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Abstract

The primary purpose of this thesis is to study the modeling dendritic growth with convection

in phase-field simulations. To solve the equations for a crystal growth in a flow, we first discuss the

phase-field method, dendritic growth without an external force, and the incompressible viscous fluid

flows. In a phase-field method, preceding researchers have developed several numerical schemes.

We compare performances of the widely used ones and give proofs of some analytical properties;

solvability, stability and boundedness of numerical solutions. A dendritic crystal growth is one of

the practical problems which can be solved by using a phase-field method. Here, we review the

operator splitting method for solving a governing equation of a morphological change in a crystal

growth and give some numerical results to show the robustness of the chosen method. The Navier–

Stokes equation was originated to estimate dynamics of an incompressible viscous fluid flow, which

contains a metallic solution of a crystal. I present the fast, efficient, and robust numerical solver

based on the Chorin’s projection method. By synthesizing the treated methods in a former part

of this dissertation, we finally consider a numerical solution of a dendritic growth with convection.

Applying convection to the crystal equation, there are problems such as deformation of crystal

shape and ambiguity of the crystal orientation for the anisotropy. To resolve these difficulties,

we present a phase-field method by using a moving overset grid for the dendritic growth under a

flow. The numerical results are presented to indicate a usefulness of our proposed method without

depending a condition of a given underlying fluid.
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Chapter 1

Introduction

A dendrite is the growth structure of the solid crystal during solidification, which has a mor-

phological unstable interface with its melt under typical solidification conditions of an alloy [107].

Here, the name “dendrite” is originated from a Greek word “dendron”, which means a tree, because

the structure of the crystal is tree-like. To observe a dendrite, the undercooled (or supercooled), be-

low the freezing point of the solid, liquid and a spherical solid nucleus are required. As the nucleus

grows, the spherical morphology becomes unstable and the growth directions prefers anisotropic

way. The solid generally attempts to minimize the their surface with the highest surface energy in

metallic system; thus the tip of dendrite grows shaper and sharper [34]. In the practical point of

view, the understanding dendritic growth is crucial in metal casting. By quoting a sentence of an

article in Nature, “Worldwide, as many as 10 billion metallic dendrites are produced in industry

every second” [111]. This number has been increasing since last two decades with settling their

good theoretical models and developing numerical tools which make practical engineering problems

be resolved [120].
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Moreover, convection of the crystal in the melt is of great interest for the practical processes

to understand the dendritic solidification. The formation of the directional solidification such as

the arm spacing, growth rate, and morphology is largely changed by natural convection due to

gravity [13, 40, 105] and the forced convection due to the melt flow [104, 108]. Especially, the

melt convection effect is never neglected in a dendrite growth whose rate is relatively slow [54].

The convective effects on free dendritic crystal growth have been investigated in many researches

experimentally [59, 68, 105] and numerically [9, 35, 113, 127, 128].

The melt convection has been included as an incompressible fluid flow in numerical approaches.

Therefore, it is required to solve the phase transformation, describe the fluid flow, and incorporate

of solid boundary into the solution of fluid flow at the same time; and solving the system is a quite

challenging problem.

There are two major approaches for simulating multi-phase or multi-component flows to charac-

terize moving interfaces: the interface tracking and interface capture methods. First, the interface

tracking method uses Lagrangian particles to track interfaces and a velocity field is generated by

advection of the particles. Examples of the interface tracking method include the volume of fluid

[56], front tracking [41, 130], and immersed boundary method [91]. In contrast, interface captur-

ing methods implicitly capture an interface by using the contours of particular scalar functions.

Examples include the level-set [116] and the phase-field methods [75].
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Among such various numerical approaches, the phase-field method is considered as the most

powerful and accurate one to model dendritic growth, and there are many review papers regarding

phase-field models and simulations [5, 14, 120, 124].

However, it is difficult to precisely capture an interface of a crystal applying the advection

equation. To resolve the difficulty in a convection problem in dendrite growth, I propose a moving

overset grid method in a phase-field simulation to convect the crystal feature.

In this dissertation, the contents of the following published or working papers are contained:

1. Seunggyu Lee, Chaeyoung Lee, Hyun Geun Lee and Junseok Kim, Comparison of different

numerical schemes for the Cahn–Hilliard equation, Journal of Korean Society for Industrial

and Applied Mathematics 17(3) (2013) 197–207.

2. Seunggyu Lee, Darae Jeong, Wanho Lee and Junseok Kim, An immersed boundary method

for a contractile elastic ring in a three-dimensional Newtonian fluid, Journal of Scientific

Computing, in press, DOI: 10.1007/s10915-015-0110-8.

3. Seunggyu Lee, Dongsun Lee, Yongho Choi, Jaemin Shin and Junseok Kim, Stabilized nu-

merical method for the Cahn–Hilliard equation; unique solvability and gradient stability,

working paper.

4. Seunggyu Lee, Yibao Li, Jaemin shin and Junseok Kim, Phase-field simulations of crystal

growth in a two-dimensional cavity flow, submitted paper.
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The outline of this dissertation is as follow: I give an introduction of a phase-field method

which is a useful technique for modeling a dendritic growth in Chapter 2. The crystal growth,

or dendritic solidification process is discussed focusing on a numerical analysis point of view in

Chapter 3. The content of Chapter 4 is the Navier–Stokes (NS) equation, describing the motion of

viscous and incompressible fluid substances. The numerical solver of the convection of the crystal

under a flow, the main achievements of the thesis paper, is presented in Chapter 5. Finally, the

conclusion is drawn in Chapter 6.
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Chapter 2

Phase-field method

2.1. Introduction

A phase-field method is a mathematical tool for solving an interfacial dynamics problem. It

is known that the method was first introduced by Fix [51] and Langer [86] and it has also been

applied to many industrial problems such as solidification dynamics [133], image inpainting [11, 94],

volume reconstruction [90], tumor growth [27], block copolymer [63, 64], and etc. Of interest to

researchers at present is the coupling of the phase-field method to the NS equations of fluid flow

for solving multi-phase fluid flows [118, 136].

A formulation of the phase-field model are based on a free energy functional depending on

an order parameter (or the phase-field) and a diffusive field (variational formulations). The order

parameter can be a scalar function such as a fraction of a mixture in two-phase problem (or a solid

in solid-liquid phase change problems), that varies from −1 (or 0) in one phase (or liquid) to 1 in

the other phase (or solid), or a vector function for anisotropic surfaces [57]. By minimizing a given

free energy functional, the governing differential equations for the evolution of the multi-phase

system are derived [121].
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The description of some phenomena involves the definition of a precisely located interface on

which boundary conditions are imposed, especially yields a normal velocity at which the interface

is moving. This is so-called a sharp-interface approach. Nevertheless, a small scale of the interface

width is prohibitive in a computational point of view. To solve this problem, a finite width ϵ be-

tween distinct phases is considered as a limit of a sharp-interface model. This limit is usually taken

by asymptotic expansions in powers of the interface width. Such a model is called a diffuse-interface

model. The concept of a transition zone between two co-existing phases was already introduced

by Gibbs; however, this notion has been employed in phase transition phenomena by Landau and

Khalatnikov, who firstly introduced an additional parameter to label the different phases on the

absorption of liquid helium. Essentially, diffuse-interface modeling appeared subsequently in the

literature in the context of phase transition phenomena and such models have advanced numerical

treatment as well as understanding of interfacial growth phenomena [47].

The changes of a structure interface are described implicitly by the time evolution of an order

parameter instead of tracking the interface explicitly. Although interface tracking approaches

can be successful in lower-dimensional systems, they becomes impractical for complicated three-

dimensional structures [25]. The one of other strong points of a phase-field method is its simplicity

in treating morphological changes with preserving the properties of a governing equation.
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In this dissertation, we introduce two governing equations of the phase-field method: the Allen–

Cahn (AC) equation and the Cahn–Hilliard (CH) equation, deriving from the Ginzbug–Landau

free energy functional.

2.2. Allen–Cahn equation

2.2.1. Governing equations. The AC equation is a reaction-diffusion equation describing

the process of phase separation in iron alloys, including order-disorder transitions [2]. The equi-

librium configuration of the Ginzburg–Landau free energy functional has been applied to a wide

range of problems such as image inpainting [94], multi-phase problem [118, 136], crystal growth

[133], pattern dynamics [45, 109], and etc.

The equation is given as follow [2]:

∂ϕ(x, t)

∂t
= −F

′(ϕ(x, t))

ϵ2
+∆ϕ(x, t), x ∈ Ω, 0 < t ≤ T, (2.1)

where x is the spatial variable in a domain Ω ∈ Rd (d = 1, 2, 3), t is the temporal variable in [0, T ],

ϕ is the quantity defined as a difference between concentrations of two mixture components (for

example, (m1 −m2)/(m1 +m2) where m1 and m2 are masses of components 1 and 2),

F (ϕ) =
1

4

(
1− ϕ2

)2
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is the double-well potential free energy potential approximated by a polynomial of degree four

(see Fig. 2.1), and ϵ > 0 is the gradient energy coefficient related to an interfacial energy. The

boundary condition is

∂ϕ

∂n
= n · ∇ϕ = 0 on ∂Ω, (2.2)

where n is the outgoing unit normal vector to the domain boundary ∂Ω.

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.1

0.2

0.3

φ

F (φ)

Figure 2.1. A double well potential F (ϕ) = 0.25(1− ϕ2)2.

The AC equation is the L2-gradient flow of the Ginzburg–Landau free energy functional, which

has an important role in nonlinear evolution equation [102], and the functional has a form as follow:

E(ϕ) =
∫
Ω

[
F (ϕ)

ϵ2
+

1

2
|∇ϕ|2

]
dx. (2.3)
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Differentiating (2.3) with respect to t gives

d

dt
E(ϕ) = d

dt

∫
Ω

[
F (ϕ)

ϵ2
+

1

2
|∇ϕ|2

]
dx

=

∫
Ω

[
F ′(ϕ)

ϵ2
ϕt +∇ϕ · ∇ϕt

]
dx,

=

∫
Ω

[
F ′(ϕ)

ϵ2
−∆ϕ

]
ϕtdx+

∫
∂Ω

(∇ϕ · n)ϕtdx

=

∫
Ω

(−ϕt)ϕtdx

= −
∫
Ω

(ϕt)
2
dx ≤ 0, (2.4)

using the integration by parts and the boundary condition (2.2) and it implies that the total energy

is non-increasing in time.

Allen and Cahn also showed that the normal velocity V on a single closed interface Γ is

governed by its mean curvature [2]:

V (x, t) = κ(x, t) for x ∈ Γ, (2.5)

where κ(x, t) is the mean curvature of the interface Γ. This dynamical property has been studied

in [16, 103, 112, 119]. Figure 2.2 shows the temporal evolutions of curves with the AC equation

in two dimension. The dashed line is the initial curve and the solid lines are the evolutions of

interfaces. The directions of evolutions are indicated by arrows.
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Figure 2.2. Temporal evolutions of arbitrary curves with the AC equation. The
dashed line is the initial curves and directions of evolutions are indicated by arrows.

We observe that the AC equation does not conserve its initial mass. We can check that the

AC type dynamics does not preserve the volume fractions as follows:

d

dt

∫
Ω

ϕdx =

∫
Ω

ϕtdx

=

∫
Ω

[
−F

′(ϕ)

ϵ2
+∆ϕ

]
dx

=−
∫
Ω

F ′(ϕ)

ϵ2
dx+

∫
∂Ω

n · ∇ϕds

=−
∫
Ω

F ′(ϕ)

ϵ2
dx ≤ 0,

which is not always zero.

2.2.1.1. Mass-conservative form. As seen in above, we check that the classical AC equation

does not preserve the mass in both theoretically and numerically. To preserve the volume, Rubin-

stein and Sternberg introduced a Lagrange multiplier β(t) into the AC model [115]:

∂c(x, t)

∂t
= −F

′(c(x, t))

ϵ2
+∆c(x, t) + β(t), x ∈ Ω, 0 < t ≤ T, (2.6)
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where notations are followed the classical AC equation except the phase-field function c ∈ [0, 1]

instead of ϕ ∈ [−1, 1] and the double well energy potential

F (c) =
1

2
c2(1− c2).

Here, β(t) must satisfy

β(t) =

∫
Ω
F ′(c(x, t)dx

ϵ2
∫
Ω
dx

,

to keep the mass conservation, and this formulation has been widely used [8, 137, 141]. the normal

velocity V on a single closed interface Γ is changed to

V (x, t) = κ(x, t)− 1

|Γ|

∫
Γ

κds for x ∈ Γ,

by volume-preserving mean curvature flow, where |Γ| is the total curve length in a two-dimensional

space and the total area in a three-dimensional space.

Figure 2.3 shows the temporal evolutions of curves with the mass-conservative AC equation

in two dimension. The dashed line is the initial curve and the solid lines are the evolutions of

interfaces. The directions of evolutions are indicated by arrows.

The Rubinstein and Sternberg’s model has been studied analytically and numerically [16, 10,

19, 132, 138, 95]. However, it has a drawback on preserving small features since the Lagrange

multiplier is only a function of time variable. For example, there is a critical radius of drop
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Figure 2.3. Temporal evolutions of arbitrary curves with the conservative AC
equation. The dashed line is the initial curve and directions of evolutions are
indicated by arrows.

which eventually disappears below the radius. This phenomenon is observed in the frame of the

Cahn–Hilliard model [138].

Brassel and Bretin proposed the following conservative AC equation to preserve small geometric

features [16]:

∂c(x, t)

∂t
= −F

′(c(x, t))

ϵ2
+∆c(x, t) + β(t)

√
2F (c(x, t)), x ∈ Ω, 0 < t ≤ T (2.7)

where

β(t) =

∫
Ω
F ′(c(x, t))dx

ϵ2
∫
Ω

√
2F (c(x, t))dx

. (2.8)

Then, the solution c(x, t) of the conservative AC equation (2.7) satisfies the total mass conservation

property:

d

dt

∫
Ω

cdx =

∫
Ω

ctdx
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=

∫
Ω

[
−F

′(c)

ϵ2
+∆c+ β(t)

√
2F (c)

]
dx

=− 1

ϵ2

∫
Ω

F ′(c)dx+

∫
∂Ω

n · ∇cds+ β(t)

∫
Ω

√
2F (c)dx

=− 1

ϵ2

∫
Ω

F ′(c)dx+ β(t)

∫
Ω

√
2F (c)dx

=− 1

ϵ2

∫
Ω

F ′(c)dx+

∫
Ω
F ′(c(x, t))dx

ϵ2
∫
Ω

√
2F (c(x, t))dx

∫
Ω

√
2F (ϕ)dx

=0,

using the divergence theorem, the homogeneous Neumann boundary condition (2.2), and the def-

inition of the Lagrange multiplier (2.8). Note that the Cahn–Hilliard equation, discussed in the

later section, is an also mass conservative model.

2.2.2. Numerical solution. We consider discretization of the AC equation to implement a

finite-difference method. For simplicity, an one-dimensional case is introduced where Ω = (a, b)

and higher dimensional case can be extended straightforwardly. Let N be a positive even integer,

h = (b− a)/N be a uniform spatial step size,

Ωh = {xi = (i− 0.5)h, 1 ≤ i ≤ N}

be a set of cell-centers of a computational domain. Denote the approximate value of the order

parameter ϕ as

ϕni ≈ ϕ(xi, n∆t)
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where ∆t is the temporal step size defined as T/Nt, T is the final time and Nt is the total number

of temporal steps and the discrete order parameter at time n∆t is defined as

ϕn = (ϕn1 , ϕ
n
2 , · · · , ϕnN ) .

a b

xi = (i− 0.5)h
x

t

n∆t

φn
i

Figure 2.4. Approximation value ϕni in Ωh × [0, T ].

Let ∇h and ∆h be discrete differential and Laplacian operators as

∇hϕ
n
i+ 1

2
=
ϕni+1 − ϕni

h
,

∆hϕ
n
i =

ϕni+1 − 2ϕni + ϕni−1

h2
,

respectively. The operators can be applied to not only pointwise value, but also vector-valued

function as

∇hϕ =
(
∇hϕ

n
1
2
, · · · ,∇hϕ

n
N+ 1

2

)
.
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Here, the discrete Laplacian operator uses the central differentiation and it can be expressed by

∇h as

∆hϕ
n
i = ∇h

(
∇hϕ

n
i+ 1

2
−∇hϕ

n
i− 1

2

)
.

Note that the boundary condition (2.2) can be written in a discrete sense as

∇hϕ
n
1
2
= ∇hϕ

n
N+ 1

2
= 0. (2.9)

Moreover, we define the discrete l2-inner products as

⟨ϕn,ψn⟩h =h
N∑
i=1

ϕni ψ
n
i ,

(∇hϕ
n,∇hψ

n)h =h
N∑
i=0

∇hϕ
n
i+ 1

2
∇hψ

n
i+ 1

2
,

(2.10)

and the discrete discrete l2-norm as

∥ϕn∥2h = ⟨ϕn,ϕn⟩h .

Using the summation by parts, a discrete version of the integration by parts, the following property

holds with the discrete boundary condition (2.9):

⟨∆hϕ
n,ψn⟩h = − (ϕn,ψn)h = ⟨ϕn,∆hψ

n⟩h.
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Now, we consider the following discrete AC equation:

ϕn+1
i − ϕni

∆t
=
−α

(
ϕn+1
i

)3 − (1− α) (ϕni )
3
+ βϕn+1

i + (1− β)ϕni
ϵ2

+∆h

(
γϕn+1

i + (1− γ)ϕni
)
, (2.11)

where α, β, and γ are constants for the weighted average between explicit and implicit schemes.

We analyze numerical schemes such as explicit, implicit, Crank–Nicolson, nonlinearly stabilized

splitting (NLSS), and linearly stabilized splitting (LSS) ones in solvability, stability, and bounded-

ness points of views. The basic strategies of proofs are based on [65]. For each cases, α, β, and γ

have the following values:

1. Explicit scheme (α = β = γ = 0)

ϕn+1
i − ϕni

∆t
=

− (ϕni )
3
+ ϕni

ϵ2
+∆hϕ

n
i , (2.12)

2. Implicit scheme (α = β = γ = 1)

ϕn+1
i − ϕni

∆t
=

−
(
ϕn+1
i

)3
+ ϕn+1

i

ϵ2
+∆hϕ

n+1
i , (2.13)

3. Crank–Nicolson scheme (α = β = γ = 1
2 )

ϕn+1
i − ϕni

∆t
=
−
(
ϕn+1
i

)3 − (ϕni )
3
+ ϕn+1

i + ϕni
2ϵ2

+
1

2
∆h

(
ϕn+1
i + ϕni

)
, (2.14)
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4. NLSS scheme (α = 1, β = 0, γ = 1)

ϕn+1
i − ϕni

∆t
=
−
(
ϕn+1
i

)3
+ ϕni

ϵ2
+∆hϕ

n+1
i , (2.15)

5. LSS scheme (α = 0, β = −2, γ = 1)

ϕn+1
i − ϕni

∆t
=
− (ϕni )

3 − 2ϕn+1
i + 3ϕni

ϵ2
+∆hϕ

n+1
i . (2.16)

2.2.2.1. Analysis of the schemes. We first check the unique solvability of the schemes. We

need not to consider the case (2.12) since solvability of the explicit scheme clearly holds. Bearing

in mind that the discrete Eq. (2.11) as the Euler equation of a functional, we can consider the

following functional:

G(ϕ) =
1

2∆t
∥ϕ− ϕn∥2h +

⟨
αϕ3

4ϵ2
+

(1− α) (ϕn)
3

ϵ2
− βϕ

2ϵ2
− (1− β)ϕn

ϵ2
,ϕ

⟩
h

+
γ

2
∥∇hϕ∥2h + (1− γ) (∇hϕ

n,∇hϕ)h , (2.17)

Here, ϕψ is the element-wise multiplication (ϕ1ψ1, · · · , ϕNψN ). Let ϕ and ψ (̸= 0) be a fixed

vector and s be a real number. Then, the following polynomial H(s) is a quadratic:

H(s) =G (ϕ+ sψ)

=
1

2∆t
∥(ϕ+ sψ)− ϕn∥2h +

⟨
α (ϕ+ sψ)

3

4ϵ2
++

(1− α)ϕ3

ϵ2
− β (ϕ+ sψ)

2ϵ2

− (1− β)ϕn

ϵ2
,ϕ+ sψ

⟩
h

+
γ

2
∥∇h (ϕ+ sψ)∥2h
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+ (1− γ) (∇hϕ
n,∇h (ϕ+ sψ))h ,

=G(ϕ) + s

⟨
ϕ− ϕn

∆t
+
αϕ3

ϵ2
+

(1− α) (ϕn)
3

ϵ2
− βϕ

ϵ2
− (1− β)ϕn

ϵ2

− ∆h (γϕ+ (1− γ)ϕn) ,ψ
⟩
h
+ s2

⟨
ψ

2∆t
+

(
3αϕ2 − β

)
ψ

2ϵ2
− γ∆hψ

2
,ψ

⟩
h

+ s3
⟨
αϕψ2

ϵ2
,ψ

⟩
h

+ s4
⟨
αψ3

4ϵ2
,ψ

⟩
h

. (2.18)

To check the convexity of the functional, we calculate the first and second derivatives of (2.18) as

following:

H ′(s) =

⟨
ϕ− ϕn

∆t
+
αϕ3

ϵ2
+

(1− α) (ϕn)
3

ϵ2
− βϕ

ϵ2
− (1− β)ϕn

ϵ2

− ∆h (γϕ+ (1− γ)ϕn) ,ψ
⟩
h
+ 2s

⟨
ψ

2∆t
+

(
3αϕ2 − β

)
ψ

2ϵ2
− γ∆hψ

2
,ψ

⟩
h

+ 3s2
⟨
αϕψ2

ϵ2
,ψ

⟩
h

+ 4s3
⟨
αψ3

4ϵ2
,ψ

⟩
h

, (2.19)

and

H ′′(s) =2

⟨
ψ

2∆t
+

(
3αϕ2 − β

)
ψ

2ϵ2
− γ∆hψ

2
,ψ

⟩
h

+ 6s

⟨
αϕψ2

ϵ2
,ψ

⟩
h

+ 12s2
⟨
αψ3

4ϵ2
,ψ

⟩
h

,

=

(
1

∆t
− β

ϵ2

)
∥ψ∥2h +

3α

ϵ2

∥∥∥(ϕ+ sψ)
2
∥∥∥2
h
+ γ ∥∇hψ∥2h . (2.20)

If α > 0, β < ϵ2/∆t, and γ > 0, the derivative H ′′(s) is strictly positive from (2.20); hence, the

polynomial H(s) is strictly convex and the functional G(ϕ) is bounded below. Therefore, there is
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the minimizer ϕ∗ such that H(s) = G (ϕ∗ + sψ) and G (ϕ∗) ≤ G(ϕ) for all ϕ. Moreover, taking

s = 0 to (2.19), we get

H ′(0) =

⟨
ϕ∗ − ϕn

∆t
+
α (ϕ∗)

3

ϵ2
+

(1− α) (ϕn)
3

ϵ2
− βϕ∗

ϵ2
− (1− β)ϕn

ϵ2

−∆h (γϕ
∗ + (1− γ)ϕn) ,ψ

⟩
h
= 0, (2.21)

Here, the equation becomes zero because of the property of the critical point of the convex func-

tional. Since Eq. (2.21) holds regardless of ψ, we have

ϕ∗ − ϕn

∆t
=
−α (ϕ∗)

3 − (1− α) (ϕn)
3
+ βϕ∗ + (1− β)ϕn

ϵ2

+∆h (γϕ
∗ + (1− γ)ϕn) . (2.22)

To show the uniqueness of the minimizer ϕ∗, let us assume that ϕ̂ is another minimizer of the

functional G; i.e., G(ϕ̂) = G(ϕ∗) and ψ = ϕ̂ − ϕ∗ ̸= 0. Using strictly convexity of H, proven in

above, the following inequality holds:

G(ϕ∗ + 0.5ψ) = H(0.5) <
H(0) +H(1)

2
=
G(ϕ∗) +G(ϕ̂)

2
= G(ϕ∗),

which leads to a contradiction. Let us denote ϕ∗ as ϕn+1, then the Eq. (2.22) has the form of the

Eq. (2.11).

