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a b s t r a c t

This paper presents a fast and accurate method using the Allen–Cahn (AC) equation with a fidelity term
for curves smoothing of 2D shapes and volume smoothing of 3D shapes. The modified AC equation
has a good smoothing dynamics and it is coupled with a fidelity term. The fidelity term forces the
solution of the equation to be a close approximation to the original data. We use a hybrid explicit finite
difference method to solve the equation. Therefore, we do not have any restriction on the shape of the
computational domains. Several numerical tests for both the curve and surface smoothing problems
are performed to demonstrate the robustness and efficiency of the proposed method. In particular, the
proposed algorithm is useful for the 3D printing applications.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In this study, we consider a fast and accurate smoothing
method using a modified Allen–Cahn equation [1] in the two- and
three-dimensional domains. Most existing smoothing methods
suffer from a number of problems, and the most well-known
problem is the volume shrinkage or shape distortion [2] as shown
in Fig. 1(b).

Wei et al. [4] proposed an effective mesh smoothing algorithm
which focuses on polygonized isosurfaces of inhomogeneous bi-
nary volumes. Guo et al. [5] introduced low-pass filtering based
on non-uniform spectral synthesis to smooth 3D medical models
while preserving features. A propagated mesh normal filtering
model, introduced in [6], preserved prominent features when
removing noises. For more details of the normal filtering model,
please refer to Yadav’s doctoral dissertation [7,8]. Yadav et al. [9]
proposed a model to smooth the surfaces by using a normal
voting tensor based on element. By optimizing the fuzzy vector
median filters, the authors in [10] smoothed various surfaces
represented by triangular meshes. Ohtake et al. [11] combined the
Laplacian flow and a mesh evolution by a function of the mean
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curvature for smoothing polygonal surfaces, feature preserving,
and crease enhancement.

Object feature can be preserved by a normal-diffusion process
while dealing with mesh denoising [12]. In [13], the authors in-
troduced feature preserving mesh denoising based on graph spec-
tral processing, in the feature-aware fine step, they iteratively
smooth face normals and vertices, while preserving geometric
features. Liu et al. [14] proposed a volume-constrained smooth-
ing algorithm for triangular meshes, which preserves exactly
the mesh volume during the smoothing process. Cai et al. [15]
proposed a structure preserving smoothing method via relativity-
of-Gaussian. Zheng et al. [16] proposed a new point position
updating formulation and adopt a multi-normal strategy to over-
come sharp edge shrinkage. Chen et al. [17] studied shape pre-
serving mesh texture smoothing by using joint low-rank matrix
recovery. Wang et al. [18] collected similar patches and formu-
lated them as a low-rank matrix recovery problem to estimate
surface normals for dealing with different levels of noise and
they suggested data-driven geometry-recovering mesh denoising.
Zhao et al. [19] developed a novel L0 sparse regularization method
to robustly and reliably eliminate noises while preserving fea-
tures with theoretic guarantee. The authors presented a simple
and fast mesh denoising method, which can remove noise effec-
tively while preserving mesh features such as sharp edges and
corners in [20]. Lu et al. [21] presented a novel scheme for robust
feature-preserving mesh denoising, through the experiments, the
results show that the method can remove noise while maximally
preserving geometric features. In [22], while preserving features,
the authors generated an anisotropic point set denoising opera-
tion and remove noise and outliers from the input point set. Wei
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Fig. 1. (a) Original image (b) Result with Gaussian smoothing. (c) Result with a smoothing method. Reprinted from Taubin [3], with permission from Proceedings of
IEEE International Conference on Computer Vision.

et al. [23] proposed tensor voting guided mesh denoising which
demonstrates a outstanding performance on feature preservation
and artifact suppression.

Although various smoothing techniques have been introduced,
however, most of these methods focus on processing triangulated
mesh smoothing, few studies have been done in the area of
volume smoothing using a phase-field method. Choi et al. [24]
proposed a phase-field method using the modified Cahn–Hilliard
equation for smoothing piecewise linear shapes of two- and
three-dimensional objects. In this paper, we present a new
method using the modified AC equation for smoothing piecewise
linear shapes of two- and three-dimensional objects. We compare
our method with several state-of-the-arts in terms of visual and
quantitative evaluations.

