional space. The gray region represents �0:99rϕr0:99.
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the index of ϕs and the flag control function f is used to determine
which point is located in the narrow domain. To make sure that the
initialized function d is larger than the longest distance from the

surface points in Ωh ; pnb, we set d¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

x þN2
yþN2

z

q
in the initial

condition. The value of the distance function at a point located in
the domain Ωh;p is determined only by its neighboring input data
points Xp ¼ ðXp;Yp; ZpÞ that have smaller distance values. Mean-
while, by setting a flag control function f ðxÞ, we tag the cells that
are located in Ωh

nb. The total computation requires OðMðmþ l=hÞ3Þ
operations. Subsequently, by using the control function f ðxÞ, we
store the grids and record the index of grids that are located in
domain Ωnb

h;p. Finally, we define the order parameter ϕ and the
control function g.

It is clear that if s is connected with ði; j; kÞ, then xls is connected

with ði�1; j; kÞ. Therefore, our connecting method is simple, and

this is described in step 3. There are two points that should be

noted. First, the order of the stored grids in steps 2 and 3 should be
same. Second, there are some points whose connected grids are
not stored. In fact, the distances from these points are located at
the boundary of Ωh

nb (see the circle-mark in Fig. 4). It can be seen
from the definition of ϕ in (2) that its value is approximately equal
to either one or negative one, and its sign depends on the sign of ϕ
(refer to Fig. 4).

The linear system given by (10) can be solved using the Gauss–
Seidel relaxation method, with a tolerance of 1E�6. Then, with
ϕnþ1=2
s as the solution at t ¼ nΔt, we solve (9) at t ¼ ðnþ1ÞΔt as

ϕnþ1
s ¼ ϕnþ1=2

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
�
2gsΔt
ϵ2 þðϕnþ1=2

s Þ2 1�e�2gsΔt=ϵ2
� 

s
:

,
ð12Þ

For more details about the numerical solution algorithm, see
[11,12,32–34]. Our proposed hybrid splitting method, Eqs. (10)
and (12), is an unconditionally stable scheme, which was proved in
our previous work [12].
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4. Numerical results

In this section, we present numerical results on various
synthetic and real data sets, using the proposed numerical algo-
rithm. We will stop the numerical computations when the relative
error of the order parameter, ‖ϕnþ1�ϕn‖2=‖ϕn‖2, attains a value
that is less than a given tolerance, tol¼1E�5. Here, ‖ϕn‖2 denotes
the discrete l2-norm of ϕn. Throughout the rest of paper, unless
otherwise specified, we will use m¼ 2; ξ¼ ϵ2; ϵ¼ ϵ6; l¼ 4h, and the
time step Δt ¼ ϵ2. Note that for the purpose of achieving a better

visualization, the input data points are displayed more sparsely
than the real density.

In order to demonstrate the basic mechanism of the algorithm,
we start with the simple example of a sphere placed at the center
of the unit domain, with a radius 0.45. The computation is run
over six iterations, with h¼0.01. Fig. 5(a) and (b) shows the input
data set (circles) with bounding boxes in the whole view and the
cut view, respectively. Fig. 5(c–e) shows the initial reconstruction,
the final reconstruction, and a comparison between the numerical
solution and the exact solution. As can be seen, our method
performs well for the reconstruction of the offset surface. The
CPU times required for the initial processing and the surface
reconstruction were 0:202 s and 1:607 s, respectively. Our method
achieves the reconstruction very quickly, because the number of
the grid points used is 362,715, which is only about 35.6% of all
grid points.

To test the accuracy of our proposed method, we perform
numerical tests using a cube, a sphere, and a cylinder, where we
could actually compute the errors using theoretical analysis. We

Fig. 5. Volume reconstruction for the sphere. (a) Input data set (circles) with computational domain (bounding boxes). (b) Cross view of (a). (c) Initial reconstruction.
(d) Final reconstruction. (e) Comparison between numerical solution and exact solution. Note that for a better visualization, the points and mesh points used in (a) are
displayed more sparsely than the real density.

Fig. 4. Schematic illustration of the computational domain and the mesh used in
two-dimensional space. Here, the symbols ‘.’ and lines represent offset surfaces and
contours of the order parameter ϕðx;0Þ, respectively. Symbols ‘o’, and the x-mark
are used to denote mesh grids.