Inequality (2.21) is satisfied with any temporal step size for LSS and NLSS schemes. On the

other hand, the Crank–Nicolson and implicit schemes holds if ∆t ≤ 2ϵ2 and ∆t ≤ ϵ2, respectively.
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Next, we check that the stability of NLSS and LSS schemes, which have no restriction in

solvability as discussed above. A numerical scheme is called unconditionally gradient stable when

the discrete total free energy is non-increasing for any temporal step size ∆t, i.e., the purpose of

the part is to show the NLSS and LSS schemes inherit a decreasing the total energy properties.

It is known that a numerical scheme for the AC equation is unconditionally gradient stable if we

split the free energy appropriately into contractive and expansive parts,

E(ϕ) =
∫ b

a

[
F (ϕ)

ϵ2
+

1

2
ϕ2x

]
dx = Ec(ϕ)− Ee(ϕ),

and treat the former part Ec(ϕ) implicitly and the latter part Ee(ϕ) explicitly [49]. The discrete

energy functional Eh(ϕn) of the AC equation is defined as

Eh(ϕn) =
h

4ϵ2

N∑
i=1

((ϕni )
2 − 1)2 +

h

2

N−1∑
i=1

|∇hϕ
n
i+ 1

2
|2

for each n. It is convenient to consider the discrete energy functional by decomposing into three

parts:

E(1)(ϕn) =
h

2ϵ2

N∑
i=1

(ϕni )
2,

E(2)(ϕn) =
h

2

N−1∑
i=1

∣∣∣∇hϕ
n
i+ 1

2

∣∣∣2 ,
E(3)(ϕn) =

h

4ϵ2

N∑
i=1

(
(ϕni )

4 + 1
)
.
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Using the constants α, β, and γ used in (2.11), we can rewrite the decomposed discrete energy

functional as

Eh(ϕn) = Eh
c (ϕ

n)− Eh
e (ϕ

n), (2.23)

where

Eh
c (ϕ

n) =− βE(1)(ϕn) + γE(2)(ϕn) + αE(3)(ϕn),

Eh
e (ϕ

n) =(1− β)E(1)(ϕn)− (1− γ)E(2) − (1− α)E(3),

Using a discrete total energy, we can derive the numerical scheme in Eq. (2.15) from a gradient of

the discrete total energy as

ϕn+1
i − ϕni

∆t
= − 1

h
∇Eh

c (ϕ
n+1)i +

1

h
∇Eh

e (ϕ
n)i, for i = 1, · · · , N. (2.24)

Given the discrete energy functional E(i)(ϕ), one defines the Hessian H(i) to be the Jacobian of

the ∇E(i)(ϕ) and hence the Hessian for i = 1, 2, 3 is represented by

H(1) =∇2E(1)(ϕ)

=
h

ϵ2



1 0

1

. . .

1

0 1


,
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H(2) =∇2E(2)(ϕ)

=h



1 −1 0

−1 2 −1

. . .
. . .

. . .

−1 2 −1

0 −1 1


,

H(3) =∇2E(3)(ϕ)

=
3h

ϵ2



ϕ21 0

ϕ22
. . .

ϕ2N−1

0 ϕ2N


,

where we have used the boundary condition in Eq. (2.9). The eigenvalues of H(1), H(2), and H(3)

are

λ
(1)
k =

h

ϵ2
,

λ
(2)
k =

4

h
sin2

(k − 1)π

2N
,

λ
(3)
k =

3h

ϵ2
ϕ2k,

(2.25)

where k = 1, 2, · · · , N , respectively. Note that all eigenvalues in (2.25) are non-negative. Let

vk =
wk

|wk|
,
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be the orthonormal eigenvector corresponding to the eigenvalues λ
(2)
k where

wk =

(
cos

(k − 1)π

2N
, cos

3(k − 1)π

2N
, · · · , cos (2N − 1)(k − 1)π

2N

)
,

then ϕn+1 − ϕn can be expressed in terms of a linear combination of vk as

ϕn+1 − ϕn =
N∑

k=1

αkvk. (2.26)

We establish the decrease of the discrete energy functional. If ϕn+1 is the solution of Eq. (2.15)

with a given ϕn, then

Eh(ϕn+1) ≤ Eh(ϕn). (2.27)

Next, we prove Eq. (2.27). This inequality has been shown for the nonlinear gradient stabilized

scheme in [28] and here we consider all five finite difference schemes. Using an exact Taylor

expansion of Eh(ϕn) about ϕn+1 up to the second order, we have

Eh(ϕn+1)− Eh(ϕn) =

⟨
1

h
∇Eh(ϕn+1),ϕn+1 − ϕn

⟩
h

−
⟨

1

2h
∇2Eh(ξ)(ϕn+1 − ϕn),ϕn+1 − ϕn

⟩
h

, (2.28)

where

ξ = θϕn + (1− θ)ϕn+1 and 0 ≤ θ ≤ 1.
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For the first term of the right-hand side of Eq. (2.28), using Eq. (2.24), and the mean value

theorem, we have

⟨
1

h
∇Eh(ϕn+1),ϕn+1 − ϕn

⟩
h

(2.29)

=

⟨
1

h
∇Eh

c (ϕ
n+1)− 1

h
∇Eh

e (ϕ
n+1),ϕn+1 − ϕn

⟩
h

−
⟨
ϕn+1 − ϕn

∆t
+

1

h
∇Eh

c (ϕ
n+1)− 1

h
∇Eh

e (ϕ
n),ϕn+1 − ϕn

⟩
h

= − 1

h

⟨
∇Eh

e (ϕ
n+1)−∇Eh

e (ϕ
n),ϕn+1 − ϕn

⟩
h
− 1

∆t
∥ϕn+1 − ϕn∥h

≤ − 1

h

⟨
∇Eh

e (ϕ
n+1)−∇Eh

e (ϕ
n),ϕn+1 − ϕn

⟩
h

= − 1

h

⟨
∇Eh

e (η)(ϕ
n+1 − ϕn),ϕn+1 − ϕn

⟩
h

= − 1

h

⟨[
(1− β)H(1) − (1− γ)H(2) − (1− α)H(3)

]
(ϕn+1 − ϕn),ϕn+1 − ϕn

⟩
h
,

where

η = θϕn + (1− θ)ϕn+1

and 0 ≤ θ ≤ 1. Also, for the second term of the right-hand side of Eq. (2.28), using

Eh = −E(1) + E(2) + E(3),
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we have

−
⟨

1

2h
∇2Eh(ξ)(ϕn+1 − ϕn),ϕn+1 − ϕn

⟩
h

=
1

2h

⟨(
H(1) −H(2) −H(3)

)
(ϕn+1 − ϕn),ϕn+1 − ϕn

⟩
h

≤ 1

2h

⟨(
H(1) −H(2)

)
(ϕn+1 − ϕn),ϕn+1 − ϕn

⟩
h
. (2.30)

From the equality (2.26), and inequalities (2.29) and (2.30), we have

Eh(ϕn+1)− Eh(ϕ)n

≤ − 1

h

⟨[
(1− β)H(1) − (1− γ)H(2) − (1− α)H(3)

]
(ϕn+1 − ϕn),ϕn+1 − ϕn

⟩
h

+
1

2h

⟨(
H(1) −H(2)

)
(ϕn+1 − ϕn),ϕn+1 − ϕn

⟩
h

=

⟨[
2β − 1

2h
H(1) +

1− 2γ

2h
H(2) +

1− α

h
H(3)

]
(ϕn+1 − ϕn),ϕn+1 − ϕn

⟩
h

=

N∑
k,l=1

⟨[
2β − 1

2h
λ
(1)
k +

1− 2γ

2h
λ
(2)
k +

1− α

h
λ
(3)
k

]
αkvk, αlvl

⟩
h

=

N∑
k,l=1

⟨[
2β − 1

2ϵ2
+

2− 4γ

h2
sin2

(k − 1)π

2N
+

3− 3α

ϵ2
η2k

]
αkvk, αlvl

⟩
h

=
N∑

k=1

[
2β − 1

2ϵ2
+

2− 4γ

h2
sin2

(k − 1)π

2N
+

3− 3α

ϵ2
η2k

]
α2
k. (2.31)

If the right hand side of Eq. (2.31) is negative, it is guaranteed that the energy functional is non-

increasing. Therefore, the nonlinearly stabilized splitting scheme (α = 1, β = 0, γ = 1) inherits

the energy non-increasing property. For the linearly stabilized splitting scheme (α = 0, β =
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−2, γ = 1), a sufficient condition for having negative value of Eq. (2.31) is

ηk ≤
√

5/6.

Finally, we show that the decrease of the discrete total energy functional implies the pointwise

boundedness of the numerical solution for the AC equation [28]. Let ϕn be a numerical solution

for the discrete AC equation and

Eh(ϕn) ≤ Eh(ϕn−1).

Then,

Eh(ϕ0) ≥Eh(ϕn)

=
h

4ϵ2

N∑
i=1

((ϕni )
2 − 1)2 +

h

2

N−1∑
i=1

|∇hϕ
n
i+ 1

2
|2

≥ h

4ϵ2

N∑
i=1

((ϕni )
2 − 1)2

≥ h

4ϵ2
((ϕni )

2 − 1)2,

for any 1 ≤ i ≤ N . Therefore, we have

∥ϕn∥∞ ≤
√
1 + 2ϵ

√
Eh(ϕ0)/h,

and it implies that the largest solution at t = n∆t is always pointwisely bounded depending on

the initial discrete total energy functional value.
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2.2.3. Mass-conservative form. In [78], we propose a practically unconditionally stable

numerical scheme for the conservative AC equation with a space-time dependent Lagrange multi-

plier. The scheme is based on the recently developed hybrid scheme for the AC equation [95] with

an exact mass-conserving update at each time step.

Here, we present a discrization of a two-dimensional case. Let a computational domain Ωh is

the set of points (xi, yj) = (a+(i−0.5)h, c+(j−0.5)h) for i = 1, · · · , Nx and j = 1, · · · , Ny where

h is a uniform spatial step size (b− a)/Nx = (d− c)/Ny for Ω = [a, b]× [c, d], Nx and Ny are the

numbers of cells in x- and y-directions, respectively. Denote the approximate value or the order

parameter c as

cnij ≈ c(xi, yj , n∆t),

and the discrete order parameter at time n∆t is defined as

cn =



cn11 cn12 · · · cn1Ny

cn21 cn22 · · · cn2Ny

...
...

. . .
...

cnNx1
cnNx2

· · · cnNxNy


.

The zero Neumann boundary condition is implemented by

∇x
hc

n
1
2 ,j

= ∇x
hc

n
Nx+

1
2 ,j

= ∇y
hc

n
i, 12

= ∇y
hc

n
i,Ny+

1
2
= 0,
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where

∇x
hc

n
i+ 1

2 ,j
=
cni+1,j − cnij

h
,

∇y
hc

n
i,j+ 1

2
=
cni,j+1 − cnij

h
,

is the discrete gradient operator. Further, the discrete Laplace operator is defined as

∆hc
n
ij =

∇x
hc

n
i+ 1

2 ,j
−∇x

hc
n
i− 1

2 ,j
+∇y

hc
n
i,j+ 1

2

−∇y
hc

n
i,j+ 1

2

h

=
cni+1,j + cni−1,j − 4cnij + ci,j+1 + ci,j−1

h2
.

Applying an operator splitting method to Eq. (2.7), we can rewrite the equation as a sequence

of simpler problems in a numerical analytic point of view:

ct =∆c, (2.32)

ct =− F ′(c)

ϵ2
, (2.33)

ct =β
√
2F (c). (2.34)

For the first step, we calculate the temporary solution cn+1,1 numerically from cn, which is

the solution at the n-th time step. Here, the IE method is used as a numerical scheme for solving

the heat equation (2.32):

cn+1,1
ij − cnij

∆t
= ∆hc

n+1,1
ij .
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The multigrid method, known as one of the fastest method to solve common discretization problems

[4, 17, 129], is applied to solve the above discrete equation. The detailed of the multigrid method

can be shown in appendix. Note that the CN scheme can be also applied as in [95]; however, it

is well-known that the scheme suffers from oscillatory behavior with large time step although it is

also unconditionally stable and has higher order accuracy.

Next, the second temporary solution cn+1,2 is derived from Eq. (2.33) analytically with an

initial condition cn+1,1 by using the separation of the variable [123]. Since there are no spatial

derivatives in the governing equation of this step, we assume that c depends on only the time

variable t:

dc(t)

dt
= −c(t)− 3 (c(t))

2
+ 2 (c(t))

3

ϵ2
.

Here, we can assume that c ∈ (0, 1) since c = 0 or c = 1 implies that the time derivation becomes

zero. By using the separation of the variable,

− dc

c− 3c2 + 2c3
=
dt

ϵ2
,

⇔− dc

c(1− c)(2− c)
=
dt

ϵ2
,

⇔
(
−1

c
+

1

1− c
− 4

1− 2c

)
dc =

dt

ϵ2
,
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and integrating both sides,

∫ cn+1,2
ij

cn+1,1
ij

(
−1

c
+

1

1− c
− 4

1− 2c

)
dc =

∫ (n+1)∆t

n∆t

dt

ϵ2
,

⇔ ln

∣∣∣∣∣ (1− 2cn+1,2
ij )2

cn+1,2
ij (1− cn+1,2

ij )

∣∣∣∣∣− ln

∣∣∣∣∣ (1− 2cn+1,1
ij )2

cn+1,1
ij (1− cn+1,1

ij )

∣∣∣∣∣ = ∆t

ϵ2
,

⇔

∣∣∣∣∣ (1− 2cn+1,2
ij )2

cn+1,2
ij (1− cn+1,2

ij )

∣∣∣∣∣ =
∣∣∣∣∣ (1− 2cn+1,1

ij )2

cn+1,1
ij (1− cn+1,1

ij )

∣∣∣∣∣ e∆t
ϵ2 . (2.35)

We can directly get rid of the absolute value functions since both terms in the functions are positive

with assumption c ∈ (0, 1). By expanding and simplifying, we can rewrite Eq. (2.35) as a quadratic

polynomial of cn+1,2
ij :

(A+ 4)
(
cn+1,2
ij

)2
− (A+ 4)cn+1,2

ij + 1 = 0,

where

A =

(
1− 2cn+1,1

ij

)2
cn+1,1
ij

(
1− cn+1,1

ij

)e∆t
ϵ2 .

Solving the polynomial, we get

cn+1,2
ij =

1

2
±

√
A

2
√
A+ 4

=
1

2
±

∣∣∣1− 2cn+1,1
ij

∣∣∣
2

√(
1− 2cn+1,2

ij

)2
+ 4cn+1,1

ij

(
1− cn+1,1

ij

)
e−

∆t
ϵ2

.
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From the boundedness of cn+1,2
ij in [0, 1], we can cancel out the plus-minus sign and the absolute

value function. Therefore, the solution can be simplified as follow:

cn+1,2
ij =

1

2
−

1− 2cn+1,1
ij

2

√(
1− 2cn+1,1

ij

)2
+ 4cn+1,1

ij

(
1− cn+1,1

ij

)
e−

∆t
ϵ2

.

Finally, we discretize Eq. (2.34) as

cn+1
ij − cn+1,2

ij

∆t
= βn+1,2

√
2F (cn+1,2

ij ),

or

cn+1
ij = cn+1,2

ij +∆tβn+1,2
√

2F (cn+1,2
ij ). (2.36)

To satisfy the mass conservation property in a discrete sense, the following condition should

holds from Eq. (2.36):

Nx∑
i=1

Ny∑
j=1

c0ij =

NX∑
i=1

Ny∑
j=1

cn+1
ij

=

Nx∑
i=1

Ny∑
j=1

(
cn+1,2
ij +∆tβn+1,2

√
2F (cn+1,2

ij )

)
,

and it implies

βn+1,2 =

∑Nx

i=1

∑Ny

j=1

(
c0ij − cn+1,2

ij

)
∆t
∑Nx

i=1

∑Ny

j=1

√
2F (cn+1,2

ij )
.
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Here, the denominator of β can has a zero value pointwisely, i.e., cn+1,2
ij = 0 or 1 (or F (cn+1,2

ij ) = 0

for some specific i and j. However, the summation cannot be zero since we does not consider the

constant case: c ≡ 0 or c ≡ 1. Note that if c is not a constant, there should be at least one cij in

(0, 1) because of a diffused-interface.

In summery, the proposed algorithm for solving the conservative AC equation numerically in

[78] is

cn+1,1
ij − cnij

∆t
=∆hc

n+1,1
ij , (2.37)

cn+1,2
ij =

1

2
−

1− 2cn+1,1
ij

2
√
(1− 2cn+1,1

ij )2 + 4cn+1,1
ij (1− cn+1,1

ij )e−
∆t
ϵ2

, (2.38)

cn+1
ij =cn+1,2

ij +∆tβn+1,2
√

2F (cn+1,2
ij ). (2.39)

2.2.4. Numerical experiments.

2.2.4.1. Decrease of the total energy. To check the robustness of the numerical schemes, we

consider the evolution of the discrete total energy. The random perturbation 0.1rand(x) is given

as an initial condition ϕ(x, 0) on Ω = (0, 1) with 64 grid points, where rand(x) is a random number

between −1 and 1.

We use the simulation parameters ϵ6 and ∆t = 0.4h2. In Fig. 2.5(a), the temporal evolution

of the non-dimensional discrete total energy Eh(ϕn)/Eh(ϕ0) is shown. The total discrete energy
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is non-increasing. Also, the inscribed small figures are the concentration fields at the indicated

times. Figure 2.5(b) is a snapshot of ϕ(x, t) at t = 0.0015.
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Figure 2.5. (a) Temporal evolution of non-dimensional discrete total energy
Eh(ϕn)/Eh(ϕ0) with an initial data, ϕ(x, 0) = 0.2rand(x). (b) Snapshot of ϕ(x, t)
at t = 0.0015.

2.2.4.2. Motion by mean curvature. It was formally proved that, as ϵ → 0, the zero level set

of ϕ evolves according to the geometric law (2.5)

V =− κ

=−
(

1

R1
+

1

R2

)
, (2.40)

where R1 and R2 are the principal radii of curvatures at the points of the surface [2]. In a two-

dimensional space, Eq. (2.40) becomes

V = − 1

R
.
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An initial condition is given as a circle with center (0.5, 0.5) and radius R0 = 0.35 on the

computational domain Ω = (0, 1)× (0, 1):

ϕ(x, y, 0) = tanh

(
R0 −

√
(x− 0.5)2 + (y − 0.5)2√

2ϵ

)
.

Let R0 and R(t) be the initial radius and the radius at time t of the circle, respectively. Then, Eq.

(2.40) becomes

dR(t)

dt
= − 1

R(t)
.

Therefore, analytic solution is given as

R(t) =
√
R2

0 − 2t.

In order to compare the motion by mean curvature flow with several numerical schemes, we im-

plement numerical simulations with various ϵ values (ϵ4, ϵ8, and ϵ12), h = 1/64, and T = 250h2.

Figures 2.6 and 2.7 show the results with ∆t = 0.1h2 and ∆t = 10h2, respectively.