In the proposed method, let φ be an order parameter that
takes the value +1 in the solid volume and the value −1 outside
the volume. We define the zero-isosurface of φ as the surface of a
volume. We consider the following energy functional for volume
smoothing:

E(φ) =

∫
Ω

[
F (φ)
ϵ2

+
|∇φ|

2

2
+
λ

2
(f (x) − φ)2

]
dx, (1)

where the second term 0.5|∇φ|
2 makes φ to be smooth and the

first term F (φ) = 0.25(φ2
− 1)2/ϵ2 enforces φ to be sharp across

the volume transition. Here, ϵ is a positive parameter related to
the interfacial transition thickness. If only these two terms are
considered, then the temporal evolution of the gradient flow of
the functional (1) becomes motion by mean curvature [1], which
results in volume shrinkage. The third term 0.5λ(f (x) − φ)2 is a
fidelity term, which enforces φ to be the original scaled volume
f (x). Here, λ is the fidelity strength coefficient. The scaled given
image is defined as

f (x) =
2ψ(x) − fmax − fmin

fmax − fmin
, (2)

where fmax and fmin are the maximum and the minimum values of
the given image ψ(x), respectively. By applying gradient descent
with respect to L2 inner product for the energy E(φ), we have the
following evolution equation:
∂φ(x, t)
∂t

= −
F ′(φ(x, t))

ϵ2
+∆φ(x, t) + λ(f (x) − φ(x, t)). (3)

If λ = 0 in Eq. (3), then the proposed equation becomes the
classical AC equation [1], which has been used as a mathematical
model to investigate antiphase domain coarsening in a binary
alloy.

The outline of this paper is the following. In Section 2, nu-
merical solution algorithms for the curve and volume smoothing
are presented. To demonstrate the efficiency and robustness of
our proposed method, computational examples are presented in
Section 3. In Section 4, we apply the method to 3D printing.
Finally, conclusions are drawn in Section 5.

2. Numerical solution algorithm

In this paper, we use the hybrid explicit finite difference
method to solve the proposed model. Let the computational do-
mainΩ be [xL, xR]×[yL, yR] in the two-dimensional space, Nx and
Ny be positive even integers, h = (xR−xL)/Nx = (yR−yL)/Ny be the
uniform grid size,∆t be the time step size, andΩh = {(xi, yj)|xi =

xL+h(i−0.5), yj = yL+h(j−0.5), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny} be the
set of cell-centers. Let φn

ij be approximations of φ(xi, yj, n∆t). We
formally split the original problem (3) into the following three
equations:
∂φ

∂t
= ∆φ, (4)

∂φ

∂t
= −

F ′(φ)
ϵ2

, (5)

∂φ

∂t
= λ(f (x) − φ). (6)

As the first step, we solve Eq. (4) by applying the fully explicit
method with an initial condition φn, that is,

φ
n+ 1

3
ij − φn

ij

∆t
= ∆dφ

n
ij , for (xi, yj) ∈ Ωh, (7)

where ∆d is the discrete Laplacian operator, i.e.,

∆dφij = (φi+1,j + φi−1,j + φi,j+1 + φi,j−1 − 4φij)/h2,

for i = 1, . . . ,Nx and j = 1, . . . ,Ny. At the computational
domain boundary, we use the zero Neumann boundary condition
as follows:

φ0,j = φ1,j, φNx+1,j = φNx,j, φi,0 = φi,1, φi,Ny+1 = φi,Ny .

Next, Eq. (5) is solved by the method of separation of variables
[25] as

φ
n+ 2

3
ij =

φ
n+ 1

3
ij√

e
−2∆t
ϵ2 + (φ

n+ 1
3

ij )2(1 − e
−2∆t
ϵ2 )

. (8)

Finally, we solve Eq. (6) by using the fully implicit method:

φn+1
ij − φ

n+ 2
3

ij

∆t
= λ(fij − φn+1

ij ), (9)

which can be explicitly rewritten as

φn+1
ij =

φ
n+ 2

3
ij + λ∆tfij
1 + λ∆t

. (10)

Similarly to the two-dimensional space, we define the com-
putational domain. Let the computational domain Ω be [xL, xR]×
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Fig. 2. Effect of λ on the smoothing dynamics. (a) Initial condition and numerical results at t = 50∆t with (b) λ = 1000, (c) λ = 100, and (d) λ = 10.