Table 1
Accuracy test for our proposed method. Here, we use the offset distance l¼0.1.

Case Space
size

Narrow domain Results in [16]

Maximum
error

Average
error

Maximum
error

Average
error

Cube h¼0.01 5.241E�2 9.517E�3 5.0E�6 1.0E�6
h¼0.005 4.054E�2 2.456E�3

Sphere h¼0.01 1.307E�3 9.938E�4 1.311E�3 2.224E�4
h¼0.005 3.723E�4 2.173E�4

Cylinder h¼0.01 9.346E�4 6.460E�4 1.263E�3 2.46E�4
h¼0.005 3.155E�4 1.527E�4

Y. Li, J. Kim / Pattern Recognition 48 (2015) 4057–4069 4061



Fig. 6. Volume reconstructions for the input surface with random noises. (a) and (b) are isosurfaces of the distance function for 5% and 10% random noises, respectively.
(c) and (d) are reconstructed volumes for (a) and (b), respectively.

Fig. 7. Volume reconstructions generated by our algorithm with different offset distances. (a) l¼ 4h and (b) l¼ 12h. From left to right, these are the outer surface, inner
surface, and offset surface in the cross view, respectively. Here, the solid line and circle correspond to the offset surface and input data, respectively.

Fig. 8. Volume reconstruction with different values of ξ. (b) ξ1. (b) ξ2. (c) ξ4. (d) Comparison of the three offset surfaces in the cross view. (e) Closeup view of the boxed region
in (d).

Y. Li, J. Kim / Pattern Recognition 48 (2015) 4057–40694062



define the error of a grid as the difference between the numerical
solution and the exact solution as follows: em : Xn

m�Xe
m, where Xn

m
and Xe

m are the numerical and exact surface points. These compu-
tations are run up to the steady condition with l¼0.1. The side
length of the cube, the diameter of the sphere, the diameter of the
cylinder, and the height of the cylinder are set to one. Table 1
shows the maximum and average errors with two different space
grid sizes. To compare the current results with the those from a
polygonal offsetting method [16], we combine them together.
Since the results in [16] are measured in the shrink surface, we
also list our results in the shrink surface. We observe that the

numerical results obtained from our proposed method are quali-
tatively in good agreement with the theoretical values and the
results in [16]. Note that this comparison is in some way unfair,
because the polygonal offsetting method presented in [16] can
achieve a high accuracy in the sharp surface, and on the other
hand, our approach can reduce outliers or conflicting points.

In Fig. 6(a)–(d), we show offset surface reconstructions with 5%
and 10% noises. The input surface is a sphere with radius 0.5. The
offset distance l¼ 0:1; ξ¼ ϵ4; ϵ¼ ϵ12, and h¼0.01 are chosen. The
average errors are 2.242E�2 and 3.755E�2 for surface recon-
structions with 5% and 10% random noises, respectively. These

Fig. 9. Reconstructed volumes with different values of ξ. The size of the input data in the bottom row is smaller than the top row by a factor 6. (a) and (e) show the input
data. (b) and (f) show the initial reconstruction. (c) and (g) are the final reconstructions with ϵ6. (d) and (h) are the final reconstructions with ϵ12.
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Fig. 10. Volume reconstructions generated by our algorithmwith different offset distances. (a) Initial data, (b) final reconstruction on a coarse grid, and (c) reconstruction on
a fine grid.

Fig. 11. Comparison between the whole and narrow domains for the Stanford dragon model. (a–c) show offset surfaces reconstructed using the whole domain, using the
narrow domain, and a comparison of the two results in the cross view.

Fig. 12. Comparison between the whole and narrow domains for the Stanford Asian dragon model. (a–c) show offset surfaces reconstructed using the whole domain, using
the narrow domain, and a comparison of the two results in the cross view.

Y. Li, J. Kim / Pattern Recognition 48 (2015) 4057–40694064



results suggest that our proposed method can successfully recon-
struct the uniform and smooth offset surface.

Fig. 7(a) and (b) shows the narrow volume generated by our
algorithm with the offset distances l¼ 4h and l¼ 12h, respectively.
From left to right, these are the outer surface, the inner surface,
and the offset surface in the cross view, respectively. Here, the
solid line and the circle correspond to the offset surface and input
data, respectively. We put the offset surface and input data
together, to show that the uniform cutting depth can be achieved
with different offset surface distances.