With different ϵ values, the numerical solutions have different errors comparing with the an-

alytic solution as shown in Fig. 2.6. The most sharped-interface case, ϵ4 has the biggest errors

among our choices. On the other hand, ϵ8 case has the most accurate solutions for the explicit,

implicit, and the Crank–Nicolson schemes and the speed of shrinking is little faster than other

cases in ϵ12 case.
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Figure 2.6. Comparison of temporal evolutions of the radius with various ϵ values
and ∆t = 0.1h2 from t = 0 to t = 250h2 in two-dimensional space.
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Figure 2.7. Comparison of temporal evolutions of the radius with various ϵ values
and ∆t = 10h2 from t = 0 to t = 250h2 in two-dimensional space.

In Fig. 2.7, we could check the effect of ϵ values as in Fig. 2.6. Similar to previous case, the

speed of shrinking is proportional to the magnitude of ϵ. Comparing the effects in time step size,

the numerical results with various schemes are close to analytic solution when ∆t = 0.1h2. With

a large time step ∆t = 10h2, we have only two results with LSS and NLSS as shown in Fig. 2.7

and we can see that the gaps between analytic and numerical results are large. The other schemes

have unstable results with large time step size.
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Moreover, Eq. (2.5) becomes

dR(t)

dt
= − 1

2R(t)
.

in three-dimensional space and the radius of an sphere evolves with

R(t) =
√
R2

0 − 4t.

The numerical results comparing with analytic solution are shown in Fig. 2.8. The behavior of

numerical solutions is similar to results in the previous two-dimensional test. We used all same

parameter values as the two-dimensional case except T = 120h2.
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Figure 2.8. Comparison of temporal evolutions of the radius with various ϵ values
when ∆t = 0.1h2 (upper row) and (b) ∆t = 10h2 (lower row) from t = 0 to
t = 250h2 in three-dimensional space.
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2.2.4.3. Mass-conservative form. In this section, we perform numerical experiments such as

the basic mechanism of the model, a comparison with previous model, and the temporal evolution

of drops in a two-dimensional space. Note that the equilibrium state of the order parameter is

given by

c =
1

2

(
1 + tanh

( x
2ϵ

))
,

varies from 0.05 to 0.95 over a distance of approximately 4ϵ tanh−1(0.9) across the interfacial

regions (See Fig. 2.9). Therefore, if we want this value to be approximately m grid points, then ϵ

value is given as ϵm = hm/[4 tanh−1(0.9)] [75]. Throughout the rest of this section, we shall use

ϵ8 if not otherwise specified.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

ǫm

0.9

Figure 2.9. Phase transition of the equilibrium profile c(x) =
(
1 + tanh(x/(

√
2ϵ))

)
/2.

We start with an example which illustrates the basic mechanism of the algorithm Eqs. (2.37)–

(2.39). Let us consider an elliptical initial shape (see dotted line in Fig. 2.10). If we take only

the AC step Eqs. (2.37) and (2.38), then the initial shape shrinks under the motion by mean
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curvature (see dashed line) [60]. The position with a higher curvature moves faster than those

with lower curvatures on the curve. However, with the mass correction step Eq. (2.39), the curve

uniformly moves to the outward normal direction (see solid line). By continuing this process, the

initial ellipse relaxes to the circular shape with the same mass.

 

 

Initial shape
Allen−Cahn step
Mass correction step

Figure 2.10. Basic mechanism of the proposed numerical scheme.

Moreover, to see the difference between two models Eqs. (2.6) and (2.7), we consider the

following numerical experiments. On a computational domain Ω = (0, 1)× (0, 2) with a mesh grid

of 128× 256, the initial conditions are given as

(i) ϕij =

 1 if 40 ≤ i ≤ 88, 168 ≤ i ≤ 216, and 40 ≤ i ≤ 88,

0 otherwise,

and

(ii) ϕij =

 1 if 56 ≤ i ≤ 72, 184 ≤ i ≤ 190, and 56 ≤ i ≤ 72,

0 otherwise,

(see Fig. 2.11(a)). The temporal step size is chosen as ∆t = 10−5.
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Figure 2.11. (a) Initial conditions with two different shapes. (b) and (c) are
numerical results from Eqs. (2.6) and (2.7), respectively.

Figures 2.11(b) and (c) show the numerical results of Eqs. (2.6) and (2.7) at a steady state

with two different initial conditions, respectively. Here, we define the numerical steady state as

the state when the discrete l2 norm of the difference between ϕn+1 and ϕn becomes less than a

given tolerance, tol = 10−6. Observing the numerical results in the top row of Fig. 2.11, we can

see that both models work well when the initial feature is large enough. It should be noted that

the order parameter in the outside phase is 0.009 for Eq. (2.6), on the other hand, the value is

0.0 for Eq. (2.7) with our proposed numerical scheme. The reason why the order parameters have

different values is that our scheme corrects mass loss in the interfacial region. If the geometry is

small, then the geometry disappears with Eq. (2.6) (see the second row of Fig. 2.11(b)). On the

other hand, with our scheme, the drop stays as shown in the second row of Fig. 2.11(c).
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In [19], the authors gave the evolution law for radii of spheres in n-dimensional geometric

flows. For the m interfaces of radii ri for i = 1, 2, . . . ,m with rj < rj+1 for j = 1, 2, . . . ,m − 1 ,

the equations of evolution in n-dimensional case are given by

dri
dt

= (n− 1)

(∑m
k=1 r

n−2
k∑m

k=1 r
n−1
k

− 1

ri

)
, i = 1, 2, · · · ,m.

We consider two disjoint circular interfaces in two-dimensional space. Assume that the two inter-

faces have radii r and R with r < R, then the equations of evolution become
dr

dt
=

2

r +R
− 1

r
,

dR

dt
=

2

r +R
− 1

R
.

(2.41)

From the above equations, we can get the time tf at which smaller circle disappears (i.e., r(tf ) = 0)

by solving a system of ordinary differential equations [16]. To solve the system (2.41), we consider

the change of variable as follow:

ξ =rR,

η =r2 +R2,

and the system (2.41) can be rewritten as

dξ

dt
=
d

dt
(rR)

=
dr

dt
R+ r

dR

dt
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=

(
2

r +R
− 1

r

)
R+ r

(
2

r +R
− 1

R

)

=

(
2R

r +R
− R

r

)
+

(
2r

r +R
− r

R

)

=
2(r +R)

r +R
− R

r
− r

R

=2− r2 +R2

rR

=2− η

ξ
,

dη

dt
=
d

dt
(r2 +R2)

=2r
dr

dt
+ 2R

dR

dt

=2r

(
2

r +R
− 1

r

)
+ 2R

(
2

r +R
− 1

R

)

=

(
4r

r +R
− 2r

r

)
+

(
4R

r +R
− 2R

R

)

=
4(r +R)

r +R
− 2− 2

=4− 2− 2

=0. (2.42)

Note that the area of two circles πr2 + πR2 is a constant since the governing equation has a

conservative property and it has a good agreement with Eq. (2.42). Now, let η be a constant up

to the time variable. Using the separation of variable, we can solve the differential equation as
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follow:

1

2− η

ξ

dξ = dt

⇔ ξ

2ξ − η
dξ = dt

⇔

1

2
(2ξ − η) +

1

2
η

2ξ − η
dξ = dt

⇔
(
1

2
− η

2(η − 2ξ)

)
dξ = dt

⇔
∫ ξ(tf )

ξ0

(
1

2
− η

2(η − 2ξ)

)
dξ =

∫ tf

0

dt

⇔
∫ 0

ξ0

(
1

2
− 1

2

η

(η − 2ξ)

)
dξ =

∫ tf

0

dt

(∵ ξ(tf ) = r(tf )R(tf ) = 0)

⇔
[
ξ

2
+

1

2

(
−η
2

)
ln

(
η

η − 2ξ

)]0
η0

= tf

⇔
[
ξ

2
+

1

2

(
−η
2

)
ln

(
η − 2ξ + 2ξ

η − 2ξ

)]0
η0

= tf

⇔
[
ξ

2
+

1

2

(
−η
2

)
ln

(
1 +

2ξ

η − 2ξ

)]0
η0

= tf

⇔− ξ0
2

+
η0
4

ln

(
1 +

2ξ0
η0 − 2ξ0

)
= tf

Therefore, by replacing ξ0 and η0 to r0R0 and r20 +R2
0, respectively, we get

tf = −0.5r0R0 + 0.25
(
r20 +R2

0

)
ln

(
1 +

2r0R0

(R0 − r0)
2

)
, (2.43)
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where r0 and R0 are the initial radii. We present results for r0 = 0.05 and R0 = 0.2 using a temporal

step size ∆t = 0.1 ∗ h2 on Ω = (0, 1)× (0, 1) with a mesh grid 128× 128. Then tf = 1.7574× 10−3

by Eq. (2.43). For the reference solutions of r and R, we numerically solve the ordinary differential

equations by using the fourth order Runge–Kutta method [12, 142, 20].

In Fig. 2.12, the solid lines represent the result from the Runge–Kutta method, dot and star

represent the radius evolutions of R and r with Eq. (2.7), respectively, and circle and diamond

also represent the radius evolutions of Rp and rp with Eq. (2.6), respectively. As shown in Fig.

2.12, R grows monotonically with our numerical scheme and r disappears at the similar time as

predicted from the analytic calculation. Compared to Eq. (2.7), the results from Eq. (2.6) do

not predict the theoretical prediction because most mass diffuse into the bulk phase from a global

mass conservative Lagrange multiplier.
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Figure 2.12. Evolution of the radii of two distinct circles against time. R and r
are radii from Eq. (2.6) and Rp and rp are radii from Eq. (2.7). The solid lines
are the corresponding reference solutions.
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2.3. Cahn–Hilliard equation

2.3.1. Governing equations. The CH equations were originated from a model of the phase

separation, called the spinodal decomposition, in a binary alloy at a fixed temperature [21]. Phase

separation occurs when a single phase homogeneous system composed of two mixtures in thermal

equilibrium is rapidly cooled to a temperature below a critical temperature where the system is

unstable with respect to infinitesimal concentration fluctuations. Since the spinodal decomposition

is one of few phase transformation models in solids, the equations have been applied to various

problems in theoretical and experimental material science fields as a governing equation of a phase-

field method in image inpainting [11], volume reconstruction [90], block copolymer [63, 64], elastic

non-equilibrium [82], multiphase fluid flow [72, 73, 77, 79], phase separation [46], flow visualization

[52], quantum dot [134] and etc. It is closely related to the AC equation described in section 2.2.

One of the general forms of the CH equation can be written as follows:

∂ϕ(x, t)

∂t
= ∇ · [M(ϕ(x, t))∇µ(ϕ(x, t))] , x ∈ Ω, 0 < t ≤ T, (2.44)

µ(ϕ(x, t)) = F ′(ϕ(x, t))− ϵ2∆ϕ(x, t), (2.45)

where x is the spatial variable in a domain Ω ∈ Rd (d = 1, 2, 3), t is the temporal variable in

[0, T ], ϕ(x, t) is the difference between concentrations of two mixtures, M(ϕ) > 0 is a diffusional

mobility, µ(ϕ) is a chemical potential, T is the final time, F (ϕ) = 0.25(1 − ϕ2)2 is the Helmholtz
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free energy which has a double well potential, and ϵ > 0 is a gradient energy coefficient related

to an interfacial energy. The natural boundary for the CH equation is the homogenous Neumann

condition (or the no flux boundary condition) as follow:

n · ∇ϕ = n · ∇µ = 0 on ∂Ω, (2.46)

where n is the outgoing unit normal vector to the domain boundary ∂Ω.

The CH equation is deduced from the Ginzburg–Landau free energy functional in a H−1 space

and the functional has a form as follow [87]:

E(ϕ) =
∫
Ω

[
F (ϕ) +

ϵ2

2
|∇ϕ|2

]
dx. (2.47)

If we assume that M(ϕ) is a constant, i.e., ∇ · (M∇µ) =M∆µ, differentiating (2.47) with respect

to t gives

d

dt
E(ϕ) = d

dt

∫
Ω

[
F (ϕ) +

ϵ2

2
|∇ϕ|2

]
dx

=

∫
Ω

[
F ′(ϕ)ϕt + ϵ2 (∇ϕ · ∇ϕt)

]
dx,

=

∫
Ω

[
F ′(ϕ)− ϵ2∆ϕ

]
ϕtdx+

∫
∂Ω

(n · ∇ϕ)ϕtdx

=

∫
Ω

µϕtdx

=

∫
Ω

µ(M∆µ)dx
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=M

[
−
∫
Ω

|∇µ|2 dx+

∫
∂Ω

µ (n · ∇µ) dx
]

= −M
∫
Ω

|∇µ|2 dx ≤ 0, (2.48)

using integration by parts and the boundary condition (2.46) and it implies that the total energy

is non-increasing in time. Besides, the derivative of the total mass with respect to t gives

d

dt

∫
Ω

ϕdx =

∫
Ω

ϕtdx

=

∫
Ω

M∆µdx

=M

∫
∂Ω

(n · ∇µ) dx

= 0. (2.49)

Hence, the total mass conserves in time.

There have been development in many numerical algorithms to solving the CH equation such as

phase-field [44, 79, 140], immersed boundary [42, 81], volume of fluid [56], front tracking [41, 130],

boundary integral [36, 58], immersed interface [93, 117], and level set [110, 116] methods.

As shown in Eqs. (2.44) and (2.45), the system of equation is the fourth-order differential

equation in space and it implies that there are some difficulties in numerical analysis for the CH

equation. Many spatial stencils are needed and the time step restriction is stringent, for example,

∆t = O(h4) for using the explicit methods. Moreover,the nonlinear terms does not guarantee
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numerical stability at the lower order spatial derivatives. The explicit scheme is simple but less

efficient duo to severe time step restriction, whereas the implicit scheme is efficient but needs

large linear systems of equations to solve. Likewise, each numerical methods has its own unique

advantages and disadvantages for specific needs. Therefore, comparison of different schemes have

been discussed to use adequate schemes for specific problems. In this dissertation, we focus on

six widely used schemes in numerical analysis such as the explicit Euler’ s, the implicit Euler’ s,

the Crank-Nicolson, the semi-implicit Euler’ s, the linearly stabilized splitting and the non-linearly

stabilized splitting schemes.

2.3.2. Discretization. In this section, we present fully-discrete finite-difference methods for

the CH equation with six different schemes and discuss some analytical properties of the schemes.

We shall discretize the CH equation in two-dimensional domain Ω = (a, b)× (c, d). one- or three-

dimensional discretizations are defined analogously.

Let positive even integers Nx and Ny be a numbers of spatial step sizes in x- and y-directions,

respectively, h = (b−a)/Nx = (d− c)/Ny be the uniform mesh size and the computational domain

Ωh = {(xi, yj) : xi = (i−0.5)h, yj = (j−0.5)h, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny} be the set of cell-centered

points. Let ϕnij and µn
ij be approximations of ϕ(xi, yj , n∆t) and µ(xi, yj , n∆t), respectively, where

∆t = T/Nt is the temporal step, T is the final time, Nt is the total number of time steps, and a
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matrix-valued phase-field ϕn is defined as

ϕn =



ϕn11 ϕn12 · · · ϕn1Ny

ϕn21 ϕn22 · · · ϕn2Ny

...
...

. . .
...

ϕnNx1
ϕnNx2

· · · ϕnNxNy


.

To implement the no flux boundary condition (2.46), we define the ghost points ϕni0, ϕ
n
i,Ny+1, ϕ

n
0j ,

and ϕnNx+1,j for each n as

ϕni0 = ϕni1, ϕ
n
i,Ny+1 = ϕni,Ny

for 1 ≤ i ≤ Nx,

ϕn0j = ϕn1j , ϕ
n
Nx+1,j = ϕnNx,j for 1 ≤ j ≤ Ny.

Next, we define the discrete energy functional Eh by

Eh(ϕn) =h2
Nx∑
i=1

Ny∑
j=1

F (ϕnij) +
ϵ2

2

Nx∑
i=1

Ny∑
j=1

(
ϕni+1,j − ϕnij

)2
+

Nx∑
i=1

Ny∑
j=1

(
ϕni,j+1 − ϕnij

)2
and the discrete Laplacian ∆h by the standard five-point stencil

∆hϕij =
ϕi−1,j + ϕi+1,j − 4ϕij + ϕi,j−1 + ϕi,j+1

h2
.

We also define the discrete l∞ norm as

∥ϕ∥∞ = max
1≤i≤Nx
1≤j≤Ny

|ϕij |.
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For simplicity, we assume M(ϕ) ≡ 1; i.e., the mobility is independent of the quantity ϕ and denote

F ′(ϕ) as f(ϕ). Now, we consider the following six numerical schemes as mentioned in above of

Eqs. (2.44) and (2.45):

1. Explicit Euler’s (EE) scheme [100]

ϕn+1
ij − ϕnij

∆t
= ∆hµ

n
ij ,

µn
ij = f(ϕnij)− ϵ2∆hϕ

n
ij .

2. Implicit Euler’s (IE) scheme [48]

ϕn+1
ij − ϕnij

∆t
= ∆hµ

n+1
ij ,

µn+1
ij = f(ϕn+1

ij )− ϵ2∆hϕ
n+1
ij .

3. Crank–Nicolson (CN) scheme [70, 72, 74]

ϕn+1
ij − ϕnij

∆t
=

1

2
∆h(µ

n+1
ij + µn

ij),

µn+1
ij = f(ϕn+1

ij )− ϵ2∆hϕ
n+1
ij .

4. Semi-implicit Euler’s (SIE) scheme [22, 32, 43, 139]

ϕn+1
ij − ϕnij

∆t
= ∆hµ

n+1
ij ,

µn+1
ij = f(ϕnij)− ϵ2∆hϕ

n+1
ij .
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5. Linearly stabilized splitting (LSS) scheme [1, 11]

ϕn+1
ij − ϕnij

∆t
= ∆hµ

n+1
ij ,

µn+1
ij = f(ϕnij)− 2ϕnij + 2ϕn+1

ij − ϵ2∆hϕ
n+1
ij .

6. Non-linearly stabilized splitting (NLSS) scheme [49, 50, 76]

ϕn+1
ij − ϕnij

∆t
= ∆hµ

n+1
ij , (2.50)

µn+1
ij = f(ϕn+1

ij )− ϵ2∆hϕ
n+1
ij + ϕn+1

ij − ϕnij . (2.51)

Compared with other general schemes, LSS and NLSS are known as having larger time step sizes

[49]. We prove this property roughly here and precisely in the latter part of this section.

2.3.3. Analysis of the schemes. Next, we prove the unique solvability precisely in a func-

tional analysis’ point of view and stability using a similar strategy introduced in section 2.2. To

reduce the complexity of a proof, an one-dimensional case is considered here. A functional has

the unique minimizer if it is not only strictly convex, but also coercive and lower semi-continuous

[61, 84]. Here, we prove the unique solvability more precise way than the way. First, we de-

fine the discrete inner product for one-dimensional vector-valued functions ϕ = (ϕ1, · · · , ϕN ) and
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ψ = (ψ1, · · · , ψN ) as

⟨ϕ, ψ⟩h =h
N∑
i=1

ϕiψi,

(∇hϕ,∇hψ)h =h
N∑
i=0

∇hϕi+ 1
2
ψi+ 1

2
.

Applying the nonlinear stabilized splitting scheme [49, 50], the one-dimensional CH equation can

be viewd as the following discrete scheme:

ϕn+1
i − ϕni

∆t
= ∆hµ

n+1
i

µn+1
i =

(
ϕn+1
i

)3 − ϕni − ϵ2∆hϕ
n+1
i ,

(2.52)

for i = 1, · · · , N . Using the discrete boundary condition, we have a discrete summation by parts

⟨∆hϕ,ψ⟩h = ⟨ϕ,∆hψ⟩h = −(∇hϕ,∇hψ)h,

and the scheme (2.52) inherits the mass conservation in the sense

h
N∑
i=1

ϕ0i = h
N∑
i=1

ϕni .

This is readily as follows:

⟨
ϕn+1,1

⟩
h
= ⟨ϕn,1⟩h +∆t

⟨
∆hµ

n+1,1
⟩
h

= ⟨ϕn,1⟩h −∆t
(
∇hµ

n+1,∇h1
)
h
= ⟨ϕn,1⟩h ,

(2.53)
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where 1 = (1, 1, · · · , 1). Next, let us construct a discrete energy functional

Eh(ϕn) =
h

4

N∑
i=1

(
(ϕni )

2 − 1
)2

+
ϵ2h

2

N∑
i=0

∣∣∣∇hϕ
n
i+ 1

2

∣∣∣2 . (2.54)

For our convenience, we separate the discrete energy functional Eh(ϕn) into three energy terms:

E(1)(ϕn) =
h

2

N∑
i=1

(ϕni )
2, (2.55)

E(2)(ϕn) =
ϵ2h

2

N∑
i=0

∣∣∣∇hϕ
n
i+ 1

2

∣∣∣2 , (2.56)

E(3)(ϕn) =h

N∑
i=1

(ϕni )
4 + 1

4
. (2.57)

Let

Eh
c (ϕ

n) = E(2)(ϕn) + E(3)(ϕn)

and

Eh
e (ϕ

n) = E(1)(ϕn)

so that

Eh(ϕn) = Eh
c (ϕ

n)− Eh
e (ϕ

n).
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Evolving ϕn as the gradient flow, we define the operator “gradh” as follows:

gradhEh(ϕn)i =− ∆h

h
∇Eh(ϕn)i

=−∆h(ϕ
n
i )

3 +∆hϕ
n
i + ϵ2∆2

hϕ
n
i ,

where ∆2
hϕi = ∆h(∆hϕi) is the discrete biharmonic operator and

∇Eh(ϕ) =

(
∂Eh(ϕ)

∂ϕ1
, · · · , ∂E

h(ϕ)

∂ϕN

)

is the gradient in RN , that is,

∇Eh(ϕ)i = h
[
(ϕi)

3 − ϕi − ϵ2∆hϕi
]
.