[yL, yR] × [zL, zR] in the three-dimensional space, Nx, Ny, and Nz
be positive even integers, h = (xR − xL)/Nx = (yR − yL)/Ny =

(zR − zL)/Nz be the uniform grid size, and Ωh = {(xi, yj, zk)| xi =

xL + h(i − 0.5), yj = yL + h(j − 0.5), zk = zL + h(k − 0.5), 1 ≤

i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz} be the set of cell-centers. Let
φn
ijk be approximations of φ(xi, yj, zk, n∆t), where ∆t is the time

step. At first, we solve Eq. (4) by using the fully explicit method
with the initial condition φn, that is,

φ
n+ 1

3
ijk − φn

ijk

∆t
= ∆dφ

n
ijk, for (xi, yj, zk) ∈ Ωh, (11)

where ∆d is the discrete Laplacian operator, i.e.,

∆dφijk = (φi+1,jk + φi−1,j,k + φi,j+1,k + φi,j−1,k + φij,k+1

+ φij,k−1 − 6φijk)/h2,

for i = 1, . . . ,Nx, j = 1, . . . ,Ny, and k = 1, . . . ,Nk. At the
boundary, we implement the zero Neumann boundary condition
as follows:

φ0,j,k = φ1,j,k, φi,0,k = φi,1,k, φi,j,0 = φi,j,1,

φNx+1,j,k = φNx,j,k, φi,Ny+1,k = φi,Ny,k, φi,j,Nz+1 = φi,j,Nz .

Next, Eq. (5) is solved by the method of separation of variables
as

φ
n+ 2

3
ijk =

φ
n+ 1

3
ijk√

e
−2∆t
ϵ2 + (φ

n+ 1
3

ijk )2(1 − e
−2∆t
ϵ2 )

. (12)

Finally, we solve Eq. (6) by using the fully implicit method:

φn+1
ijk − φ

n+ 2
3

ijk

∆t
= λ(fijk − φn+1

ijk ), (13)

which can be explicitly rewritten as

φn+1
ijk =

φ
n+ 2

3
ijk + λ∆tfijk
1 + λ∆t

. (14)

3. Numerical tests

3.1. Effect of parameters

In this section, we investigate the effect of parameters on the
smoothing dynamics. We first consider the effect of the fidelity
parameter λ on the minimum shrinkage. On the computational
domain Ω = (−1, 1)× (−1, 1) with a mesh grid N×N , the initial
configuration is given as

f (x, y) =

{
1 if

√
x2 + y2 + 0.2 cos(5θ ) ≤ 0.5,

−1 otherwise,
(15)

where θ = tan−1(y/x) if x > 0; θ = π + tan−1(y/x) oth-
erwise. We define the interfacial length parameter ϵm as ϵm =

mh/[
√
2 tanh−1(0.9)]. We use the following parameters: N =

20, h = 2/N , ϵ = ϵ2, α = 1/7, and ∆t = αh2. With the
initial configuration as shown in Fig. 2(a), we obtain the various
numerical results (see Fig. 2(b)–(d)) at time t = 50∆t with
respect to different λ. In this test, we use three different λ =

10, 100, and 1000. When λ is large, φ(x, y, t) does not evolve
and is close to the initial mosaic profile. However, if λ is too
small, then the AC dynamics dominates and the profile becomes
a circular shape which has the minimum interfacial length.

Now, we conduct a numerical experiment on the effect of the
fidelity term. This term ensures that the solution φ approximates
a given original data f (x). For the test, we define a given data
f (x) and the phase-field φ on the computational domain Ω =

(−1, 1) × (−1, 1) as follows:

f (x, y) =

{
1 if

√
(x + 0.3)2 + y2 ≤ 0.4,

−1 otherwise,

φ(x, y, 0) =

{
1 if |x − 0.3| ≤ 0.4 and |y| ≤ 0.4,
−1 otherwise.