To show the effect of ξ, we reconstruct the teacup surface using
different values of ξ1, ξ2 and ξ4. In this test, an offset distance of
l¼ 10 h is employed. Fig. 8(a–c) shows the finial reconstructions
with ξ1, ξ2, and ξ4, respectively. In order to make comparisons with
them in the cross view, we put them together as shown in Fig. 8
(d) and (e). As can be seen, when ξ becomes too small, there will
be holes in the reconstructed surface (see the spout of teacup in

Fig. 8(a)). On the other hand, if ξ is too large, then the spout of the
teacup becomes too fat and is closed as shown in Fig. 8(d) and (e).

Fig. 9 shows our reconstruction results for the happy buddha
model with different input data points and values of ϵ. The size of the
input data in the bottom row is smaller than in the top row by a factor
6. In Fig. 9, the first, second, third, and fourth columns are the plots of
the input data, initial reconstruction, final reconstruction with ϵ3, and
final reconstruction with ϵ6, respectively. If the size of input data is
large, using a small ϵ is a good choice for capturing finer detail in the
reconstructed volume (refer to the first row of Fig. 9(c) and (d)). On
the other hand, if the number of input data points is small, then the
initial reconstruction becomes wrinkled. When ϵ is large, the noises
can be removed effectively, as shown in Fig. 9(d).

Fig. 10 presents our reconstruction results for the armadillo
model with coarse and fine grids. We observe that as the mesh
grid is increased, the scales of the armadillo become more sharply
pronounced.

Fig. 13. Volume reconstructions for the Stanford Thai Statue and Stanford Lucy. From left to right, these are the initial data set and offset reconstruction with different views.
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In this experiment, we compare the results on the whole and
narrow domains to demonstrate the efficiency of our proposed
method. The reconstructed offset surfaces for the Stanford dragon
models obtained with the whole and narrow domains are shown

in Figs. 11 and 12. Comparisons between the two domains in the
cross view are shown in the third rows of Figs. 11 and 12. As can be
observed, the agreement between the results computed on the
whole and narrow domains is good.

Table 2
List of data information, iterations, and CPU times (second). Here, ‘Pt size’ represents the number of data points. ‘CPU(ini)’ is the time taken for the initial reconstruction (the
simplification of the input data, computation of the distance function, and location of the connections of grid points). ‘CPU(pro)’ is the time taken to process the offset surface
reconstruction. ‘W’ and ‘N’ represent the cases using the whole and narrow domains, respectively. ‘N/W’ is the ratio between ‘N’ and ‘W’.

Case Pt size Grid size Iteration CPU (ini) CPU (pro)

W N/W W N W N W N

Fig. 5 2964 100� 100� 100 0.363 7 7 0.17 0.24 3.93 1.60
Fig. 7(a) 17,974 254� 251� 201 0.162 8 8 1.20 1.36 54.83 11.21
Fig. 7(b) 17,974 270� 267� 216 0.178 6 6 7.41 9.48 43.66 8.67
Fig. 8(a) 26,103 276� 182� 146 0.127 7 7 1.29 1.59 18.00 2.92
Fig. 8(b) 26,103 278� 184� 148 0.179 6 6 1.78 2.26 21.28 5.44
Fig. 8(c) 26,103 282� 188� 152 0.279 7 7 3.15 4.12 33.87 11.62
Fig. 9(c) 541,449 194� 453� 195 0.214 4 5 13.78 18.29 25.87 9.07
Fig. 9(d) 541,449 194� 453� 195 0.221 9 10 13.78 18.30 73.60 21.34
Fig. 9(g) 90,241 195� 454� 195 0.219 8 8 2.73 3.49 48.66 14.96
Fig. 9(h) 90,241 195� 454� 195 0.219 12 12 2.73 3.48 91.92 26.69
Fig. 10(b) 43,244 107� 123� 98 0.205 5 6 1.08 1.42 2.23 0.78
Fig. 10(c) 43,244 303� 353� 278 0.209 5 5 21.31 27.64 111.92 27.13
Fig. 11(a) 218,823 462� 330� 215 0.158 4 4 6.82 8.54 44.55 10.17
Fig. 11(b) 451,182 460� 214� 311 0.087 5 5 11.78 15.47 49.65 6.49
Fig. 13(a) 1,249,999 501� 833� 434 0.068 5 6 35.09 41.91 287.28 36.22

Fig. 14. Offset surfaces generated by morphological operations. (a) shows the input data points. (b–d) show the outer surface, the inner surface obtained by morphological
operations, and a comparison between the offset surface obtained by morphological operations and our proposed method in the cross view, respectively. Note that the input
data in the top is S¼ fð0:5þ0:4 cos ðmπ=1000Þ;0:5þ0:4 sin ðmπ=1000Þ;0:5Þjm¼ 1;…;2000g.