Then, we can rewrite the scheme (2.52) in terms of a gradient of the discrete functional Eh(ϕ) as

ϕn+1
i − ϕni

∆t
= −gradhEh

c (ϕ
n+1)i + gradhEh

e (ϕ
n)i, (2.58)

for i = 1, . . . , N . Let ∆d be the matrix version of ∆h:

∆d =
1

h2



−1 1 0

1 −2 1

. . .
. . .

. . .

1 −2 1

0 1 −1


.
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The matrix −∆d is the semi-positive definite with eigenvalues

λi =
4

h2
sin2

(i− 1)π

2N
,

for i = 1, · · · , N . Let

vi = wi/ |wi|

be the orthonormal eigenvector of −∆d corresponding to the eigenvalue λi, where

wi =

(
cos

(i− 1)π

2N
, cos

3(i− 1)π

2N
, . . . , cos

(2N − 1)(i− 1)π

2N

)
.

For simplicity, we define by

v1 = 1,

and denote

H0 = {ψ ∈ RN | ⟨ψ,1⟩h = 0}.

For

X =
N∑
i=1

xivi,

Y =

N∑
i=1

yivi,



2.3. CAHN–HILLIARD EQUATION 55

in RN such that X ∈ H0 or Y ∈ H0, we also define an inner product by:

⟨X,Y⟩−1,h := h
N∑
i=2

λ−1
i xiyi.

Note that we have the identity

⟨X,Y⟩h =h
N∑
i=2

xiyi

=h

N∑
i=2

λ−1
i λixiyi

= ⟨−∆dX,Y⟩−1,h .

(2.59)

Here, the matrix −∆d is the positive definite with eigenvalues

λi =
4

h2
sin2

(i− 1)π

2N
,

for i = 1, · · · , N .

The Hessian of E(1)(ϕ), denoted by H(1), is the Jacobian of ∇E(1)(ϕ) and is thus given by

H(1) =∇2E(1)(ϕ)

=hIN ,

where IN is the identity matrix of order N , and the Hessian matrices of E(2)(ϕ) and E(3)(ϕ) are

H(2) =∇2E(2)(ϕ)

=− hϵ2∆d,



2.3. CAHN–HILLIARD EQUATION 56

H(3) =∇2E(3)(ϕ)

=3hD,

where D = diag
(
ϕ21, ϕ

2
2, . . . , ϕ

2
N

)
. Moreover, the eigenvalues of H(1), H(2), and H(3) are

λ
(1)
i =h,

λ
(2)
i =

4ϵ2

h
sin2

(i− 1)π

2N
,

λ
(3)
i =3hϕ2i ,

for i = 1, . . . , N . Note that λ
(1)
i , λ

(2)
i , and λ

(3)
i are non-negative for all i.

Now, we construct an appropriate functional of our scheme, and then prove the existence and

uniqueness of a solution for the minimizer of the functional. Let F(ϕ) be a discrete functional

such that

F(ϕ) = ⟨f(ϕ), g(ϕ)⟩h,

for functions f and g. Then, the first (discrete) variation δF(ϕ;ψ) of the F with respect to ϕ is

defined as

δF(ϕ;ψ) =
d

ds
F(ϕ+ sψ)

∣∣∣∣
s=0

=
d

ds
⟨f(ϕ+ sψ), g(ϕ+ sψ)⟩h

∣∣∣∣
s=0
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=
d

ds

[
h

N∑
i=1

f(ϕi + sψi)g(ϕi + sψi)

]
s=0

=h

N∑
i=1

[fϕi(ϕi)g(ϕi) + f(ϕi)gϕi(ϕi)]ψi

=⟨∇F(ϕ),ψ⟩h,

for any vector-valued function ψ and a scalar s where

fϕi =
∂f

∂ϕi
,

and

gϕi =
∂g

∂ϕi
,

or the first variation can be also derived from an increment

∆F (ϕ;ψ) =F (ϕ+ψ)− F (ϕ)

=δF (ϕ;ψ) + o(ψ),

by using the Taylor’s theorem. Note that o(ψ) is a small-o notation: if the function g(x) is positive

and f(x) is an arbitrary function, f(x) = o(g(x)) implies that f/g → 0 as ∥x∥∞ → ∞. We define

the second variation δ2F as a similar manner:

∆F (ϕ;ψ) = δF (ϕ;ψ) + δ2F (ϕ;ψ) + o(ψ2),
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i.e.,

δ2F (ϕ;ψ) =
d2F (ϕ+ sψ)

2ds2

∣∣∣∣
s=0

.

Bearing in mind that we want to have Eq. (2.58) as the first variation of a functional, we consider

the following functional G(ϕ) on the Hilbert space

H = {ϕ | ⟨ϕ,1⟩h = ⟨ϕn,1⟩}

such as

G(ϕ) =
h

2
⟨ϕ,ϕ⟩−1,h − h⟨ϕn,ϕ⟩−1,h + h∆tEh

c (ϕ)−∆t
⟨
∇Eh

e (ϕ
n),ϕ

⟩
h
.

The first variation of G(ϕ) is

δG(ϕ;ψ) =
dG(ϕ+ sψ)

ds

∣∣∣∣
s=0

=h⟨ϕ,ψ⟩−1,h − h⟨ϕn,ψ⟩−1,h +∆t⟨∇Eh
c (ϕ),ψ⟩h −∆t⟨∇Eh

e (ϕ
n),ψ⟩h

=h⟨ϕ− ϕn,ψ⟩−1,h +∆t
⟨
∇Eh

c (ϕ)−∇Eh
e (ϕ

n),ψ
⟩
h
, (2.60)

where ψ ∈ H0 is a non-zero vector. In addition, the second variation of G(ϕ) is

δ2G(ϕ;ψ) =
h

2
⟨ψ,ψ⟩−1,h +

∆t

2

⟨
∇2Eh

c (ϕ)ψ,ψ
⟩
h

=
h

2
⟨ψ,ψ⟩−1,h +

∆t

2

⟨(
H(2) +H(3)

)
ψ,ψ

⟩
h
> 0,
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and it is strictly positive without depending on ϕ. Now, we split

G(ϕ) = G1(ϕ) +G2(ϕ)

to prove that the functional is coercive as follow:

G1(ϕ) =
h

2
⟨ϕ,ϕ⟩−1,h − h ⟨ϕn,ϕ⟩−1,h ,

G2(ϕ) =h∆tEh
c (ϕ)−∆t

⟨
∇Eh

e (ϕ
n),ϕ

⟩
h
,

and G1(ϕ) can be rewritten as

G1(ϕ) =
h

2
⟨ϕ− ϕn,ϕ− ϕn⟩−1,h − h

2
⟨ϕn,ϕn⟩−1,h .

Since it is clear that

h ⟨ϕ− ϕn,ϕ− ϕn⟩−1,h → ∞ as ∥ϕ∥2 → ∞,

and

G1(ϕ) → ∞ as ∥ϕ∥2 → ∞.

Moreover, the order of first term in G2 is higher than the second term’s one and it also implies

G2(ϕ) → ∞ as ∥ϕ∥2 → ∞.
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In conclusion,

G(ϕ) → ∞ as ∥ϕ∥2 → ∞ for ϕ ∈ H,

which is the definition of coerciveness.

If there is a constant M > 0 such that ∥ϕ∥2 < M , a Fatou’s lemma for series yields

G(ϕ) ≤ lim inf
k→∞

G(ϕk)

for any bounded sequence {ϕk} which converges to ϕ. Thus, the functional G is lower semi-

continuous. Next, we prove the existence of a solution. Since G is convex and lower semi-

continuous, we can assume that G is bounded below. Then, we define by

m = inf{G(ϕ) | ϕ ∈ H} < +∞.

Now, we consider a sequence {ϕk} in H such that

lim
k→∞

G(ϕk) = m.

Since

||ϕk||2 <∞,
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from coercivity, there exists a subsequence {ϕ∗k} whose limit is ϕ∗. From the lower semi-continuity

of G, we have

G(ϕ∗) ≤ lim
k→∞

G(ϕ∗
k) = m ≤ G(ϕ∗),

i.e.,

G(ϕ∗) = m.

Next, we assume that ϕ∗ and ϕ◦ are the distinct vectors with

G(ϕ∗) = G(ϕ◦) = m,

to show uniqueness. Then,

G

(
1

2
ϕ∗ +

1

2
ϕ◦
)
<

1

2
G(ϕ∗) +

1

2
G(ϕ◦) = m,

which is contradiction by strictly convexity. Moreover, the G has the minimum value at its ex-

tremum since the functional G(ϕ) is differentiable. This completes the proof of uniquely existence

of a solution of the functional G(ϕ).

Furthermore, from Eq. (2.60), for any ψ, we have

δG(ϕ∗;ψ) =h ⟨(ϕ∗ − ϕn),ψ⟩−1,h −∆t
⟨
∆d[∇Eh

c (ϕ
∗)−∇Eh

e (ϕ
n)],ψ

⟩
−1,h
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=
⟨
h(ϕ∗ − ϕn)−∆t∆d[∇Eh

c (ϕ
∗)−∇Eh

e (ϕ
n)],ψ

⟩
−1,h

=0.

Therefore, by substituting ϕn+1 for ϕ∗, and it is true if and only if the given equation holds:

ϕn+1
i − ϕni

∆t
=
∆h

h

(
∇Eh

c (ϕ
n+1)i −∇Eh

e (ϕ
n)i
)

(2.61)

=− gradhEh
c

(
ϕn+1

)
i
+ gradhEh

e (ϕn)i , (2.62)

for i = 1, . . . , N , which is the same as Eq. (2.58).

In the next step, we consider the stability of the solution for the numerical scheme (2.52). Let

ϕn − ϕn+1 be expressed in terms of vi, i.e.,

ϕn − ϕn+1 =
N∑
i=1

αivi.

By the discrete mass conservation and definition of vi, we have

0 =
⟨
ϕn − ϕn+1,1

⟩
h

=
N∑
i=1

αi ⟨vi,1⟩h

=h
√
Nα1,
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and therefore α1 = 0. If ϕn+1 is the solution of Eq. (2.58) with given ϕn, then

Eh(ϕn+1) ≤ Eh(ϕn). (2.63)

We now prove the inequality (2.63). With an exact Taylor expansion of Eh(ϕn) about ϕn+1 up to

second order, we have

Eh (ϕn) =Eh
(
ϕn+1

)
+

⟨
1

h
∇Eh(ϕn+1),ϕn − ϕn+1

⟩
h

+

⟨
1

2h
∇2Eh(ξ)(ϕn − ϕn+1),ϕn − ϕn+1

⟩
h

, (2.64)

where

ξ = θϕn + (1− θ)ϕn+1

and

0 ≤ θ ≤ 1.

Now, by using the mean value theorem and Eqs. (2.58) and (2.59), for the first term of Eq. (2.64),

we have

⟨
1

h
∇Eh(ϕn+1),ϕn − ϕn+1

⟩
h

=
⟨
gradhEh(ϕn+1),ϕn − ϕn+1

⟩
−1,h

.

=
⟨
gradhEh

c (ϕ
n+1)− gradhEh

e (ϕ
n+1),ϕn − ϕn+1

⟩
−1,h
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−
⟨
ϕn+1 − ϕn

∆t
+ gradhEh

c (ϕ
n+1)− gradhE

h
e (ϕ

n),

ϕn − ϕn+1
⟩
−1,h

≥
⟨
gradhE

h
e (ϕ

n)− gradhE
h
e (ϕ

n+1),ϕn − ϕn+1
⟩
−1,h

=

⟨
1

h
∇Eh

e (ϕ
n)− 1

h
∇Eh

e (ϕ
n+1),ϕn − ϕn+1

⟩
h

=

⟨
1

h
∇2Eh

e (η)
(
ϕn − ϕn+1

)
,ϕn − ϕn+1

⟩
h

=
1

h

⟨
H(1)

(
ϕn − ϕn+1

)
,ϕn − ϕn+1

⟩
h
, (2.65)

where

η = θϕn + (1− θ)ϕn+1

and

0 ≤ θ ≤ 1.

For the second term of Eq. (2.64), using

Eh = −E(1) + E(2) + E(3),

we have

1

2h

⟨
∇2Eh(ξ)(ϕn − ϕn+1),ϕn − ϕn+1

⟩
h
=

1

2h

⟨(
−H(1) +H(2) +H(3)

)
(ϕn − ϕn+1),
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ϕn − ϕn+1
⟩
h

≥− 1

2h

⟨
H(1)(ϕn − ϕn+1),ϕn − ϕn+1

⟩
h
. (2.66)

From inequalities (2.65) and (2.66),

Eh(ϕn)− Eh(ϕn+1) ≥ 1

2h

⟨
H(1)(ϕn − ϕn+1),ϕn − ϕn+1

⟩
h

=
1

2

∥∥ϕn − ϕn+1
∥∥2
h
≥ 0. (2.67)

Therefore, we have proven the decrease of the discrete functional Eh for any time step ∆t. Moreover,

the decrease of the discrete functional Eh implies the pointwise boundedness of the numerical

solution;

∥ϕn∥∞ ≤

√√√√
1 + 2

√
Eh(ϕ0)

h

for all n [75]. Therefore, we deduce that the proposed numerical scheme is unconditionally stable.

Next, we check the solvability for a two-dimensional case concisely. In [135], the authors prove

unique solvability for the unconditional gradient stable scheme. We introduce the proof for NLSS

here concisely for a two-dimensional case. For any discrete cell-centered matrix-valued function

ϕ, there exists unique discrete cell-centered matrix-valued solution ψ which has zero Neumann
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boundary condition mean zero (i.e.
∑Nx

i=1

∑Ny

j=1 ψij = 0) for next discrete equation :

L(ψ)(:= −∆hψ) = ϕ− h2

NxNy

Nx∑
i=1

Ny∑
j=1

ϕij . (2.68)

From the zero Neumann boundary condition, we get

Nx∑
i=1

Ny∑
j=1

(−∆hψij) =−
Nx∑
i=1

Ny∑
j=1

ψi−1,j + ψi+1,j − 4ψij + ψi,j−1 + ψi,j+1

h2

=−
Nx∑
i=1

Ny∑
j=1

(ψi−1,j + ψi+1,j)− 4ψij + (ψi,j−1 + ψi,j+1)

h2

=− 2

Nx∑
i=1

Ny∑
j=1

ψij

h2
+ 4

Nx∑
i=1

Ny∑
j=1

ψij

h2
− 2

Nx∑
i=1

Ny∑
j=1

ψij

h2

=0,

It means that both left and right hand sides in (2.68) have zero mean, i.e. the necessity of the

unique solution existence for the equation (2.68) is proved. Now, we consider the symmetry and

positive definiteness for discrete laplacian operator L for uniqueness. For distinct zero Neumann

vector-valued functions ψ1 and ψ2,

Nx∑
i=1

Ny∑
j=1

ψ1
ij(−∆hψ

2
ij) =−

Nx∑
i=1

Ny∑
j=1

ψ1
ij(ψ

2
i−1,j + ψ2

i+1,j − 4ψ2
ij + ψ2

i,j−1 + ψ2
i,j+1)

h2

=−
Nx∑
i=1

Ny∑
j=1

ψ1
ij(ψ

2
i−1,j + ψ2

i+1,j)− 4ψ1
ijψ

2
ij + ψ1

ij(ψ
2
i,j−1 + ψ2

i,j+1)

h2

=−
Nx∑
i=1

Ny∑
j=1

(ψ1
i−1,j + ψ1

i+1,j)ψ
2
ij − 4ψ1

ijψ
2
ij + (ψ1

i,j−1 + ψ1
i,j+1)ψ

2
ij

h2
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=−
Nx∑
i=1

Ny∑
j=1

(ψ1
i−1,j + ψ1

i+1,j − 4ψ1
ij + ψ1

i,j−1 + ψ1
i,j+1)ψ

2
ij

h2

=

Nx∑
i=1

Ny∑
j=1

(−∆hψ
1
ij)ψ

2
ij

which implies the symmetry for the operator and setting ψ = ψ1 = ψ2, then,

Nx∑
i=1

Ny∑
j=1

ψij(−∆hψij) =−
Nx∑
i=1

Ny∑
j=1

ψij(ψi−1,j + ψi+1,j − 4ψij + ψi,j−1 + ψi,j+1)

h2

=−
Nx∑
i=1

Ny∑
j=1

ψij(ψi−1,j − 2ψij + ψi+1,j) + (ψi,j−1 − 2ψij + ψi,j+1)

h2

=

Ny∑
j=1

Nx∑
i=1

ψij(ψij − ψi−1,j)− ψij(ψi+1,j − ψij)

h2

+

Nx∑
i=1

Ny∑
j=1

ψij(ψij − ψi,j−1)− ψij(ψi,j+1 − ψij)

h2

and for the first term of the right hand side (let FRHS),

FRHS =

Ny∑
j=1

∑Nx

i=1 ψij(ψij − ψi−1,j)−
∑Nx+1

i=2 ψi−1,j(ψij − ψi−1,j)

h2

+

Nx∑
i=1

∑Ny

j=1 ψij(ψij − ψi,j−1)−
∑Nu+1

j=2 ψi,j−1(ψij − ψi,j−1)

h2

=

Ny∑
j=1

∑Nx

i=2(ψij − ψi−1,j)
2 + ψ1,j(ψ1,j − ψ0,j)− ψNx,j(ψNx+1,j − ψNx,j))

h2

+

Nx∑
i=1

∑Ny

j=2(ψij − ψi,j−1)
2 + ψi,1(ψi,1 − ψi,0)− ψi,Ny

(ψi,Ny+1 − ψi,Ny
))

h2

=

Nx∑
i=1

Ny∑
j=2

(ψij − ψi,j−1)
2

h2
≥ 0.
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By the same process, the second term of the right hand side is also greater than 0, i.e.,
∑Nx

i=1

∑Ny

j=1 ψij(−∆hψij) ≥

0. Since the equality holds only if both terms are zero which implies ψ is a zero constant function,

L is positive definite, i.e. L has an inverse operator L−1.

Now, we consider a strictly convex discrete functional G(ϕ) for ϕ which has mean zero such

that

G(ϕ) =
h2

2

Nx∑
i=1

Ny∑
j=1

ψijL(ψij)− h2
Nx∑
i=1

Ny∑
j=1

ψijL(ψk
ij) + Fc(ϕ)

− h2
Nx∑
i=1

Ny∑
j=1

ϕij(δϕFe(ϕ
k
ij))

whereψ is a unique solution of the equation L(ψ)(:= −∆t∆hψ) = ϕ, for J(ψ) = h2
∑Nx

i=1

∑Ny

j=1 ψijf(ψij),

δϕJ(ψ) := f(ψ) + ψf ′(ψ) is the discrete variational derivative, and Fc(ϕ) and Fe(ϕ) are re-

spectively the contractive and the expansive part of the energy where chemical potential µ =

δϕFc(ϕ1) − δϕFe(ϕ2) = (f(ϕ1) + ϕ1 − ϵ2∆hϕ1) − ϕ2 for distinct matrix-valued variables ϕ1 and

ϕ2. From the existence of inverse operator such that ψ = L−1(ϕ) and symmetry of L in above,

we can rewrite G such that

G(ϕ) =
h2

2

Nx∑
i=1

Ny∑
j=1

L−1(ϕij)ϕij − h2
Nx∑
i=1

Nx∑
j=1

ϕijL−1(ϕkij) + Fc(ϕ)

− h2
Nx∑
i=1

Ny∑
j=1

ϕij(δϕFe(ϕ
k
ij))
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and if we take the variational derivative δϕ to G,

δϕG(ϕ
k+1) =

1

2

[
L−1(ϕ) + ϕ

d

dϕ
L−1(ϕ)

]
ϕk+1

− L−1(ϕk) + δϕFc(ϕ
k+1)− δϕFe(ϕ

k)− C

=L−1(ϕk+1)− L−1(ϕk) + δϕFc(ϕ
k+1)− δϕFe(ϕ

k)− C

=L−1(ϕk+1 − ϕk) + δϕFc(ϕ
k+1)− δϕFe(ϕ

k)− C

where C is a constant since L−1 is clearly linear operator. From the convexity of G, variational

derivative of G is zero at ϕk+1 if and only if ϕk+1 is the unique minimizer of G. Since L−1(ϕk+1−

ϕk) has mean zero, it implies that δϕFc(ϕ
k+1)− δϕFe(ϕ

k)− C has also mean zero, i.e.

C =
1

NxNy

(
δϕFc(ϕ

k+1)− δϕFe(ϕ
k)
)
.

Taking the operator L to above equation taken the variational derivative, we finally get

ϕk+1 − ϕk

∆t
= ∆hδϕFc(ϕ

k+1)−∆hδϕFe(ϕ
k)

which is the same form of NLSS since L(C) = 0 and it completes the proof.

Note that the NLSS scheme approximates the following viscous CH equation with an implicit

Euler’s scheme:

ϕt = ∆(f(ϕ)− ϵ2∆ϕ+ νϕt)
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where ν is a viscosity. To see this, let us rewrite Eq. (2.51) as

µn+1
ij = f(ϕn+1

ij )− ϵ2∆hϕ
n+1
ij +∆t

ϕn+1
ij − ϕnij

∆t
.

Therefore, the NLSS scheme approximates the viscous CH equation when ν equals ∆t. When

using a large time step, we effectively take a large viscous parameter.