With the initial conditions as shown in Fig. 3(a), we solve Eq. (6)
using the fully implicit method. We use the following parameters:
N = 200, h = 2/N , ϵ = ϵ2, λ = 100, α = 1/7, and ∆t = αh2.
Fig. 3(b) illustrates the zero-level contour of phases, f (x) and φ, at
t = 0, 250∆t, 500∆t , and 750∆t and Fig. 3(c) shows the mesh
plots of the phases. We can find that the fidelity term keep the
solution of (6) close to the given data.

Next, we investigate the effect of ϵ. In our proposed model,
the parameter ϵ determines the thickness of the interface of two
phases, that is, interfacial region of transition profile. Therefore,
it is one of the important factors on the smoothing process. Now,
we study the effect of ϵ on the smoothing dynamics. On the
computational domain Ω = (−1, 1)× (−1, 1), we use Eq. (15) as
the initial condition as shown in Fig. 4(a). The other parameters
are used as N = 20, h = 2/N , α = 1/7, ∆t = αh2, and
λ = 100. Fig. 4(b)–(d) represent the numerical configurations
at t = 50∆t with ϵ = ϵ8, ϵ = ϵ2, and ϵ = ϵ0.4, respectively.
As shown in Fig. 4(d), if ϵ is too small, then the phase-field has
abrupt transition and the profile becomes mosaic. On the other
hand, according to Eq. (8), as ϵ increases, φn+2/3

ijk converges to
1, i.e., the large value of ϵ cannot make a big difference in our
numerical solution. As shown in Fig. 4(b) and (c), it is hard to
find significant difference between them.

3.2. 2D various shapes

To demonstrate the robustness of the proposed algorithm, we
consider various complex shapes on two-dimensional space Ω =

(−1, 1)×(−1, 1). For the numerical test, we use N = 64, h = 2/N ,
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Fig. 3. Effect of the fidelity term. (a) shows the initial conditions of the given data f (x) and the phase-field φ. Here, the first two columns represent the zero-level
contour of phases and the third and fourth columns are the mesh plots of the phases. (b) and (c) show the evolution of φ at t = 0, 250∆t, 500∆t , and 750∆t .

Fig. 4. Effect of ϵ on the smoothing dynamics. (a) Initial condition and numerical results at t = 50∆t with (b) ϵ8 , (c) ϵ2 , and (d) ϵ0.4 .

ϵ = ϵ2, α = 1/7, ∆t = αh2 and λ = 100. From left to right,
Fig. 5(a) represents the initial configurations of numbers ‘2’, ‘3’,
and ‘5’, respectively. Fig. 5(b) shows their corresponding smooth
results after 5 iterations. Observing these results, we can see that
our proposed algorithm works well to remove staircases while
preserving the initial volumes.

Fig. 6 shows the temporal evolution of bunny (first column),
armadillo (second row), and horse (third row) at t = 0 and
t = 5∆t . Here we take the parameters as same as the above test.

3.3. 3D various shapes and volume preservation

In this section, we will present several numerical results on
various synthetic and real images. Let the initial data of the
sphere and the pyramid be

f (x, y, z) =

{
1 if

√
x2 + y2 + z2 ≤ 0.8,

−1 otherwise,

and for some m = 1, 2, . . . , 27,

f (x, y, z)

=

⎧⎨⎩
1 if x, y ∈ [−1 + h(3m + 21.5), 1 − h(187.5 − 3m)],

z ∈ [−1 + h(6m + 13.5), 1 − h(6m + 19.5)],
−1 otherwise,

on computational domain Ω = (−1, 1) × (−1, 1) × (−1, 1) with
a mesh grid 200 × 200 × 200. The initial data of the ellipsoid are
taken as

f (x, y, z) =

{
1 if

√
x2
4 + y2 + z2 ≤ 0.8,

−1 otherwise,

on computational domain Ω = (−2, 2) × (−1, 1) × (−1, 1) with
a mesh grid 400 × 200 × 200. The other parameters h = 0.01,
α = 1/7, λ = 100, ∆t = αh2, and ϵ = ϵ2 are chosen. Fig. 7 shows
the temporal evolution of sphere, ellipsoid, and pyramid at t = 0
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Fig. 5. (a) Three initial configurations. (b) Corresponding smooth results after 5 iterations.