Fig. 15. Hollowing of a bunny model. (a) shows the input data points, where two holes are added. For a better visualization, we show the input surface together with data
points in (b). (c) and (d) show the reconstructed surface in whole view and cut view, respectively.
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To compare the quality of the narrow band method against the
global method, we perform a test using a quality measure. We
define the error of a grid as the discrete l2-norm of the difference
between the numerical solution obtained by the narrow band
method ðϕÞ and the global method ðϕÞ as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL
s ¼ 1 ðϕs�ϕijkÞ2=L

q
.

Note that for some s and ϕs in narrow band domain, there exits
some ijk and ϕijk in the global domain corresponding to ϕs. The
errors obtained using these definitions are 2.955E�4 and
2.376E�4 for the two cases above, respectively. We can observe
that the agreement between them is strong.

Fig. 13(a) and (b) shows the reconstruction of the Stanford Thai
Statue and Stanford Lucy, respectively. From left to right, these are
the input data set and final reconstruction with different views.
We observe that our proposed method can handle the complex
morphology, and the reconstructed offset surface is smooth.

Next, Table 2 presents the information on the number of data
points, the iteration numbers, and the CPU times. The CPU times
(seconds) of our calculations, which are performed using C, are
measured on 3.4 GHz with 8 GB of RAM. For each case, we perform
the computations on the whole and narrow domains. Here, ‘Pt size’
represents the number of data points. ‘CPU(ini)’ is the time taken
for the initial reconstruction (the simplification of the input data,
computation of the distance function, and location of the connec-
tions of grid points). ‘CPU(pro)’ is the time taken to process the
offset surface reconstruction. ‘W’ and ‘N’ denote the cases using the
whole and narrow domains, respectively. ‘N/W’ is the ratio between
‘N’ and ‘W’. As can be seen from Table 2, our proposed method in
both the whole and narrow domains achieves fast convergence
after a few iterations, as expected from the unconditionally stable
discrete scheme. Furthermore, observing the grid sizes used for the
whole and narrow domains, we can confirm that our method can
significantly reduce the storage memory. As the grid size in the
whole domain is increased, the difference between the two cases
becomes greater (see the last three lines in Table 2). In comparing
the elapsed time, we see that the new method is much faster than
the preceding whole domain method.

Our proposed method can be generalized further to morphology
operations such as erosion and dilation. The erosion of data points S
by Bl, which denotes a ball with the center located on the origin of
the data points S with a radius of l, can be understood as the locus of
points reached by the center of the data points S when the data
points within Bl move inside S [35,36]. We denote the surface
obtained in this way as S� . Thus, in the interior of the offset surface,
S� can be defined as S� ¼ fXm� lnm jm¼ 1;…;Mg. Here, n denotes

the outward unit normal vector to the solid. The dilation of data
points S can be understood as the locus of the points covered by Bl.
Thus, inside the offset surface, Sþ can be defined as
Sþ ¼ fXmþ lnm jm¼ 1;…;Mg. Next, we perform two numerical tests.
Fig. 14, from left to right, presents the input data, outer surface, inner
surface obtained by morphological operations, and a comparison
between the offset surfaces obtained by morphological operations
and our proposed method in the cross view. We can confirm from
this that our proposed method can effectively be further generalized
to morphological erosion and dilation. In addition, with morpholo-
gical operators only, the generated surfaces are topologically faithful
and self-intersecting (see Fig. 14(c)). However, by coupling with
morphological operators and other representations, uniform offset-
ting can be obtained. For example, Chen and Wang [16] proposed a
simple and efficient polygonal model, based on directly computing
the offset boundary using morphological operations, converting the
boundary into structurally sampled points, and accordingly filtering
the sampling points to reconstruct the offset contour.