In [49], Eyre proved that if ϕn+1 is a numerical solution of Eqs. (2.50) and (2.51) with a given

ϕn, then

Eh(ϕn+1) ≤ Eh(ϕn). (2.69)

Furthermore, authors showed the discrete energy decreasing property by using eigenvalues of the

Hessian matrix of the energy functional in [76]. Using this decreasing property of the discrete total

energy functional, we can show the boundedness of the numerical solution of Eqs. (2.50) and (2.51)

[75]. If ϕn is a numerical solution satisfying Eq. (2.69), then there exists a constant K, which is

independent on n, such that

∥ϕn∥∞ ≤ K. (2.70)
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Suppose Eq. (2.70) is false then there is an element ϕnK
ij such that |ϕnK

ij | > K, where K =√
1 + 2

√
Eh(ϕ0)/h. Since the total energy is non-increasing, we have

Eh(ϕ0) =h2F (K)

<h2F (|ϕnK
ij |)

≤
Nx∑
i=1

Ny∑
j=1

h2F (ϕnK
i )

≤Eh(ϕnK )

≤Eh(ϕ0).

This contradiction implies that Eq. (2.70) should be satisfied.

2.3.4. Numerical experiments. In this section, we perform the following numerical exper-

iments: finding a relation between the ϵ value and the width of the transition layer, convergence

test, linear stability analysis, the non-increase of the total energy, stability tests, and a test for an

adaptive time step.

2.3.4.1. The relation between the ϵ value and the width of the transition layer. Before present-

ing the numerical experiment, we first derive an equilibrium profile of the CH equation. When the

solution reaches the equilibrium state, the time derivative of the solution is clearly zero. Hence,
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from Eqs. (2.44) and (2.45), an equilibrium solution ϕ∗ satisfies

0 = (ϕ∗)3 − ϕ∗ − ϵ2∆ϕ∗. (2.71)

Suppose that the solution is on the infinite domain, then we can assume that it is an one-dimensional

case; therefore, Eq. (2.71) can be rewritten as

ϵ2ϕ∗xx = (ϕ∗)
3 − ϕ∗,

and its solution is

ϕ∗ = tanh

(
x√
2ϵ

)
.

In our first numerical experiment, we consider a relation between the ϵ value and the width of

the transition layer for the CH equation. From our choice of the total energy density Eq. (2.47)

and an equilibrium profile tanh(x/(
√
2ϵ)) on the infinite domain, the concentration field varies

from −0.9 to 0.9 over a distance of about 2
√
2 tanh−1(0.9). Therefore, if we want this value to be

about m grid points, the ϵ value need to be taken as following [44]:

ϵm =
hm

2
√
2 tanh−1(0.9)

.

To confirm this, we run a simulation with the initial condition ϕ(x, y, 0) = 0.1× rand(x, y) on the

domain Ω = (0, 64)× (0, 64) with h = 1, ∆t = 0.1 and ϵ4. Here, rand(x, y)∈ [−1, 1] is a randomly
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generated number. As can be observed from Fig. 2.13, the transition layer from ϕ = −0.9 to

ϕ = 0.9 is almost 4 grid points as we expect from our proposed algorithm.
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(b) t = 300

Figure 2.13. The contours of surface at ϕ = −0.9, −0.7, · · · , 0.9 at time (a)
t = 30 and (b) t = 300.

2.3.4.2. Convergence test. Tables 2.1 and 2.2 show the discrete l2 and maximum norms of the

errors and convergence rates for space and time, respectively. Here, we refer the results and values

in Tables 2.1 and 2.2 from [89]. For the simulation, the initial condition is used as

ϕ(x, 0) = 0.1 cos(2πx) in Ω = (0, 1).

ϵ = 0.03 and T = 0.1 are used. Since no analytical solutions are available, we use the relative error

to calculate the convergence rate.

The spatial convergence rate is computed on the mesh grids with N = 2n for n = 6, 7, 8, 9.

We fix the time step size as ∆t = 10−7. We define the error of a grid as the difference between the
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grid and the average of next finer grid cells as follows:

ehi := ϕh(xi, T )−
ϕh/2(x2i−1, T ) + ϕh/2(x2i, T )

2
.

The convergence rate in the discrete l2 norm sense is defined as the ratio of successive errors

log2

(
∥eh∥2
∥eh/2∥2

)
,

and it is similarly defined for the discrete maximum norm.

The second-order accuracy for space is observed.

Table 2.1. Errors and convergence rates for space.

Mesh 64 Rate 128 Rate 256 Rate 512
∥eh∥2 6.784e-3 2.015 1.678e-3 2.003 4.188e-4 2.001 1.047e-4
∥eh∥∞ 1.329e-2 1.984 3.359e-3 1.995 8.425e-4 1.999 2.108e-4

To show the convergence of the time integration, we fix the spatial grid as N = 512 and choose

a set of time steps ∆t = 2n × 10−7, for n = 0, 1, 2, 3. We define the discrete error as

e∆t
i := ϕ∆t(xi, T )− ϕ∆t/2(xi, T )

and the convergence rate is defined as the ratio of successive errors,

log2

(
∥e∆t∥2
∥e∆t/2∥2

)
.

The first-order accuracy for time is observed.
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Table 2.2. Errors and convergence rates for time.

∆t 8e-7 Rate 4e-7 Rate 2e-7 Rate 1e-7
∥e∆t∥2 4.910e-6 1.000 2.455e-6 1.001 1.226e-6 0.999 6.137e-7
∥e∆t∥∞ 2.197e-4 1.000 1.099e-4 1.001 5.490e-5 0.997 2.751e-5

2.3.5. Linear stability analysis. We carry out the linear stability analysis near a solution

ϕ = 0 in one-dimensional space. Let us assume that the solution can be expressed by

ϕ(x, t) =
∞∑
k=1

βk(t) cos(kx), (2.72)

where βk(t) is an amplification factor at the wave number k. After linearizing Eqs. (2.44) and

(2.45) about the equilibrium solution, and substituting Eq. (2.72) into the linearized equations,

we have

dβk(t)

dt
= k2

(
1− ϵ2k2

)
βk(t). (2.73)

The solution of Eq. (2.73) is βk(t) = βk(0) exp(ηkt), where ηk = k2(1 − ϵ2k2) is the growth rate.

Note that the growth rate is positive if ϵk < 1. We denote kmax by the wave number which has

the maximal growth rate. In addition, the numerical growth rate is defined by

η̃k =
1

T
log

(
∥ϕn∥∞
∥ϕ0∥∞

)
.

For the numerical test, we take the initial condition

ϕ(x, 0) = 0.01 cos(kx) in Ω = (0, π),
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∆t = 10−8, h = 2−9π, ϵ = 0.03, and T = 10−6 are used. Figure 2.14 illustrates the growth

rate versus the wave number k. Circles and solid line are corresponding numerical results η̃k and

analytic solutions ηk from the linear stability analysis, respectively. The maximum growth rate is

obtained at kmax = 24.
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Figure 2.14. Growth rate versus the wave number k.

2.3.5.1. Non-increase of the total energy. In order to demonstrate that NLSS inherits the

energy non-increasing property, we consider the temporal evolution of the discrete total energy.

In the simulation, we choose h = 1/64, ∆t = 0.1 and ϵ4. In Fig. 2.15, the temporal evolution of

the non-dimensional discrete total energy Eh(t)/Eh(0) (solid line) of the numerical solutions with

the initial state ϕ(x, y, 0) = 0.1 × rand(x, y). As shown in Fig. 2.15, the energy is non-increasing

during whole time evolution. This numerical result agrees well with the total energy non-increasing

property.
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Figure 2.15. The time dependent non-dimensional discrete total energy
Eh(t)/Eh(0) (solid line) of the numerical solutions with the initial state ϕ(x, y, 0) =
0.1× rand(x, y).

2.3.5.2. Stability tests. This section is contained in [89] and we refer the contents and results.

We investigate the stability of the different schemes mentioned in section 2.3.2. We consider

numerical solutions with random initial condition ϕ(x, 0) = rand(x) and ϕ(x, y, 0) = rand (x, y) on

the unit domain for one- and two- dimensional spaces, respectively. Define ∆tc be the largest time

step, which satisfies the gradient stable, i.e., Eh(ϕn+1) ≤ Eh(ϕn). The numerical simulations are

performed on the uniform grids, h = 1/2n for n = 5, 6, 7 and 8. In Table 2.3, we list the values of

∆tc with different schemes for one-dimensional space. From the results, we observe that EE, IE,

CN and SIE schemes are not gradient stable when we use the time step larger than ∆tc, whereas

both LSS and NLSS are unconditionally gradient stable.
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Table 2.3. ∆tc with different schemes for the initial condition ϕ(x, 0) = rand(x).

Case 32 64 128 256
h = 1/32 h = 1/64 h = 1/128 h = 1/256

EE 3.8× 10−4 1.9× 10−5 4.7× 10−6 1.1× 10−6

IE 5.5× 10−4 1.1× 10−3 2.6× 10−4 6.1× 10−5

CN 5.6× 10−4 1.1× 10−3 1.1× 10−4 4.8× 10−4

SIE 8.2× 10−4 8.4× 10−4 8.6× 10−4 7.3× 10−4

LSS ∞ ∞ ∞ ∞
NLSS ∞ ∞ ∞ ∞

Table 2.4. ∆tc with different schemes for the initial condition ϕ(x, 0) = 10rand(x).

Case 32 64 128 256
h = 1/32 h = 1/64 h = 1/128 h = 1/256

LSS 8.1× 10−6 2.0× 10−6 3.6× 10−7 8.8× 10−8

NLSS ∞ ∞ ∞ ∞

Next, we also consider other numerical solutions to investigate gradient stability between LSS

and NLSS with the initial data ϕ(x, 0) = 10×rand(x, y). For simplicity, we perform the comparison

of LSS and NLSS in one-dimensional domain instead of two-dimensional one with larger random

initial condition than previous simulations. In Table 2.4, we can recognize that there is the different

time step constraint in terms of numerical stability for NLSS and LSS; NLSS is still unconditionally

gradient stable, but LSS is conditionally stable as shown in the reference [135].

2.3.5.3. Comparison of the efficience of CN and NLSS schemes. We compare the efficiency of

the CN and the NLSS schemes. In the early stages of spinodal decomposition, a rapid separation

of two phases occurs because the free energy E is high. Thus we take a small time step size in these

stages. However, after the free energy has been declined sufficiently, the phases separate leisurely

in the late stages. Hence we may take a large time step near the equilibrium state. In this section,
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we perform two tests. The first case is that the CN is used over whole simulations and the second

case is that the CN scheme is used over the early stages and we alter into the NLSS that can adopt

a large time step. The reason why we use the CN scheme at the early stages is to accurately evolve

the rapid phase separation. We decide to change the scheme when ∥ϕn+1 − ϕn∥∞ < 2× 10−4. In

this test, ∥ϕn+1 − ϕn∥∞ is less than 2 × 10−4 within 10000 iterations. Thus, in second case, we

turn on the NLSS schemes after 10000th iteration. We simulate until t = 0.66 in the CN scheme

case and until t = 0.9 in the NLSS scheme case. We continue the computation until ∥ϕn+1−ϕn∥∞

become less than 10−4. In both cases, a 256×256 mesh is used on the domain Ω = (0, 1)×(0, 1), ϵ4

is taken and a time step for the CN scheme, ∆t = 0.00001 and for the NLSS scheme, ∆t = 0.0001

was employed. Figure 2.16 shows the temporal evolution of each case. In the first case, we reach

the ∥ϕn+1 − ϕn∥∞ < 10−4 with 66000 iterations. In contrast, only 18000 iterations are needed to

reach the same state in the second case. With less iterations, mixed scheme with the CN and the

NLSS schemes can obtain the results same as those of the CN scheme.
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it=32000
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Figure 2.16. The temporal evolution of morphologies during a spinodal phase
separation of a binary system with different time step size (a) ∆t = 0.00001
using the CN scheme and (b) ∆t = 0.00001 using the CN scheme until 10000th
iteration and ∆t = 0.0001 using the Non-linearly stabilized splitting scheme after
10000th iteration, respectively. Both cases run until ∥ϕn+1−ϕn∥∞ < 10−4. With
less iterations, mixed scheme with the CN and the NLSS schemes can obtain the
results same as those of the CN scheme.
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Chapter 3

Dendritic growth

3.1. Introduction

Solidification is one of the most important phenomena in production of alloys. In general, it is

called a dendrite when the outcome of solidification has a tree-like structure [85]. Dendritic growth

involves complex processes in a micro-scale; the diffusion of the solute, melt convection, motion of

the solid phase, and their couplings play important roles in dendritic solidification. Such a complex

process determines the mechanical properties; therefore, understanding dendritic growth is of great

interest in industrial fields [113].

The phase-field method, described in Chapter 2, is considered as the powerful and accurate nu-

merical tool to simulate microstructural evolution including dendritic growth. The most significant

advantages using a phase-field method is the way of representing an interface [29]. As discussed

in the above part of this dissertation, the phase-field method tracks an interfaces implicitly. See

references [5, 14, 120, 124] for reviewing simulations of dendritic growth using a phase-field method.
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In this chapter, we discuss a numerical approach to model a dendrite growth in phase-field

simulations applying an operator-splitting method. Here, we consider the numerical scheme in-

troduced in [96], which is known as a fast, robust, and accurate method, and present numerical

simulations to show consistency with previous numerical experiments.

3.2. Governing equations

A standard form of the solidification model using phase-field method is given by [96]

ϵ2(ϕ)
∂ϕ

∂t
=∇ ·

(
ϵ2(ϕ)∇ϕ

)
+
[
ϕ− λU

(
1− ϕ2

)] (
1− ϕ2

)
+

d∑
i=1

(
|∇ϕ|2 ϵ2(ϕ)∂ϵ(ϕ)

∂ϕxi

)
xi

, (3.1)

∂U

∂t
=D∆U +

1

2

∂ϕ

∂t
, (3.2)

where ϵ(ϕ) is the anisotropic function, ϕ is the order parameter defined in [−1, 1] with ϕ = 1 in

the solid phase, ϕ = −1 in the liquid phase, and ϕ = 0 representing an interface, t is the temporal

variable, λ is the dimensionless coupling parameter, U = cp(T − TM )/L is the dimensionless

temperature field, cp is the specific heat at a constant pressure, TM is the melting temperature, L

is the Latent heat of fusion, d is a dimension of the domain, D = ατ0/ϵ
2
0 is the thermal diffusivity,

τ0 is the characteristic time, ϵ0 is characteristic length, and xi is the spatial variable. Note that

(x1, x2, x3) = (x, y, z) when we consider the three-dimensional case. For the four-fold symmetry,
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ϵ(ϕ) is defined as

ϵ(ϕ) = (1− 3ϵ4)

(
1 +

4ϵ4
1− 3ϵ4

∑d
i=1 ϕ

4
xi

|∇ϕ|4

)
, (3.3)

where ϵ4 is a parameter for the anisotropy of interfacial energy.

3.3. Discretization

We introduce a robust hybrid numerical scheme for crystal growth proposed in [96]. Here, we

focus on the two-dimensional case and present the discretization on the two-dimensional domain.

The discrete equation of Eqs. (3.1) and (3.2) is derived as follow:

ϵ2(ϕn)
ϕn+1 − ϕn

∆t
=ϵ2(ϕn)∆hϕ

n+1,2 + 2ϵ(ϕn)∇hϵ(ϕ
n) · ∇hϕ

n − F ′(ϕn+1)

+

(
|∇hϕ|2ϵ(ϕ)

∂ϵ(ϕ)

∂ϕx

)n

x

+

(
|∇hϕ|2ϵ(ϕ)

∂ϵ(ϕ)

∂ϕy

)n

y

− 4λUnF (ϕn+1,1), (3.4)

Un+1 − Un

∆t
= D∆hU

n+1 +
ϕn+1 − ϕn

2∆t
, (3.5)

where F (ϕ) = 0.25(ϕ2 − 1)2, F ′(ϕ) = ϕ(ϕ2 − 1), and ϕn+1,k for k = 1, 2 are defined in an operator

splitting method. The formulation applying the operator splitting method is written as

ϵ2(ϕn)
ϕn+1,1 − ϕn

∆t
=2ϵ(ϕn)∇hϵ(ϕ

n) · ∇hϕ
n

+

(
|∇hϕ|2ϵ(ϕ)

∂ϵ(ϕ)

∂ϕx

)n

x

+

(
|∇hϕ|2ϵ(ϕ)

∂ϵ(ϕ)

∂ϕx

)n

y

, (3.6)
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ϵ2(ϕn)
ϕn+1,2 − ϕn+1,1

∆
=ϵ2(ϕn)∆hϕ

n+1,2 − 4λUnF (ϕn+1,1), (3.7)

ϵ2(ϕn)
ϕn+1 − ϕn+1,2

∆t
=− F ′(ϕn+1). (3.8)

Here, we can simplify the last two terms in Eq. (3.6) as follows:

|∇hϕ|2
∂ϵ(ϕ)

∂ϕx
=
16ϵ4ϕx(ϕ

2
xϕ

2
y − ϕ4y)

|∇hϕ|4
,

|∇hϕ|2
∂ϵ(ϕ)

∂ϕy
=
16ϵ4ϕy(ϕ

2
xϕ

2
y − ϕ4y)

|∇hϕ|4
.

Next, Eq. (3.8) can be considered as a following continuous equation:

ϕt =
ϕ− ϕ3

ϵ2
,

since it has an approximation form using an implicit Euler’s scheme with the initial condition

ϕn+1,2. Note that we analytically solve the similar equation in previous section 2.2 using the

separation of the variable. Applying the same strategy used in above, the analytic solution is

derived as

ϕn+1 =
ϕn+1,2√

e−2∆t/ϵ2(ϕn) + (ϕn+1,2)2(1− e−2∆t/ϵ2(ϕn))
.
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Therefore, the Eqs. (3.4) and (3.5), applying the proposed operator splitting method, can be

rewritten as

ϵ2(ϕn)
ϕn+1,1 − ϕn

∆t
=

(
16ϵ4ϕx(ϕ

2
xϕ

2
y − ϕ4y)

|∇hϕ|4

)n

x

+

(
16ϵ4ϕy(ϕ

2
xϕ

2
y − ϕ4y)

|∇hϕ|4

)n

y

+ 2ϵ(ϕn)∇hϵ(ϕ
n) · ∇hϕ

n, (3.9)

ϵ2(ϕn)
ϕn+1,2 − ϕn+1,1

∆
=ϵ2(ϕn)∆hϕ

n+1,2 − 4λUnF (ϕn+1,1), (3.10)

ϕn+1 =
ϕn+1,2√

e−2∆t/ϵ2(ϕn) + (ϕn+1,2)2(1− e−2∆t/ϵ2(ϕn))
, (3.11)

Un+1 − Un

∆t
=D∆hU

n+1 +
ϕn+1 − ϕn

2∆t
. (3.12)

3.4. Numerical experiments

In the numerical experiments performed in the section, we choose a relatively large time step

to show the stability of the used scheme who does not suffer the traditional time step restriction

∆t ≤ O(h2). Figure 3.1 shows the evolution of phase-field contours for a dendrite growing at (a)

∆ = −0.4 and (b) ∆ = −0.6. Here, a 512 × 512 meshgrid is used on the computational domain

(0, 500) × (0, 500) with ∆t = h, ϵ4 = 0.05, D = 2, and λ = 1.5957D. Each contour is drawn per

every 800 iterations.

Next, we consider that the underlying temperatures have a gradient; it would give a result of the

dendrite growth with a forced flows. Other conditions are set same as previous simulations except

the temperature conditions. Let ∆top and ∆bottom be the boundary conditions of temperature
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(a) ∆ = −0.4 (b) ∆ = −0.6

Figure 3.1. Evolution of phase-field contours for a dendrite growing at (a) ∆ =
0.45 and (b) ∆ = 0.55.

at the top and bottom of the domain, respectively. Here, ∆top = 1.1∆, ∆bottom = 0.9∆ and

∆top = 1.2∆, ∆bottom = 0.8∆; i.e., we assume that the approximated forced flow flows from the

tom to the bottom. Note that the result in Fig. 3.2 is similar with a dendrite growing presenting

in [127], which consider the convective effects for a fixed crystal on a given domain.
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(a) (b)

Figure 3.2. Evolution of phase-field contours for a dendrite growing with the
underlying temperatures who have a gradient (a) ∆top = 1.1∆, ∆bottom = 0.9∆

and (b) ∆top = 1.2∆, ∆bottom = 0.8∆.
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Chapter 4

Navier–Stokes equation

4.1. Introduction

The NS equations, named after Claude-Louis Navier and George Gabriel Stokes, describe the

motion of viscous fluid substances. Including water and air, the dynamics of almost every viscous

liquid and gas are governed by this partial differential equation. The equations arise from the

Newton’s second law to fluid motion with the assumption: the stress in a fluid is the sum of a

diffusing viscous term and a pressure term. Understandably, the solution of the NS equation is a

flow velocity field.

Since a fluid does not have a fixed morphology like a solid, but flexible one, the classical

dynamics properties cannot be applied directly. Therefore, we need to reorganize the Newtonian

mechanics to the suitable form for a fluid; and the result is the NS equation [37]. Nevertheless, the

NS equation is one of the most difficult equations to solve analytically among the known partial

differential equation. In some specific cases, the exact solutions were derived [15, 38, 131]; however,

the general solution is still remained in mysterious one.
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Therefore, the numerical solution, which is the approximated solution of the exact NS equation,

is the only way to analyze the dynamics of fluid flows and is clearly an important issue in many

industrial, physical, and mathematical fields. There have been numerous researches for solving the

NS equation numerically [6, 7, 31, 53, 80, 125], and the Chorin’s projection method is considered

as one of the most useful numerical solver because of its simple implementation [31].