Fig. 6. (a) Three initial configurations. (b) Corresponding smooth results after 5 iterations.

Fig. 7. Smoothing morphologies of sphere, ellipsoid, and pyramid models at (a) t = 0 and (b) t = 20∆t .
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Fig. 8. Mean square error against iteration steps.

and 20∆t . We can see that our method works well with smooth
volumes.

Laplacian smoothing is a well-known algorithm to smooth
a polygonal mesh. This method can cause volume shrinkage or
shape distortion [4]. However, our proposed method is a volume-
preserving approach without severe volume changes. In this sec-
tion, we demonstrate that our smoothing approach preserves the
initial volume. We use the mean square error (MSE) to estimate
the shrinkage error.

MSE(g, f ) =

∑Nx
i=1

∑Ny
j=1

∑Nz
k=1(g(i, j, k) − f (i, j, k))2

NxNyNz
. (16)

MSE is first calculated as an evaluation metric for image seg-
mentation [26,27]. The range of MSE is between 0 and 4. While
the smoothing process reaches a stable state, the lower value
shows a better performance.

We use the above parameters to show the effectiveness of our
method. In Fig. 8, we compute the shrinkage error against iter-
ation steps. They are 1.76, 1.74, and 1.84, responding to sphere,
ellipsoid, and pyramid, respectively.

Next, to show the robustness of the proposed method, we
perform surface smoothing problem with noises. We assess the

Fig. 10. Mean square error for different noise values.

capability of our method on the sphere model, which is cor-
rupted by synthetic noise. The initial phase value of sphere and
parameters are taken as the same as the sphere model in Fig. 7.
We perform the simulation test in the three-dimensional space
Ω = (−1, 1)3. We use different levels of random noise on the
surface of sphere model as shown in Fig. 9(a)–(d). We include the
noise in the phase-field model as follows:

f (x, y, z) = 1, if rand(x, y, z) ≤ Nval,

0.8 − 2h ≤

√
x2 + y2 + z2 ≤ 0.8 + 2h,

where rand(x, y, z) is a random number between 0 and 1, and Nval
is the noise value. Here, we take noise values 10%, 20%, 30%, and
40% to the surface of the sphere. Shrinkage effect analysis during
the smoothing process in the proposed method is calculated using
Eq. (16). Fig. 9(e)–(h) show the effective results of the correspond-
ing initial noised conditions. Fig. 10 shows the temporal evolution
of MSE with different percentages of the noise at 20∆t .

3.3.1. Irregular 3D morphology
In this section, we consider various irregular morphologies

on the three-dimensional space. We consider three-dimensional

Fig. 9. Shrinkage analysis during the smoothing process for different noise values. (a), (b), (c), and (d) are the initial conditions with 10%, 20%, 30%, and 40%, noises,
respectively. (e), (f), (g), and (h) are the corresponding smoothed results.
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Fig. 11. Smoothing morphologies at (a) t = 0 and (b) t = 10∆t .

Fig. 12. Smoothing morphologies at (a) t = 0 and (b) t = 20∆t . Here, Piggy, Stanford bunny, and Armadillo models are used.

morphologies shown in the first row of Fig. 11 on Ω = (−1, 1)×
(−1, 1)× (−1, 1). On a 200 × 200 × 200 mesh grid, we perform
the numerical test with h = 2/N , α = 1/7, λ = 100, ∆t = αh2,
and ϵ = ϵ2. We obtain smooth results after 10 iteration steps
using our proposed method as shown in the second row in Fig. 11.

3.3.2. Complex 3D morphology
In this section, we consider various complex 3D morphologies

on the three-dimensional space. We take Piggy, Stanford bunny,
and Armadillo models as the initial conditions. We take the
parameters λ = 100, α = 1/7, ∆t = αh2, Ω = (0, 2)3, N = 200,
h = 2/N , and ϵ = ϵ2.

The rows in Fig. 12 represent the initial condition and the nu-
merical results after 20 iterations. As we expected, the numerical
results are smooth and preserve the initial volumes.