In 3D printing, occasionally, to save large amounts of material, a
suitable method is to design a hollow model [37]. A straightfor-
ward method is to uniformly hollow out 3D models by opening
some holes and leaving out the material from the inside of the
model. Our approach can be further generalized to the hollowing
of models. Fig. 15 shows the reconstructed volume for a bunny.
Fig. 15(a) shows the input data points, where two holes are added.
To achieve a better visualization, we show the input surface and
data points together in Fig. 15(b). As can be seen in Fig. 15(c) and
(d), our proposed method can be further generalized successfully
to the hollowing of a model in 3D printing.

Finally, we will show how the proposed method behaves in
terms of the number of input surface points and the number of
grid points. The narrow domain and whole domain are considered
with the Stanford Thai Statue, which has 5 million points [38]. This
test case is also down-sampled with factors of two, in order to
obtain point sets with 5, 2.5, 1.25, 0.625, and 0.3125 million points.
Furthermore, the computational times are given with three differ-
ent numbers of grid points: 501� 833� 434; 253� 416� 221,
and 134� 215� 117.

Fig. 16(a) shows logarithm plots of the CPU time for the initial
reconstruction versus the number of input data points. Note that
from the small size of the circle symbol to the large one, these are
the results obtained using 501� 833� 434; 253� 416� 221, and
134� 215� 117 grid points. Square symbols are defined in a
similar manner. We find that the CPU time using our proposed

Fig. 16. (a) Logarithm plots of CPU times for the initial reconstruction versus the number of input data points. From small sizes of the circle symbol to large ones, these
represent the results obtained using 501� 833� 434, 253� 416� 221 and 134� 215� 117 grid points, respectively. Square symbols are defined in a similar manner.
(b) Logarithm plots of the CPU time per iteration versus the number of grid points. Circle symbols from small to large represent the results obtained using 5, 2.5, 1.25, 0.625,
and 0.3125 million input points. Square symbols are similarly defined.
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method is slightly larger than for the global method, as we should
find the connection of grid points in the narrow domain. From
Fig. 16(a), we also observe that the cost of the initial reconstruction
is linear with respect to the input data points, as we expected from
the computing algorithm for the distance function. Logarithm
plots of the CPU time per iteration versus the number of grid
points are presented in Fig. 16(b), and these confirm that our
proposed method is more efficient than the global method. Here,
the circle symbols from small to large denote the results obtained
using 5, 2.5, 1.25, 0.625, and 0.3125 million input points. Square
symbols are similarly defined.

5. Conclusion

In this study, we proposed a novel fast and efficient numerical
method for volume reconstruction from unorganized points in
three dimensions. The present study constitutes an extension of
previous research [12]. The main idea in the present work was to
perform the computations only on a narrow band around a given
surface data set. In this way, we were able to significantly reduce
the storage memory and CPU time. The proposed numerical
method, based on operator splitting techniques, can use a large
time step size and exhibits unconditional stability. Fast numerical
techniques for the Allen–Cahn equation also allow for larger data
sets to be processed, greatly aiding the speed of computation.
Various numerical experiments were presented to demonstrate
the robustness and efficiency of the proposed method. The quality
of the reconstructed surfaces with our method certainly is depen-
dent on the number of input data points and the mesh grids used.
When coarse grids are used, the number of input data points can
be decreased, in order to reduce the CPU time. However, the
quality of the reconstructed surfaces is greatly limited by the mesh
grid. To obtain a high-quality surface, both a large number of input
data and sufficient grid points are required. The proposed numer-
ical method, based on operator splitting techniques, is fast, as
expected from the unconditionally stable discrete schemes. Its
optimal complexity is only related to the number of grids in the
narrow domain. However, the cost of computing a distance
function in the current method is high, which has an optimal
complexity of OðMðmþ l=hÞ3Þ operations for M input data points.
Zhao [39] presented a simple and fast sweeping method for
computing distance functions, having an optimal complexity of
OðNxNyNzÞ for NxNyNz grid points. Ye et al. [3] used a fast sweeping
method on the entire domain and obtained the narrow band by
thresholding the unsigned distance function at some value. But in
our method, the narrow domain can be obtained before comput-
ing the unsigned distance function. And we do not need to
perform the computation on the whole domain, which signifi-
cantly reduces the storage memory. In future work, to speed up
the initial computation, we will investigate a fast numerical
method for computing the distance function in the narrow
domain.
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