In this dissertation, we only focus on the incompressible Newtonian fluid flow case, which is

the appropriate form for the solute of metals and alloys; the dendrite crystal growth.

4.2. Governing equations

There are the basic assumptions of the NS equations: (i) a fluid is a continuum; i.e., a fluid is

not made up of discrete particles but rather a continuous substance at the scale of interest and (ii)

all fields of interest are (at least weakly) differentiable such as pressure, flow velocity, density, and

temperature. The derivation of the equation starts from the conservation of mass, momentum,

and energy [126].

The Newton’s second law states that the net force on an object is equal to the rate of change

of its linear momentum p:

F =
dp

dt

=
d(mv)

dt
, (4.1)
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where F is the net force, m is the mass of a body, and v is the body’s velocity. Moreover, m can be

taken outside the differentiation operator in Eq. (4.1) by the constant factor rule in differentiation

since the Newton’s second law is only valid for a constant mass body:

F = m
dv

dt

= ma, (4.2)

where a is the body’s acceleration. Thus, the net force applied to a body produces a proportional

acceleration. Equation (4.2) is rewritten as the following form:

(ρdxdydz)
du

dt
= F.

On the other hand, let Jm(x, t) be a mass flux where x is defined on a domain Ω. and the

changes of Jm be equal to a lost or gained mass through the boundaries ∂Ω plus a created or

dissipated mass by sources or sinks inside Ω. Then, its continuity equation is given as follow:

d

dt

∫
Ω

JmdV = −
∫
∂Ω

(Jmu) · ndA+

∫
Ω

sdV, (4.3)

where u is the flow velocity, n is the outgoing normal vector proportional to ∂Ω, and s is the

sources and sinks. Note that Jmu is a dyad, a special case of tensor product, which results in a

second tensor and the divergence of a second rank tensor is again a vector [92]. Using divergence
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theorem, Eq. (4.3) can be rewritten as follow:

d

dt

∫
Ω

JmdV = −
∫
Ω

∇ · (Jmu)dV +

∫
Ω

sdV,

⇔
∫
Ω

∂Jm

∂t
dV = −

∫
Ω

∇ · (Jmu)dV +

∫
Ω

sdV,

⇔
∫
Ω

(
∂Jm

∂t
+∇ · (Jmu)− s

)
dV = 0, (4.4)

The integral is zero only if the integrand itself is zero, hence Eq. (4.4) becomes as follow:

∂Jm

∂t
+∇ · (Jmu)− s = 0. (4.5)

Now, we replace the mass flux Jm with the product of mass density ρ and flow velocity u (i.e.,

Jm = ρu) in Eq. (4.5):

∂ (ρu)

∂t
+∇ · (ρuu)− s = 0,

⇔ ρ
∂u

∂t
+ u

∂ρ

∂t
+∇ρ · uu+ ρ∇u · u+ ρu (∇ · u) = s,

⇔ u

(
∂ρ

∂t
+∇ρ · u+ ρ (∇ · u)

)
+ ρ

(
∂u

∂t
+ u · ∇u

)
= s,

⇔ u

(
∂ρ

∂t
+∇ · (ρu)

)
+ ρ

(
∂u

∂t
+ u · ∇u

)
= s. (4.6)

Here, we consider the mass continuity equation:

∂ρ

∂t
+∇ · (ρu) = 0. (4.7)
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On the other hand, in the case of an incompressible fluid, the density is constant up to temporal

evolution, i.e., dρ/dt = 0. It implies that Eq. (4.7) can be rewritten as:

∇ · u = 0. (4.8)

Returning to the derivation from the continuity equation (4.3), we plug Eq. (4.7) into Eq. (4.6)

to get

ρ

(
∂u

∂t
+ u · ∇u

)
= s. (4.9)

Next, the momentum source s, consisting two parts: surface forces and body forces, can be written

as follow:

s = −∇p+∇ · τ + f , (4.10)

where p is the pressure, τ is the deviatoric stress tensor, f is the body forces such as gravity using

Cauchy momentum equation [83]. For Newtonian fluids, the term of the stress tensor is derived as

∇ · τ = ∇ ·
(
η
(
∇u+ (∇u)

T
))

+∇
(
−2η

3
∇ · u

)
+ f , (4.11)
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where η is the viscosity of fluids with assumptions by Stokes. In conclusion, the NS equations for

incompressible Newtonian fluids has the following forms using Eqs. (4.8)–(4.11):

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ ·

(
η
(
∇u+ (∇u)

T
))

+ f , (4.12)

∇ · u = 0. (4.13)

Moreover, if the density and the viscosity is constant and the external force consists of only surface

tensional and gravitational forces, we can rewrite Eq. (4.12) as

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ η∆u+ f , (4.14)

and we treat this form in this chapter for simplicity.

4.2.1. Non-dimensionalization. The dimensional analysis is an analysis by converting di-

mensional variables, such as length, mass, time and other quantities, to dimensionless variables.

This is a widely used technique for performing comparisons in mathematics, physics, and en-

gineering. Since it is too much complicated if all variables have each physical dimension, the

non-dimensionalization is quite important and useful in both theory and experience.

To non-dimensionalize the Eqs. (4.13) and (4.14), we consider the following dimensionless

variables:

u∗ =
u

U∗ ,
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x∗ =
x

L∗ ,

t∗ =
t

L∗/U∗ ,

p∗ =
p

ρ(U∗)2
,

where U∗ and L∗ are the characteristic velocity and length, respectively. Applying the change of

the variables to Eqs. (4.13) and (4.14),

ρ

(
∂(U∗u∗)

∂ ((L∗/U∗)t∗)
+ (U∗u∗) · ∇(U∗u∗)

)
=−∇

((
ρ(U∗)2

)
p∗
)
+ η∆(U∗u∗) + f ,

∇ · u∗ =0,

or,

∂u∗

∂t∗
+ u∗ · ∇u∗ =−∇p∗ + 1

Re
∆u∗ +

1

We
f∗,

∇ · u∗ =0,

where Re = ρU∗L∗/η is the Reynolds number, We = ρ(U∗)2L∗/σ is the Weber number, and σ is

a coefficient.

For simplicity, we rewrite the non-dimensional equations omitting the ∗ sign as

∂u

∂t
+ u · ∇u =−∇p+ 1

Re
∆u+

1

We
f , (4.15)

∇ · u =0. (4.16)
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4.3. Discretization

In this section, we describe the discretization of the governing equations (4.15) and (4.16).

To simplify the exposition, we consider the equations on the unit square computational domain

Ω = (0, 1)× (0, 1). Let h be the uniform mesh grid size, then the center of the cell is

xij = (xi, yj) = ((i− 0.5)h, (j − 0.5)h)

for i, j = 1, · · · , N . Here, N denotes the number of grid points in each direction. Let ∆t be the

time step size. Recall that the discrete gradient and laplacian operators for cell-edged values are

defined in Section 2 as follows:

∇x
hui+ 1

2 ,j
=
ui+1,j − uij

h
,

∇y
hvi,j+ 1

2
=
vi,j+1 − vij

h
.

Moreover, we define another discrete gradient operators as

∇xy
h u =(∇x

hu,∇
y
hv) ,

∇dp =(∇x
hp,∇

y
hp) .

To discretize the equations, a staggered marker-and-cell (MAC) mesh [55] is used; i.e., the pressure

p(x, t) is stored at the cell-centers and the velocity components u(x, t) and v(x, t) are stored at the
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cell-edges. In a discretized equation, we denote p(xij , n∆t) as p
n
ij . By discretizing the Eqs. (4.15)

and (4.16), we can rewrite them as follows:

un+1 − un

∆t
+ un · ∇xy

h un =−∇dp
n+1 +

1

Re
∆hu

n +
1

We
fn, (4.17)

∇d · un+1 =0. (4.18)

Therefore, in two-dimensional Cartesian coordinates, we have

un+1
i+ 1

2 ,j
− un

i+ 1
2 ,j

∆t
+ (u · ∇du)

n
i+ 1

2 ,j
=−

pn+1
i+1,j − pn+1

ij

h
+

1

Re
∆hu

n
i+ 1

2 ,j
+

1

We
fn1 i+ 1

2 ,j
, (4.19)

vn+1
i,j+ 1

2

− vn
i,j+ 1

2

∆t
+ (u · ∇dv)

n
i,j+ 1

2
=−

pn+1
i,j+1 − pn+1

ij

h
+

1

Re
∆hv

n
i,j+ 1

2
+

1

We
fn2 i,j+ 1

2
, (4.20)

(∇d · u)n+1
ij =0. (4.21)

Here, we denote

fnm i+ 1
2 ,j

= 0.5(fnm i+1,j + fnm ij)

for m = 1, 2, 3.

We use the projection method to find un+1 from given un by solving Eqs. (4.17) and (4.18).

At first, we compute an intermediate velocity field, ũ, which generally does not satisfy the incom-

pressible condition. To apply the no-slip boundary condition, we set the values of ghost points
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as

un− 1
2 ,j

= 0 and vn0,j = −vn1,j ,

in the x-direction. The reason that only un has a different type of formula is that only un is saved

at a cell-edge in the x-direction on the MAC mesh. The values at ghost points in the y-direction

are similarly defined. From Eq. (4.19) without the pressure gradient term, we have

ũn+1
i+ 1

2 ,j
− un

i+ 1
2 ,j

∆t
+ (u · ∇du)

n
i+ 1

2 ,j
=

1

Re
∆hu

n
i+ 1

2 ,j
+

1

We
fn1 i+ 1

2 ,j
.

Then, we define

ũn+1
i+ 1

2 ,j
=uni+ 1

2 ,j
−∆t(u · ∇du)

n
i+ 1

2 ,j
+

∆t

We
fn1 i+ 1

2 ,j
+

∆t

h2Re

(
uni+ 3

2 ,j
+ uni− 1

2 ,j

− 4uni+ 1
2 ,j

+ uni+ 1
2 ,j+1 + uni+ 1

2 ,j−1

)
,

where the advection term is defined as

(u · ∇du)
n
i+ 1

2 ,j
=uni+ 1

2 ,j
ūnx

i+1
2
,j
+
vn
i,j− 1

2

+ vn
i+1,j− 1

2

+ vn
i,j+ 1

2

+ vn
i+1,j+ 1

2

4
ūny

i+1
2
,j
.

The values ūnx
i+1

2
,jk

are computed using the following upwind scheme:

ūnx
i+1

2
,j
=


un
i+ 1

2 ,j
− un

i− 1
2 ,j

h
if un

i+ 1
2 ,j

> 0,

un
i+ 3

2 ,j
− un

i+ 1
2 ,j

h
otherwise.
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The other values ṽi,j+ 1
2
are calculated similarly. Then, we solve the following equations for the

advanced pressure field at the (n+ 1)-th time step.

un+1 − ũ

∆t
=−∇dp

n+1 (4.22)

∇d · un+1 =0. (4.23)

Applying the divergence operator to Eq. (4.22) and using Eq. (4.23), we have the Poisson equation

for the pressure at the advanced time (n+ 1).

∆hp
n+1 =

1

∆t
∇d · ũ, (4.24)

where

∆hp
n+1
ij =

pni+1,j + pni−1,j − 4pnij + pni,j+1 + pni,j−1

h2
,

(∇d · ũ)ij =
ũi+ 1

2 ,j
− ũi− 1

2 ,j

h
+
ṽi,j+ 1

2
− ṽi,j− 1

2

h
.

Since the Poisson problem is ill-posed under the no-slip boundary condition, the adjustment step

is needed for pn+1. Here, we specify that pn+1 has zero mean.

The linear system of Eq. (4.24) is solved using a multigrid method [129], specifically, V-cycles

using Gauss–Seidel relaxation with a tolerance of 10−7. After solving the pressure field, we update
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un+1
i+ 1

2 ,jk
as

un+1
i+ 1

2 ,j
= ũi+ 1

2 ,j
− ∆t

h

(
pn+1
i+1,j − pn+1

ij

)
.

The variables vn+1
i,j+ 1

2

are updated in a similar manner.

This completes one time step update. Refer [30] to see more details of numerical implementa-

tion.

4.4. Numerical experiments

4.4.1. Cavity flow. In this section, we consider a lid-driven cavity flow in a two-dimensional

domain. Figure 4.1 shows a schematic of a computational domain and the boundary conditions in

a driven cavity. The initial condition of the flow inside the domain is given as a zero value and the

flow at boundaries at three walls except the top is fixed as a zero velocity. On the other hand, at

the top, the lid-driven flow is given as (u, v) = (1, 0). Here, there is no the external force effect,

i.e., f ≡ 0.

u = v = 0

u = 1, v = 0

u = 0
v = 0

u = 0
v = 0

x

y

Figure 4.1. Schematic illustration of the lid-driven cavity flow.
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To show the effect of the domain size, we first consider a lid-driven cavity flow in Ω = (0, 1)×

(0, 1). The result is shown in Fig. 4.2 with 64 × 64 mesh grid, i.e., h = 1/64, Re = 5000, and

∆t = 0.01h2Re. We can observe that the eye of principal vortex moves into the core of the cavity

and the lower left/right corner-eddies as time evolves.

t = 200∆t t = 2000∆t t = 100000∆t

Figure 4.2. The evolution of cavity flow on the square domain Ω = (0, 1)×(0, 1).
The dimensionless times are shown below each figure.

Next, we perform a numerical simulation on a non-square domain Ω = (0, 1) × (0, 4) with

64 × 256 mesh grid. We use h = 1/64, Re = 5000, and ∆t = 0.01h2Re. Figure 4.3 shows the

numerical results of the lid-driven cavity flow at each time on the rectangle domain. Unlike the

results in Fig. 4.2, we observe that more than two vortices with an opposite directional rotation

at the lower corner.
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t = 160000∆t t = 400000∆t t = 800000∆t

Figure 4.3. The evolution of cavity flow on the rectangle domain Ω = (0, 1) ×
(0, 4). The dimensionless times are shown below each figure.
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Chapter 5

Convection of crystal growth under a flow

5.1. Introduction

As mentioned in Chapter 1, convection of the crystal in the melt is of great interest for the

practical processes to understand the dendritic solidification.

In numerical investigation, the phase-field method, widely applied to model various meso-scale

phenomena such as solidification, recrystallization and so on [26], is also a flexible mathematical tool

to describe the interfaces in a dendritic crystal growth with convection. Two- and three-dimensional

adaptive phase-field simulations of dendritic crystal growth ini a forced flow were presented in [23].

The effect of natural convection in 3D dendritic growth using an efficient adaptive phase-field

simulation was investigated by Chen and Lan [24]. A two-dimensional lattice Boltzmann method-

cellular automatic model was presented to investigate the dendritic growth of binary alloys in the

presence of natural convection [143]. Recently, motion and growth of a dendritic ini the presence

of melt convection was modeled using a phase-field-lattice-Boltzmann method [113].

However, the crystal is fixed in the space and cannot be convected, instead the supercooled

melt flows around the crystal, which is hard to be realized in the real world experimental setting
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in the previous studies. Direct application of the advection term to the crystal equation would

lead some problems such as the shape deformation and the ambiguity of the crystal orientation

for the anisotropy. In recent years, few models have been elaborated for using two computational

domains to distinguish between the fluid flow and the phase separation by applying a fictitious

domain method [39], a combination of the volume of fluid and the immersed boundary methods

[69]. Nevertheless, there are drawbacks in their algorithm; difficulty in matching the grids or

computational efficiency.

The main purpose of the present dissertation is to resolve these difficulties by using a moving

overset grid. The fluid domain is covered with a fixed Cartesian grid, while a moving overset

grid is used to represent the crystal growth and convection. The motion of the crystal is derived

by calculating the translational and rotational force of the crystal. Using the fictitious domain

method with distributed Lagrange multiplier method, the method in [39] has an advantage that

simulations can be performed in a problem involving different scales in time and space. Note that

the proposed method would be compared with the method in [39] since our moving overset grid

method is similar to their method based on a fictitious domain method. However, our method is

simpler to implement and it also has the advantage involving different scales.
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5.2. Governing equations

We consider the solidification of a pure substance from its supercooled melt in a two-dimensional

flow. This problem has a much more difficult numerical challenge than the previous ones. To model

the solidification system, let ϕ(x, y, t) be the phase-field function, where ϕ = 1 and ϕ = −1 refer

to the bulk solid and melt phases, respectively. The phase-field variable ϕ is smoothly changed

but has small thickness, and we define the interface by the zero level set of ϕ [127]. The governing

equations for crystal growth in the flow are given as

∂u

∂t
+ u · ∇u =−∇p+ 1

Re
∇ · [η(ϕ)(∇u+∇uT )], (5.1)

∇ · u =0, (5.2)

ϵ2(ϕ)

(
∂ϕ

∂t
+ u · ∇ϕ

)
=∇ · (ϵ2(ϕ)∇ϕ) + [ϕ− λU(1− ϕ2)](1− ϕ2)

+

(
|∇ϕ|2ϵ(ϕ)∂ϵ(ϕ)

∂ϕx

)
x

+

(
|∇ϕ|2ϵ(ϕ)∂ϵ(ϕ)

∂ϕy

)
y

, (5.3)

∂U

∂t
+ u · ∇U =D∆U +

1

2

∂ϕ

∂t
, (5.4)

where u is the velocity, p is the pressure, η(ϕ) is the variable viscosity, and U is the temperature.

Note that Eqs. (5.1) and (5.2) are the Navier–Stokes equations [30] and Eqs. (5.3) and (5.4) are

the governing equations for dendrite growth [71]. Here, η(ϕ) = 0.5[ηs(1 + ϕ) + ηm(1 − ϕ)], where

ηs and ηm are viscosities of solid and melt, respectively. We take the approach of the increased

viscosity [33] which uses a very large viscosity in the solid to describe the resistance to the flow.
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The dimensionless parameters are the Reynolds number Re, λ, and D. For the four-fold symmetry,

ϵ(ϕ) is defined as:

ϵ(ϕ) = (1− 3ϵ4)

(
1 +

4ϵ4
1− 3ϵ4

ϕ4x + ϕ4y
|∇ϕ|4

)
,

where ϵ4 is a parameter for the anisotropy of interfacial energy.

We will consider the two computational domains to separately represent the crystal growth

and fluid flow. The flow with appropriate boundary conditions is defined on the base domain. The

phase-field function ϕ for representing the crystal is defined on the relatively small domain, and

the crystal growth equation is

ϵ2(ϕ)
∂ϕ

∂t
=∇ · (ϵ2(ϕ)∇ϕ) + [ϕ− λU(1− ϕ2)](1− ϕ2)

+

(
|∇ϕ|2ϵ(ϕ)∂ϵ(ϕ)

∂ϕx

)
x

+

(
|∇ϕ|2ϵ(ϕ)∂ϵ(ϕ)

∂ϕy

)
y

(5.5)

by using Eq. (5.3) without the advection term u · ∇ϕ.

5.2.1. Motion of a rigid body. For translating and rotating of the crystal domain, we use

the conservation law of the linear and angular momentums. Since the crystal is governed by a rigid

body motion, the conservation of the linear momentum is given as:

Mcuc =

∫
Ω

u(x, y)ρ(x, y)dx
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where Mc is the total mass of a crystal, Mc =
∫
Ω
ρ(x, y) dx, Ω is a crystal, and uc is the velocity

of the crystal. With regarding to the constant density field ρ, we can rewrite as

uc =

∫
Ω
u(x, y)dx∫
Ω
dx

. (5.6)

Next, the angular momentum Lc of the crystal is generally defined as a sum of the infinitesimal

angular momentum dL [3]:

Lc =

∫
Ω

dL

=

∫
Ω

(r̃(x, y)× u(x, y)) ρ(x, y)dx,

where r̃(x, y) is the displacement vector from the center of mass. Moreover, Lc can be written by

a product of the moment of inertia Ic and the angular speed ωc, i.e., Lc = Icωc. With ρ = 1, ωc

can be written as

ωc =
Lc

Ic
=

∫
Ω
(r̃× u) dx∫
Ω
∥r̃∥2dx

. (5.7)

Therefore, we can translate and rotate a crystal without solving the advection term since the

velocity vector and the angular speed of a crystal (or an overset grid) can be derived from Eqs.

(5.6) and (5.7).



5.3. NUMERICAL SOLUTIONS 107

5.3. Numerical solutions

In this section, we propose a hybrid numerical method using a overset grid for the simulation

of the crystal growth in a cavity flow. Let Ωf = (a, b) × (c, d) be a domain for the fluid velocity

u = (u, v), pressure p, and temperature U with proper boundary conditions. Also, let Ωc = (0, α)×

(0, β) be another domain for the phase-field function ϕ with interpolated boundary conditions.

Ωmoving is the coordinate transformation of Ωc, and it represents the location and rotation of Ωc

on Ωf . Let X1, X2, X3, X4 be corners of Ωmoving on Ωf corresponding to points (0, 0), (α, 0),

(α, β), (0, β) on Ωc, respectively. We determine the location of Ωmoving by setting its center as

mc = (X1+X2+X3+X4)/4 and the rotation θc as the signed angle measured from the horizontal

axis to the vector
−−−→
X1X2 (see Fig. 5.1).