Furthermore, in Fig. 13, we represent the shrinkage error
which is stated in Eq. (16). The MSEs of volume are 0.78, 0.45, and
0.52, responding to Piggy, Stanford bunny, and Armadillo models.
Through these results, we can see that the proposed method
generate smooth results without significant volume loss.

Fig. 13. Mean square error of Fig. 12.
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Fig. 14. Surface smoothing for six models of: (a) initial condition with 20% noise; (b) the results of the modified Cahn–Hilliard equation, and (c) the results of the
proposed method.

Fig. 15. Comparison of smoothing on the sphere with the state-of-the-arts.
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Fig. 16. Comparison of smoothing on the bell with the state-of-the-arts.

Fig. 17. Initial point data of concentric-heart, zigzag, and honeycomb. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

3.4. Comparison with the previous work

To demonstrate the performance of the proposed algorithm,
we compare our method with recently developed methods [24,
28–32]. The comparison covers the qualitative and quantitative

evaluations. To do a comparison with [24] which is also a phase-
field based smoothing method, six models with 20% noise are
taken as the initial conditions, as shown in Fig. 14(a). Both [24]
and our method are tested in the computational domain Ω =

(0, 2)3, and Nx = Ny = Nz = 200. Fig. 14(b) and (c) show the
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Fig. 18. (a) Concentric-heart, (b) zigzag, and (c) honeycomb.

Table 1
Quantitative evaluations. Here, parameters for [24] are selected by h = 0.01,
∆t = 0.01, λ = 104 , ϵ = h, parameters for our proposed method are selected
by h = 0.01, ∆t = h2/7, λ = 100, ϵ = ϵ2 . The computation complexity Tn for
[24] and ours are O(Nlog(N)) and O(N), respectively, where N = Nx × Ny × Nz .

Methods Case MSE CPU
time

Vertice
number

Fig. 14a(row 1) 0.082 5.16 567996
Fig. 14a(row 2) 0.233 15.71 1637942

Choi et al.
[24]

Fig. 14a(row 3) 0.209 17.43 1841826

Piggy 0.061 3.68 431448
Bunny 0.038 1.79 201488
Armadillo 0.032 1.66 171652

Fig. 14a(row 1) 0.053 2.93 567996
Fig. 14a(row 2) 0.162 8.96 1637942

mAC Fig. 14a(row 3) 0.181 9.31 1841826
Piggy 0.039 2.36 431448
Bunny 0.019 1.15 201488
Armadillo 0.016 1.02 171652

steady phase state at 10∆t for two methods, respectively, and
the proposed method is highly competitive with the method in
[24].

To compare the performance of the two methods in terms
of quantitative evaluations, we consider the MSE of volume as
stated in Eq. (16), which represents a volume shrinkage condition
of the geometric model. We list parameters of each method,
computation complexity (Tn), shrinkage errors (MSE), CPU time
in seconds, and vertice numbers in Table 1. The computational
results show that our method generates a good visual quality and
computational cost.

Table 2
Quantitative evaluations.
Task Sphere Bell

σ dmax dmean σ dmax dmean

Wang et al. [28] 0.0044 0.0355 0.0027 0.6367 2.6661 0.7309
Zhang et al. [29] 0.0071 0.1797 0.0022 0.6238 2.6851 0.7880
Li et al. [30] 0.0064 0.1159 0.0023 0.6487 2.9672 0.7924
Zhang et al. [31] 0.0077 0.0499 0.0024 0.6880 3.2592 0.7437
Chen et al. [32] 0.0045 0.0355 0.0021 0.6147 2.6714 0.7214
Ours 0.0043 0.0358 0.0021 0.6113 2.6634 0.7286

Moreover, we compare our method with state-of-the-art fil-
tering methods by smoothing the sphere and bell models, in-
cluding rolling guidance normal filter [28], guided mesh normal
filter [29], non-local low-rank normal filter [30], and static/
dynamic filter [31]. All the data and results of the sphere and bell
models are provided by Chen [32] and Meshlab. We present the
visual comparison in Figs. 15 and 16, in addition, the quantitative
evaluations are conducted in terms of error statistics such as
the distance standard deviation (σ ), the maximal of distances
(dmax), and the mean distance (dmean) between the vertices of
the smoothed surface and the ground truth, which are shown
in Table 2. The best metric value of shape-preserving for each
model is highlighted in bold. All methods are computed using
Matlab R2018a on an Intel(R) Core(TM) i5-4430 CPU @ 3.00 GHz
processor.