Ωc Ωf

Ωmoving

a b

c

d

0 α
0

β

X1

X2

X3

X4

Figure 5.1. Schematic illustration of the fluid domain Ωf , the crystal domain
Ωc, and the moving domain Ωmoving.
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For the time integration, we consider the uniform time step ∆t = T/Nt, where T is the final

time and Nt is the total number of iterations. For Ωf , we use a uniform mesh with mesh spacing

h = (b−a)/Nx = (d− c)/Ny, where Nx and Ny are the numbers of cells in the x- and y-directions,

respectively. The center of each cell is located at xij = (xi, yj) = (a + (i − 0.5)h, c + (j − 0.5)h)

and we define the computational domain Ωh
f = {xij | i = 1, · · · , Nx, j = 1, · · · , Ny}. Using the

marker-and-cell mesh, the pressure p and temperature U are defined at the cell centers and the

velocities u and v are defined at the cell edges (see Fig. 5.2). Let pnij and Un
ij be approximations

of p(xi, yj , n∆t) and U(xi, yj , n∆t), respectively. Let uni+1/2,j and vni,j+1/2 be approximations of

u(xi + h/2, yj , n∆t) and v(xi, yj + h/2, n∆t), respectively.

v
i−1,j− 1

2

v
i−1,j+ 1

2

v
i,j−

1
2

v
i,j+ 1

2

v
i+1,j− 1

2

v
i+1,j+ 1

2

u
i−

1
2 ,j−1 u

i+ 1
2 ,j−1

u
i−

1
2 ,j

u
i+ 1

2 ,j

u
i−

1
2 ,j+1 u

i+ 1
2 ,j+1

pijUij

Figure 5.2. Schematic of the computational grid for the pressure, velocities, and temperature.

For Ωc, we also use a uniform mesh with mesh spacing h̄ = α/Mx = β/My, where Mx and

My are the numbers of cells in the x- and y-directions, respectively. The center of each cell
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is located at skl = (sxk, s
y
l ) = ((k − 0.5)h̄, (l − 0.5)h̄), and we define the computational domain

Ωh
c = {skl | i = 1, · · · , Nx, j = 1, · · · , Ny}. And, mn

c and θnc represent the center position and

rotation of Ωmoving at time n∆t, respectively.

Next, we describe our proposed numerical solution algorithm. At the n-th time step, we have

a divergence-free velocity field un, the phase-field ϕn, and temperature Un. We seek un+1, pn+1,

ϕn+1, and Un+1.

5.3.1. Hydrodynamic flow on Ωf . First, we solve Eqs. (5.1) and (5.2) to update un+1 and

pn+1 on the fluid domain Ωf by using the Chorin’s projection method [31, 98]:

un+1 − un

∆t
+ un · ∇xy

h un =−∇dp
n+1 +

1

Re
∇d ·

[
ηn
(
∇du

n + (∇du
n)T
)]
, (5.8)

∇d · un+1 =0. (5.9)

We solve an intermediate velocity field, ũn = (ũn, ṽn):

ũni+ 1
2 ,j

=uni+ 1
2 ,j

−∆t(uux + vuy)
n
i+ 1

2 ,j
+

∆t

Re
(2(ηux)x + (ηuy)y + (ηvx)y)

n
i+ 1

2 ,j
,

ṽni,j+ 1
2
=vni,j+ 1

2
−∆t(uvx + vvy)

n
i,j+ 1

2
+

∆t

Re
((ηvx)x + (ηuy)x + 2(ηvy)y)

n
i,j+ 1

2
.

The advection terms are defined by

(uux + vuy)
n
i+ 1

2 ,j
=uni+ 1

2 ,j
ūnx

i+1
2
,j
+ vni+ 1

2 ,j
ūny

i+1
2
,j
,
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(uvx + vvy)
n
i,j+ 1

2
=vni,j+ 1

2
v̄ny

i,j+1
2

+ uni,j+ 1
2
v̄nx

i,j+1
2

,

where the values ūnx
i+1

2
,j
and ūny

i+1
2
,j
are computed using the upwind procedure

ūnx
i+1

2
,j
=


un

i+1
2
,j
−un

i− 1
2
,j

h , if un
i+ 1

2 ,j
> 0,

un

i+3
2
,j
−un

i+1
2
,j

h , otherwise,
(5.10)

ūny
i+1

2
,j
=


un

i+1
2
,j
−un

i+1
2
,j−1

h , if vn
i+ 1

2 ,j
> 0,

un

i+1
2
,j+1

−un

i+1
2
,j

h , otherwise.
(5.11)

The quantities v̄nx
i,j+1

2

and v̄ny
i,j+1

2

are similarly computed. The viscosity terms are defined by

(2(ηux)x + (ηuy)y + (ηvx)y)
n
i+ 1

2 ,j

= 2

(
ηni+1,j

un
i+ 3

2 ,j
− un

i+ 1
2 ,j

h2
− ηnij

un
i+ 1

2 ,j
− un

i− 1
2 ,j

h2

)

+ ηni+ 1
2 ,j+

1
2

un
i+ 1

2 ,j+1
− un

i+ 1
2 ,j

h2
− ηni+ 1

2 ,j−
1
2

un
i+ 1

2 ,j
− un

i+ 1
2 ,j−1

h2

+ ηni+ 1
2 ,j+

1
2

vn
i+1,j+ 1

2

− vn
i,j+ 1

2

h2
− ηni+ 1

2 ,j−
1
2

vn
i,j− 1

2

− vn
i−1,j− 1

2

h2
,

((ηvx)x + (ηuy)x + 2(ηvy)y)
n
i,j+ 1

2

= ηni+ 1
2 ,j+

1
2

vn
i+1,j+ 1

2

− vn
i,j+ 1

2

h2
− ηni− 1

2 ,j+
1
2

vn
i,j+ 1

2

− vn
i−1,j+ 1

2

h2

+ ηni+ 1
2 ,j+

1
2

un
i+ 1

2 ,j+1
− un

i+ 1
2 ,j

h2
− ηni− 1

2 ,j+
1
2

un
i+ 1

2 ,j
− un

i+ 1
2 ,j−1

h2

+ 2

(
ηni,j+1

vn
i,j+ 3

2

− vn
i,j+ 1

2

h2
− ηnij

vn
i,j+ 1

2

− vn
i,j− 1

2

h2

)
.
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Because the viscosity ηn on Ωf depends on the phase-field function ϕn on Ωc, we consider the

interpolated function ϕ̃n as follows: First, to check whether xij ∈ Ωh
f is inside of Ωmoving or not,

we compare the sum of areas of four triangles with the area of moving domain Ωmoving. That is, if

△xijX1X2 +△xijX2X3 +△xijX3X4 +△xijX4X1 > �X1X2X3X4,

then it means that xij /∈ Ωmoving (Fig. 5.3(a)). If the two areas are same, then xij ∈ Ωmoving (Fig.

5.3(b)). Next, we estimate the value of ϕ̃nij from ϕn on Ωc if xij ∈ Ωmoving by using the bilinear

interpolation and we define ϕ̃nij = 1 otherwise. For more details, we denote the directional vectors

as a =
−−−→
X1X2, b =

−−−→
X1X4, and c =

−−−→
X1xij . If xij ∈ Ωmoving, xij is corresponding to the location

((a · c)/|a|, (b · c)/|b|) on Ωc and then we can calculate the ϕ̃ij by the interpolation. Finally, we

define as

ηnij =
ηs(1 + ϕ̃nij) + ηm(1− ϕ̃nij)

2
.

We then solve the pressure field at the (n+ 1)-th time step.

un+1 − ũn

∆t
=−∇dp

n+1, (5.12)

∇d · un+1 =0. (5.13)
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xij

X1

X2

X3

X4

Ωf

a b

c

d

(a)

X1

X2

X3

X4

xij

Ωf

a b

c

d

(b)

Figure 5.3. Schematic illustration of (a) xij /∈ Ωmoving and (b) xij ∈ Ωmoving.

Applying the discrete divergence ∇d· and divergence-free Eq. (5.13) to Eq. (5.12), we obtain the

Poisson’s equation with the homogeneous Neumann boundary condition:

∆hp
n+1 =

1

∆t
∇d · ũn, (5.14)

where

∆hp
n+1
ij =

pn+1
i+1,j + pn+1

i−1,j − 4pn+1
ij + pn+1

i,j+1 + pn+1
i,j−1

h2
,

and

∇d · ũn
ij =

ũn
i+ 1

2 ,j
− ũn

i− 1
2 ,j

+ ṽn
i,j+ 1

2

− ṽn
i,j− 1

2

h
.
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We solve the Eq. (5.14) by the multigrid method, and using the updated pressure pn+1, the

divergence-free velocities are obtained

un+1
i+ 1

2 ,j
=ũni+ 1

2 ,j
− ∆t

h
(pn+1

i+1,j − pn+1
ij ),

vn+1
i,j+ 1

2

=ṽni,j+ 1
2
− ∆t

h
(pn+1

i,j+1 − pn+1
ij ).

5.3.2. Dendritic crystal growth on Ωc. Next, we solve the crystal equation (5.3) to obtain

the updated phase-field function ϕn on Ωc. Note that the convection term u · ∇ϕ is treated by

translating and rotating the moving domain Ωmoving. We use the operator splitting scheme [96]:

ϵ2(ϕn)
ϕn+1,1 − ϕn

∆t
= 2ϵ(ϕn)ϵ(ϕn)xϕ

n
x + 2ϵ(ϕn)ϵ(ϕn)yϕ

n
y (5.15)

+

(
16ϵ4ϵ(ϕ

n)ϕx(ϕ
2
xϕ

2
y − ϕ4y)

|∇hϕ|4

)n

x

+

(
16ϵ4ϵ(ϕ

n)ϕy(ϕ
2
xϕ

2
y − ϕ4x)

|∇hϕ|4

)n

y

,

ϵ2(ϕn)
ϕn+1,2 − ϕn+1,1

∆t
= ϵ2(ϕn)∆hϕ

n+1,2 − 4λÛnF (ϕn+1,1), (5.16)

where F (ϕ) = 0.25(ϕ2 − 1)2. Because the temperature Un is defined on Ωf , we consider the

interpolated function Ûn for Ωc. Ûn
kl at skl ∈ Ωh

c is the bilinearly interpolated value from the

temperature Un at the position s̃kl = X1 + sxka/|a|+ syl b/|b| on Ωf (Fig. 5.4). If s̃ij /∈ Ωf , then

we define by Ûn
ij = ∆ with a dimensionless undercooling ∆.
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Ûij

Ûij
Ωc Ωf
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0 α
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β
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b

X1

Figure 5.4. Schematic of the temperature field interpolation.

And then we update ϕn+1.

ϕn+1 = ϕn+1,2

/√
e
− 2∆t∗

ϵ2(ϕn+1,2) + (ϕn+1,2)2
(
1− e

− 2∆t∗
ϵ2(ϕn+1,2)

)
. (5.17)

Equations (5.14) and (5.16) are solved by a multigrid method [129]. For more detail discretiza-

tions, please refer to [96].

5.3.3. Translation and rotation of Ωmoving. Also, we update the position of the advected

crystal on Ωf by moving Ωmoving. The magnitudes of its rotatory and parallel translations are

derived from the conservations of the linear and angular momentums, respectively. Here, we

calculate the velocity of the crystal

un
c = (unc , v

n
c ),
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and the rotation angle θnc of the crystal to represent the motion of the crystal. Using the interpo-

lated phase-field ϕ̃nij , fluid velocity un, and Eq. (5.6), we can write un
c , as

un
c =

∑Nx

i=1

∑Ny

j=1 0.5
(
1 + ϕ̃nij

)
un
ijh

2∑Nx

i=1

∑Ny

j=1 0.5
(
1 + ϕ̃nij

)
h2

. (5.18)

Note that the interpolation of ϕ̃n is described in Section 5.3.1. And, we estimate the fluid velocity

at cell centers as

un
ij =

(
0.5(uni+ 1

2 ,j
+ uni− 1

2 ,j
), 0.5(vni,j+ 1

2
+ vni,j− 1

2
)
)
. (5.19)

Next, we consider the angular momentum Lc of the crystal to calculate the rotation angle θc. Let

ωn
c be an approximation of ωc at time n∆t. From Eq. (5.7), ωn

c is written as

ωn
c =

∑Nx

i=1

∑Ny

j=1 0.5 (m
n
c − xij)× un

ij

(
1 + ϕ̃nij

)
h2∑Nx

i=1

∑Ny

j=1 ∥ (mn
c − xij) ∥2h2

. (5.20)

Therefore, we can compute the new position and rotation angle of the crystal domain Ωc on the

fluid domain Ωf from Eqs. (5.18) and (5.20):

mn+1
c =mn

c + un
c∆t, (5.21)

θn+1
c =θnc + ωn

c ∆t. (5.22)
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m
n
c

θ
n
c

r̃(x, y)

(x, y)

m
n+1
c

= m
n
c + u

n
c∆t

θ
n+1
c = θ

n
c + ωn

∆t

Figure 5.5. New center position and rotation angle of the crystal domain Ωc.

5.3.4. Temperature field on Ωf . Finally, we solve the temperature field U on the domain

Ωf with the homogenous Dirichlet boundary condition using the multigrid method:

Un+1
ij − Un

ij

∆t
+ (un · ∇dU

n)ij = D∆hU
n+1
ij +

ϕ̃n+1
ij − ϕ̃nij
2∆t

.

Here, we apply the upwind scheme for the advection term:

Un
xij

=


Un

ij−Un
i−1,j

h , if unij > 0,

Un
i+1,j−Un

ij

h , otherwise,

Un
yij

=


Un

ij−Un
ij−1

h , if vnij > 0,

Un
i,j+1−un

ij

h , otherwise.
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Note that the velocity located at a cell center (unij , v
n
ij) is defined by using interpolation as

(
0.5(uni+ 1

2 ,j
+ uni− 1

2 ,j
), 0.5(vni,j+ 1

2
+ vni,j− 1

2
)
)

as in Section 5.3.3.

5.3.5. Summary for the implementation. A brief summary of numerical procedures for

crystal growth simulation in a cavity flow is as follows: Given the fluid velocity un, the phase-field

function ϕn, the temperature Un, the crystal location mn
c , and the crystal rotation θnc , we proceed

the following steps:

1. Update un+1 on Ωf by Eqs. (5.8) and (5.9).

2. Update ϕn+1 on Ωc by Eqs. (5.15)–(5.17).

3. Update mn+1
c and θn+1

c of Ωmoving by Eqs. (5.21) and (5.22).

4. Update Un+1 on Ωf by Eq. (5.23).

This completes the description of the process above by which the quantities un+1, ϕn+1, Un+1,

mn+1
c , and θn+1

c .

Moreover, we compare our moving overset grid method for the implementation with the fic-

titious domain model [39] in Table 5.1. As mentioned above, both methods share the idea using

the local and global domains to simulate the growth and convection separately; however, there are

differences in describing other physical properties.
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Table 5.1. Comparison of the moving overset grid method with the fictitious
domain method

Moving overset grid Fictitious domain model [39]

Using the local domain for
the phase-field

O O

Solving the NS equations in
the local domain

X O

Advection term in the
phase-field equation

X O

Treating permeability
Using a very large viscosity

ratio
Adding a term in the NS

equation for the local domain

Enforcing rigid motion
Calculate the translation
velocity and the angular

velocity separately
Using the correct velocity

5.4. Numerical experiments

In this section, we present an example to numerically demonstrate the efficiency of the proposed

methods. The first example compares the result by the proposed translation algorithm with the

result by solving the advection equation. And, next examples show temporal evolution of the

crystal growth in two-dimensional flows.

5.4.1. Translation algorithm. We first compare results by our translation algorithm for

the moving domain Ωmoving with those of the usual advection equation. Here, we just consider

an advection equation

ϕt + u · ∇ϕ = 0,
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i.e., without the crystal growth and the heat diffusion. The underlying velocity field is given by a

rotational flow

(u, v) =
( y

100
,− x

100

)
,

which gives a uniform angular velocity in a fluid domain Ωf = (−50, 50) × (−50, 50). The initial

translated feature is a square whose one side has a length of 12 and it is defined on a quadruply

smaller domain Ωc = (0, 50)× (0, 50). The location of the corresponding moving domain Ωmoving

is set as defining m0
c = (50, 75) in Ωf .

(a) (b)

Figure 5.6. Translation of the non-growing crystal under the rotational flow
by (a) applying a proposed overset grid and (b) solving the advection equation.
The solid contour represents the initial configuration, dotted contours are the
configurations at every 400 iterations, and arrows are the underlying velocity field.

Figure 5.6 shows the translation of the non-growing feature under the rotational flow with

∆t = 0.05π up to the final time T = 200π by (a) applying a proposed overset grid and (b) solving

the advection equation. Here, a upwind scheme is applied to solve the advection equation and it is
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well known that the smeared phenomena occur by the upwind scheme. We could, of course, obtain

the better results by using other time integrating schemes such as Lax–Friedrichs, Lax–Wendroff,

Godunov’s, Leapfrog, essentially non-oscillatory, weighted essentially non-oscillatory, and so on;

however, it is not easy to not only implement but also avoid the drawback perfectly. On the other

hand, the overset grid method shows that no unreliable deformation of the structure in contrast

with solving the advection equation directly.

Table 5.2. Numerical and theoretical angles at T .

mesh 1282 2562 5122 exact
angle 6.286168 6.283511 6.283191 6.283185

Because of the uniform velocity ω = 0.01 from the underlying velocity, the initial and final

configurations should match with each other exactly; i.e., the angle is 2π at the final time. Table

5.2 lists the numerical and theoretical angles at T up to seven significant figures. As the mesh

is finer, the angles from the numerical experiments converge to the exact value. In conclusion,

the results in this section show that our translation algorithm has a good agreement with the

theoretical one.

5.4.2. Cavity flow. We perform numerical experiments for the crystal growth in a two-

dimensional cavity flow. We consider a sufficiently large domain Ωf = [−300, 300]× [−300, 300] to

observe the growth of crystal under the flows for the fluid and temperature and Ωc = [0, 300] ×

[0, 300] for the crystal. In Ωf , the time step is restricted to ∆t ≤ 0.25Reh2ηm/ηs due to the
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explicit discretization for the diffusion term in Eq. (5.8). In contrast, in Ωc, the operator splitting

method for solving Eqs. (5.15)–(5.16) allows large time step, e.g., ∆t ≤ 5.5h [96]. Thus, we use

∆t = min
(
0.2Reh2ηm/ηs, 5.5h

)
, unless otherwise specified.

For the initial state, we take:

ϕ(x, y, 0) = tanh

(
R0 −

√
x2 + y2√
2

)
and U(x, y, 0) =

 0 if ϕ > 0

∆ otherwise

The zero level set (ϕ = 0) of the initial state represents a circle of radius R0 = 6. From the

definition of dimensionless variable U , the value of 0 corresponds to the melting temperature of

the pure material, while the value of ∆ is the initial undercooling. And, we use λ = 3.1913 like

as [96, 97, 114]. The initial center m0
c is located at (0, 120) and the initial fluid flow is defined as

the steady state solution of the cavity flow Re = 1 to reduce the computational time. For other

parameters, we set as follows: ϵ4 = 0.05, D = 2.0, ∆ = −0.3, Re = 10, ηm = 1, ηs = 25, and

T = 4272.

Figure 5.7 shows the temporal evolution of the crystal growth in the cavity flow. The snapshots

with the contour of crystal and corresponding fluid vector field are drawn at the specified time.

Now, the crystal is not fixed but floats in a liquid, so that the crystal can not grow symmetrically

anymore. The flow and crystal affect each other by the viscosity difference, and the crystal follows
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(a) Initial state (b) t = 854.5 (c) t = 1709

(d) t = 2563 (e) t = 3418 (f) t = T

Figure 5.7. Evolutions for the traces of crystal and the flow field.

the fluid flow. The heat distribution is also changed due to the interaction of the flow and crystal,

and it makes the non-symmetrical crystal growth.

(a) with the flow (b) without the flow

Figure 5.8. Contours of crystal growth (a) with and (b) without the cavity flow.
The elapsed time for each contour is 427.2.
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In addition, Fig. 5.8 displays the temporal evolutions of crystal growth with and without the

cavity flow to show the effect of the flow. Same parameters ϵ4 = 0.05, D = 2.0, and ∆ = −0.3

are used in a domain [0, 300] × [0, 300] to simulate the crystal growth without the flow. Small

difference of growth is observed in the early stage, however, in the case of with the flow, symmetry

in growing branches is getting broken and the crystal is growing faster.

Next, we check the Reynolds number effect for the crystal growth in a cavity flow. The used

parameters are same as previous simulation except for Re and ∆t. For comparison of the Reynolds

number effects, we set Re = 5 and Re = 100. Since the time step restriction depends on Re, the

corresponding ∆t is used as 0.02441 and 0.04883 for Re = 5 and Re = 100, respectively.
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Figure 5.9. (a) Migration distances with respect to time and (b) contours of the
crystals at T .

Figures 5.9 (a) and (b) show that migration with respect to time and configurations of the

crystals at the final time T . A moving distance is little larger when Re = 100. Moreover, there

is a difference in the growth rates of the crystals with different Re numbers. Generally, absorbing
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external heat would give rise to growth of crystal. As shown in the figure, migration distance is

changed as Re is also changed and it implies that the crystal absorbs more external heat when

Re = 100 than Re = 5. This agrees well with our result for growth of crystal.

The initial undercooling ∆ is also one of the influential parameter to determine the growth of

the crystal. We perform simulations to check the effect of ∆ in the cavity flow. Figure 5.10 shows

that configurations of crystal with ∆ = −0.2 and ∆ = −0.4 until t = 2563. The other parameter

settings and initial condition are same as the simulation in the previous result.

(a) t = 427.2 (b) t = 854.5 (c) t = 1282

(d) t = 1709 (e) t = 2136 (f) t = 2563

Figure 5.10. Evolution of the crystal growth under the flow fields with ∆ = −0.2
(solid line) and ∆ = −0.4 (dotted line).

Figure 5.10 shows that the traces of crystal growth under the flow vector fields with ∆ =

−0.2 (solid line) and ∆ = −0.4 (dotted line). Here, the flow vector fields is drawn for better
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understanding in convection of crystal. As seen in the figures, the crystals with different ∆ has

apparently different morphology.

(a) ∆ = −0.2 (b) ∆ = −0.4

Figure 5.11. Contours of crystal growth when (a) ∆ = −0.2 and (b) ∆ = −0.4.
The elapsed time for each contour is 427.2.

We also displays the temporal evolutions of crystal growth when ∆ = −0.2 and ∆ = −0.4 in

Fig. 5.11 to compare both cases conveniently.

5.4.3. Gravitational flow. The Boussinesq approximation can be made the gravitational

effect, i.e., the accelerations of flow by gravitational force, with a constant density. Hence, the

constant density contribute to the buoyancy force in terms of the momentum equation [99]. Because

of the simplicity in practical implementations, the approximation has been widely applied in many

previous articles [62, 79, 101]. In [88], the variable density and the Boussinesq models are compared

on buoyancy-driven flows and we implement the gravitational force as presented in the reference.
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The NS equation with a gravitational force in terms of the Boussinesq approximation can be

modified from 5.1 as

∂u

∂t
+ u · ∇u = −∇p+ 1

Re
∇ ·
[
η(ϕ)(∇u+ uT )

]
+At

(
1 + ϕ

2

)
g, (5.23)

where g is the gravitational force density. Note that it is written as (0,−g) in a two-dimensional

case. To implement this model, we just add the vector term g in the step for solving an intermediate

velocity field.

Figure 5.12 shows the evolutions and the traces of the crystal and the fluid flow fields. Here,

a fluid domain Ωf = [0, 200] × [0, 400] and a crystal domain Ωc = [0, 100] × [0, 100] is considers.

The mesh grids of Ωf and Ωc are 256× 512 and 128× 128, respectively. Moreover, the parameters

ηm = 1, ηs = 25, Re = 10, ϵ4 = 0.05, D = 2, ∆ = −0.4, ∆t = 0.2Reh2ηm/ηs, T = 7200∆t,

At = 0.01, g = (0,−1) are used. Because of the gravitational force, generated by the crystal,

we can see the force-driven downward flow and the direction of the crystal growth tends to also

downward.

Figure 5.13 shows that evolutions and traces of the crystal and the fluid flow fields when the

initial seed is not isotropic. Other parameters are same as the previous simulation for Fig. 5.12

except initial conditions. Here, the initial seed is a square whose length is 12 and the initial angle

of Ωc is given by 0.125π. Because of the anisotropic condition of the initial state, the morphology
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(a) Initial state (b) t = 1440∆t (c) t = 2880∆t

(d) t = 4320∆t (e) t = 5760∆t (f) t = 7200∆t

Figure 5.12. Evolutions and traces of the crystal and the fluid flow field.

of the crystal growth is different comparing with the previous one. The direction of growth is not

symmetric for left and right tips of the crystal, and the bottom tip of the crystal growths on a

skew.
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(a) Initial state (b) t = 1440∆t (c) t = 2880∆t

(d) t = 4320∆t (e) t = 5760∆t (f) t = 7200∆t

Figure 5.13. Evolutions and traces of the crystal and the fluid flow field with
anisotropic initial data.
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Chapter 6

Conclusion

We proposed a moving overset grid method to model dendritic growth with convection in

phase-field simulations. Unlike most previous studies, the translation and rotation of the crystal

were simulated with its deformation. The proposed numerical method was able to be resolve

the difficulties in deformation of the crystal shape and ambiguity of the crystal orientation for

the anisotropy since the phase-field and fluid flow are solved in distinct domains. Numerical

results demonstrated that the proposed method can predict the crystal growth under flows. As

future researches, a more accurate algorithm for the motion of fluid and crystal can be applied to

the proposed moving overset grid method and the methodology introduced in this thesis can be

extended to three-dimensional space.
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Appendix A

Multigrid method

A multigrid method is known as one of the fastest method in solving common discretization

problems [4, 17, 129]. When applying the Jacobi and Gauss–Seidel iterative methods, high frequen-

cies of the errors are almost removed in a few iteration but the lower frequencies are reduced very

slowly. Moreover, the computational cost is O(N2). In a multigrid method, lower frequencies act

like higher frequencies by changing data on a finer grid to a coarser grid. After solving a problem

on a coarser grid, we again interpolate the data back to a finer grid. This fine-coarse-fine loop is

called a v-cycle and the sub-steps are called restriction and prolongation [122].

In this dissertation, we use the method when solving the AC equation, the CH equation,

a Poisson problem, and the heat equation. Here, we present practical examples of the multigrid

methods: the heat equation for a linear equation case and the AC equation for a nonlinear equation

case.
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A.1. Linear multigrid method

The linear multigrid method is one of the fastest iterative solvers for solving linear partial

differential equations. Note that the differential equation

Ly = f,

is called linear when L is a linear operator, i.e., satisfies

L(y1 + y2) = L(y1) + L(y2).

where L is the differential operator, y is the unknown function, and f is a given function. Therefore,

the classical heat equation is a good example of a linear partial differential equation.

The one-dimensional heat equation with homogenous Neumann boundary condition is given

as follows:

∂

∂t
u(x, t) =∆u(x, t), x ∈ Ω = (0, 1), t ∈ (0, T ], (A.1)

∂

∂x
u(0, t) =

∂

∂x
u(1, t) = 0, (A.2)

u(x, 0) =u0(x), (A.3)

where u(x, t) is the temperature, x is the spatial variable, t is the temporal variable, Ω is the spatial

unit domain, T is the final time, and u0(x) is the given initial condition.
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Applying a backward-time central-space scheme (or the implicit Euler’s scheme) [106], Eqs.

(A.1) can be discretized as follow:

un+1
i − uni

∆t
=
un+1
i−1 − 2un+1

i + un+1
i+1

h2
, (A.4)

where uni = u ((i− 0.5)h, n∆t) for i = 1, 2, . . . , Nx and n = 0, 2, . . . , Nt. Here h = 1/Nx is the

spatial step size, Nx is the number of spatial steps, ∆t is the temporal step size, and Nt is the

number of temporal steps. The homogeneous Neumann boundary conditions are discretized as

un0 = un1 , u
n
Nx+1 = unNx

, 0 ≤ n ≤ Nt.

Let us rewrite Eq. (A.4) as

un+1
i

∆t
−
un+1
i−1 − 2un+1

i + un+1
i+1

h2
=
uni
∆t

. (A.5)

Using an operator notation, we also let Eq. (A.5) as

Lun+1
i = fi, (A.6)

where

Lun+1
i =

un+1
i

∆t
−
un+1
i−1 − 2un+1

i + un+1
i+1

h2
,

fi =
uni
∆t

.
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In order to explain clearly the steps taken during a single V-cycle, we focus on a numerical

solution on an eight point grid. We define discrete domains, Ω2, Ω1, and Ω0, where

Ωk = {(xi = (i− 0.5)hk)|1 ≤ i ≤ 2k+1 and hk = 22−kh}.

Ωk−1 is coarser than Ωk by a factor of 2. The multigrid solution of the discrete heat equation

(A.4) makes use of a hierarchy of meshes (Ω2, Ω1, and Ω0) created by successively coarsening the

original mesh, Ω2 as shown in Fig. A.1. A pointwise Gauss–Seidel relaxation scheme is used as the

smoother in the multigrid method. We use notations unk at time t = n∆t and Lk as a numerical

solution and the operator defined as (A.6) on the discrete domain Ωk. We rewrite the above Eq.

(A.6) by

L2(u
n+1
2 ) = f2 on Ω2. (A.7)

0
x

1
x

2
x

3
x

4 1
Ω2 = {x1, x2, x3, x4}

0
x

1
x

2 1
Ω1 = {x1, x2}

0
x

1 1
Ω0 = {x1}

Figure A.1. A sequence of coarse grids starting with h = L/Nx.

The algorithm of the multigrid method for solving the discrete heat Eq. (A.6) is as follows.
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Multigrid cycle

un+1,m+1
k =MGcycle(k, un+1,m

k , Lk, fk, ν1, ν2).

That is, un+1,m
k and un+1,m+1

k are the approximations of un+1
k before and after an MGcycle. Given

the numbers ν1 and ν2 are pre- and post- smoothing relaxation sweeps of an iteration step for the

multigrid method using the V-cycle [129]. Starting an initial condition u02, we want to find un2 for

n = 1, 2, · · · . Given un2 , we want to find the un+1
2 solution that satisfies Eq. (A.7). At the very

beginning of the multigrid cycle the solution from the previous time step is used to provide an

initial guess for the multigrid procedure. First, let un+1,0
2 = un2 .

Step 1) Presmoothing

ūn+1,m
k = SMOOTHν1(un+1,m

k , Lk, fk),

means performing ν1 smoothing steps with the initial approximation un+1,m
k , source terms fk, and

a SMOOTH relaxation operator to get the approximation ūn+1,m
k .
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We use the following Gauss–Seidel relaxation scheme.

un+1,m,s+1
1 =

(
un1
∆t

+
un+1,m,s
2

h2

)/(
1

∆t
+

1

h2

)
,

un+1,m,s+1
i =

(
uni
∆t

+
un+1,m,s+1
i−1 + un+1,m,s

i+1

h2

)/(
1

∆t
+

2

h2

)
,

(2 ≤ i ≤ 2k−2Nx − 1),

un+1,m,s+1
Nx

=

(
unNx

∆t
+
un+1,m,s+1
Nx−1

h2

)/(
1

∆t
+

1

h2

)
,

(A.8)

where s and s + 1 denote the current and the new approximations, respectively. Therefore, in a

multigrid cycle, one smooth relaxation operator step consists of solving Eq. (A.8) given above for

1 ≤ i ≤ 2k−2Nx.

Step 2) Coarse grid correction

• Compute the defect: d̄mk = unk − Lk(ū
n+1,m
k ).

• Restrict the defect and ūmk : d̄mk−1 = Ik−1
k d̄mk

The restriction operator Ik−1
k maps k-level functions to (k − 1)-level functions.

dk−1(xi, yj) =I
k−1
k dk(xi, yj)

=
1

2
[dk(xi− 1

2
) + dk(xi+ 1

2
)].

• Compute an approximate solution ûn+1,m
k−1 of the coarse grid equation on Ωk−1, i.e.

Lk−1(u
n+1,m
k−1 ) = d̄mk−1. (A.9)
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If k = 1, we use a direct or fast iteration solver for (A.9). If k > 1, we solve (A.9) approximately

by performing k-grid cycles using the zero grid function as an initial approximation:

v̂n+1,m
k−1 =MGcycle(k − 1, 0, Lk−1, d̄

m
k−1, ν1, ν2).

• Interpolate the correction: v̂n+1,m
k = Ikk−1v̂

n+1,m
k−1 .

Here, the coarse values are simply transferred to the four nearby fine grid points, i.e.,

vk(xi, yj) =I
k
k−1vk−1(xi, yj)

=vk−1(xi+ 1
2
, yj+ 1

2
),

for the i and j odd-numbered integers.

• Compute the corrected approximation on Ωk

um, after CGC
k = ūn+1,m

k + v̂n+1,m
k .

Step 3) Postsmoothing:

un+1,m+1
k = SMOOTHν2(um, after CGC

k , Lk, fk).

This completes the description of a one MGcycle step, which stops if the consequence error

|un+1,m+1−un+1,m| is smaller than a given tolerance. An illustration of the corresponding two-grid

cycle is given in Fig. A.2.
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smooth
ν1

u
n+1,m
k ū

n+1,m
k

d̄m
k = φn

k −Lk(ū
n+1,m
k )

Restrict(Ik−1

k )

d̄m
k−1

= Ik−1

k d̄m
k

Solve

Lk−1(v̂
n+1,m
k−1

) ≈ d̄m
k−1

Interpolate(Ik
k−1

)

v̂
n+1,m
k = Ik

k−1
v̂

n+1,m
k−1

u
n+1,m+1

k

smooth
ν2

u
m,afterCGC
k

= ū
n+1,m
k + v̂

n+1,m
k

Figure A.2. The MGcycle (k, k − 1) two-grid method.

To show the numerical result comparing an analytic solution, we set the initial conditions as

u0(x) = cos(2πx) on the space domain Ω = (0, 1). We take h = 1/128 and ∆t = 0.5h. The number

of relaxation is 3. Tolerance is 1.0e-7. Figure A.3 shows temporal evolution of the numerical

solutions at t = 0, 2∆t, 4∆t, 6∆t, 8∆t, and 10∆t. The exact solution for the heat equation with the

given initial conditions can be derived by using the separation of variables. Let u(x, t) = X(x)T (t).

Then, Eq. (A.1) is rewritten as

X(x)T ′(t) = X ′′(x)T (t),

⇔ T ′

T
=
X ′′

X
.
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Using the boundary conditions (A.2) and the initial condition (A.3), we can get the solution

cos(2πx)e−π2t.

0 0.5 1
−1

0

1

 

 

u

x

numerical solution
exact solution

Figure A.3. Temporal evolution of the numerical solutions with the initial con-
dition u(x, 0) = cos(2πx). Times are at t = 0, 2∆t, 4∆t, 6∆t, 8∆t, and 10∆t.

A.2. Nonlinear multigrid method

Next, we study a nonlinear multigrid method with the AC equation as an example, which is

the simple nonlinear partial differential equation.

Since the details of AC equation is presented in the section 2.2 of the main text, we just

introduce one-dimensional form here:

∂

∂t
ϕ(x, t) =− ϕ3(x, t) + ϕ(x, t) + ϵ2

∂2

∂x2
ϕ(x, t), x ∈ Ω = (0, 1), t ∈ (0, T ] (A.10)

∂

∂x
ϕ(0, t) =

∂

∂x
ϕ(1, t) = 0, (A.11)

ϕ(x, 0) =ϕ0(x), (A.12)
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where ϕ(x, t) is the order parameter in [−1, 1], x is the spatial variable, t is the temporal variable,

ϵ is the coefficient related to interfacial energy, T is the final time. Here, ϕ3 terms in the right

hand side of Eq. (A.10) gives a nonlinearity of the differential equation. To treat a nonlinearity in

a multigrid method, we use a linear approximation in a smooth relaxation step. Here, we consider

the nonlinearly stabilized splitting scheme [48, 49] for a discretization of the AC equation as follow:

ϕn+1
i − ϕni

∆t
= −

(
ϕn+1
i

)3
+ ϕni + ϵ2

ϕn+1
i−1 − 2ϕn+1

i + ϕn+1
i+1

h2
, (A.13)

where ϕni = ϕ(xi = (i − 0.5)h, n∆t), ∆t is the temporal step size, Nt = T/∆t is the number of

temporal steps, h is the spatial step size, and Nx is the number of spatial steps, for i = 1, · · · , Nx

and n = 1, · · · , Nt.

We describe a nonlinear full approximation storage (FAS) multigrid method to solve Eqs.

(A.10), which is the nonlinear discrete system of equations. Refer [18, 129] for the details and the

backgrounds of the nonlinear multigrid method.

Let

ϕn+1 = (ϕn+1
1 , ϕn+1

2 , . . . , ϕn+1
Nx

)

and

fn = (fn1 , f
n
2 , . . . , f

n
Nx

).
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Let us rewrite Eq. (A.13) as follow using an operator notation:

Nϕn+1 = fn, (A.14)

where

Nϕn+1
i =

ϕn+1
i

∆t
+
(
ϕn+1
i

)3 − ϵ2
ϕn+1
i−1 − 2ϕn+1

i + ϕn+1
i+1

h2

and

fni =
ϕni

∆t+ ϕni
.

Given ϕn, we want to calculate ϕn+1. We iterate the following FAS multigrid cycle until the

discrete l2-norm of the two consecutive approximations is less than a given tolerance, i.e.,

∥ϕn+1,m+1 − ϕn+1,m∥2 < tol.

Let

ΩK = {xi|i = 1, . . . , Nx},

be the original finest grid, where K satisfies Nx = p · 2K and p is an odd number. Then, for

k = K, . . . , 1, we define the successively coarser grids as

Ωk−1 = {yi|yi = 0.5(x2i−1 + x2i) and x2i−1, x2i ∈ Ωk for i = 1, . . . , p · 2k−1}.
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Now, we introduce the nonlinear multigrid iteration for solving the discretized problem (A.14)

on grid level Ωk.

ϕn+1,m+1
k = FAScycle(ϕn+1,m

k ,Nk, f
n
k , ν),

which means that ϕn+1,m
k and ϕn+1,m+1

k are the approximations of ϕn+1 before and after an

FAScycle on grid level Ωk. By starting from an initial value ϕn+1,0 = ϕn, one step of the iteration

is given in the following step:

Step 1) Presmoothing

ϕ̄
n+1,m
k = SMOOTHν(ϕn+1,m

k ,Nk, f
n
k ) on Ωk grid.

This means performing ν smoothing steps with the initial approximations ϕn+1,m
k , source terms

fnk , and SMOOTH relaxation operator to get the approximations ϕ̄
n+1,m
k .

First, let us rearrange discrete Eq. (A.13) as a Gauss–Seidel type.

ϕn+1,m,s+1
i

∆t
+
(
ϕn+1,m,s+1
i

)3
+

2ϵ2ϕn+1,m,s+1
i

h2

= fni + ϵ2
ϕn+1,m,s+1
i−1 + ϕn+1,m,s

i+1

h2
.

(A.15)

Here, we denote ϕn+1,m,s
i and ϕn+1,m,s+1

i as current and the new approximations in a Gauss–Seidel

iteration.
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Since (ϕn+1,m,s+1
i )3 is nonlinear, we linearize it at ϕn+1,m,s

i , i.e.,

(ϕn+1,m,s+1
i )3 ≈ (ϕn+1,m,s

i )3 + 3(ϕn+1,m,s
i )2(ϕn+1,m,s+1

i − ϕn+1,m,s
i ).

Therefore, Eq. (A.15) is rewritten as[
1

∆t
+ 3

(
ϕn+1,m,s
i

)2
+

2ϵ2

h2

]
ϕn+1,m,s+1
i

= fni + 2
(
ϕn+1,m,s
i

)2
+ ϵ2

ϕn+1,m,s+1
i−1 + ϕn+1,m,s

i+1

h2
.

(A.16)

One SMOOTH relaxation operator step consists of solving the system (A.16) for each i on

Ωk grid. After taking ν smoothing steps, we let ϕ̄
n+1,m
k .

Step 2) Compute the defect

αk = fnk −Nkϕ̄
n+1,m
k .

Step 3) Restrict the defect and ϕ̄
n+1,m
k

αk−1 =Ik−1
k αk,

ϕ̄
n+1,m
k−1 =Ik−1

k ϕ̄
n+1,m
k .

The restriction operator Ik−1
k maps k-level functions to (k − 1)-level functions.

dk−1(i) =I
k−1
k dk(i)

=[dk(2i) + dk(2i− 1)]/2,
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where dk(i) is the i-th component of the vector dk.

Step 4) Compute the right-hand side

fnk−1 = αk−1 +Nk−1ϕ̄
n+1,m
k−1 .

Step 5) Compute an approximate solution ϕn+1,m
k−1 of the coarse grid equation on Ωk−1, i.e.

Nk−1ϕ
n+1,m
k−1 = fnk−1. (A.17)

If k = 1, we explicitly invert a 2 × 2 matrix to obtain the solution. If k > 1, we solve (A.17) by

performing a FAS k-grid cycle using ϕ̄
n+1,m
k−1 as an initial approximation:

ϕ̂
n+1,m

k−1 = FAScycle(ϕ̄
n+1,m
k−1 ,Nk−1, f

n
k−1, ν).

Step 6) Compute the coarse grid correction (CGC):

v̂n+1,m
k−1 = ϕ̂

n+1,m

k−1 − ϕ̄n+1,m
k−1 .

Step 7) Interpolate the correction:

v̂n+1,m
k = Ikk−1v̂

n+1,m
k−1 .

Here, the coarse values are simply transferred to the two nearby fine grid points, i.e. vk(2i) =

vk(2i− 1) = Ikk−1vk−1(i) = vk−1(i) for 1 ≤ i ≤ p · 2k−1.
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Step 8) Compute the corrected approximation on Ωk

ϕn+1,m, after CGC
k = ϕ̄

n+1,m
k + v̂n+1,m

k .

Step 9) Postsmoothing

ϕn+1,m+1
k = SMOOTHν(ϕn+1,m, after CGC

k ,Nk, f
n
k ).

This completes the description of a nonlinear FAScycle.

smooth
ν1

u
n+1,m
k ū

n+1,m
k

d̄m
k = φn

k −Lk(ū
n+1,m
k )

Restrict(Ik−1

k )

d̄m
k−1

= Ik−1

k d̄m
k

Solve

Lk−1(v̂
n+1,m
k−1

) ≈ d̄m
k−1

Interpolate(Ik
k−1

)

v̂
n+1,m
k = Ik

k−1
v̂

n+1,m
k−1

u
n+1,m+1

k

smooth
ν2

u
m,afterCGC
k

= ū
n+1,m
k + v̂

n+1,m
k

Figure A.4. The MG (k, k − 1) two-grid method.

Now, we present the numerical result performed by the algorithm explained above. The initial

conditions is ϕ0(x) = 0.2rand() on the space domain Ω = (0, 1), where rand() is the random
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number uniformly distributed between −1 and 1. We take h = 1/128 and ∆t = 0.5h. The number

of relaxation is 3. Tolerance is 1.0e-7. Figure A.5 shows temporal evolution of the numerical

solutions at t = 0, 20∆t, 40∆t, 60∆t, 80∆t, and 100∆t.

0 0.5 1
−1

0

1

φ

x

Figure A.5. Temporal evolution of the numerical solutions with the initial con-
dition ϕ(x, 0) = 0.2rand().
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