Through the comparison with the previous works, our method
outperforms most other state-of-the-art algorithms, and both the
smoothing results of sphere and bell are close to the ground
truths.
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Fig. 19. The columns (a), (b), and (c) are the results of a dry mandible model of adult human, a human foot bone model, and a human skull model, respectively. The
first, second, third, and fourth rows are the initial point data, zero-isosurface of φ at t = 0, zero-isosurface of φ at t = 30∆t , and 3D printed models, respectively.

4. 3D printing application

In this section, we introduce a 3D printing application which
is processed by the proposed method. We simulate three shapes
such as concentric-heart, zigzag, and honeycomb to verify the
effectiveness of the proposed method. These basic patterns can be
applied to the shape filling the inside of objects when performing
3D printing. The 3D models can be made by the following steps.

Step1: Take a two-dimensional point data. For the initial point
data of concentric-heart, we take the two-dimensional point data
as shown in Fig. 17(a), then we flip the red point data along the
dash-dotted line to get the concentric-heart shape as shown in
Fig. 17(b). For the initial point data of zigzag, we generate points
using y = 1.5 sin(5πx) (Fig. 17(c)), then we rotate the points 45
degree to both left and right (Fig. 17(d)). For the initial point data
of honeycomb, we generate a regular hexagon with center (0, 0)
(Fig. 17(e)), then make a set of regular hexagons by tessellation
(Fig. 17(f)).

Step2: Obtain a grid data from the initial points. We initialize
the grid data as −1. For the closest grid point of an initial
point, we set value one for 3 × 3 grid points with center of the
closest grid point. As there is no gradient in the horizontal and
vertical directions, there will be no noise affecting the horizontal
and vertical structures of concentric-heart and the outer square
frames of zigzag and honeycomb models. However, on the curved
structures of concentric-heart and the inner parts of zigzag and
honeycomb models, there will be noise due to the gradient. The
first row of Fig. 18 shows the initial grid data.

Step3: Smoothing by using the modified Allen–Cahn equation.
The second row of Fig. 18 shows the smoothing state after 10
iterations.

Step4: To construct volume data, stack the values obtained by
smoothing. Add layers having −1 value to the top and bottom
layers. Take zero-isosurface of the 3D grid data and make STL
file. Finally, print out the constructed 3D models. The printed
models of concentric-heart, zigzag, and honeycomb are shown in
the third row of Fig. 18.

Manufacturing accurate medical models is one of the most
useful techniques for complex medical surgery. The proposed
smoothing algorithm is tested for a dry mandible model of adult
human, a human foot bone model, and a human skull model. First,
we start with the point data as shown in the first row of Fig. 19.
The second, third, and fourth rows are the zero-isosurface of φ
at t = 0, zero-isosurface of φ at t = 30∆t , and 3D printed
models, respectively. Using the ‘‘stlread’’ function from file ex-
change of MathWorks https://kr.mathworks.com/matlabcentral/
fileexchange/22409-stl-file-reader), we obtain the point data by
‘‘STL’’ files from website (http://www.dayin.la). For the recon-
structed surfaces in second row, we reconstruct a uniform narrow
volume with a distance function from the given scattered surface
data, for more details, please refer to [33].

The computations are done on the domains Ω = (0, 3.45) ×

(0, 3.65) × (0, 2.65), (0, 1.2) × (0, 3.2) × (0, 1.2), and (0, 1.1) ×

(0, 1.1)× (0, 1.3) with parameters h = 0.01, ∆t = h2/7, λ = 100,
and ϵ = ϵ2. We obtain the smooth results after 30 iteration steps
using our proposed method as shown in the third row of Fig. 19.

https://kr.mathworks.com/matlabcentral/fileexchange/22409-stl-file-reader
https://kr.mathworks.com/matlabcentral/fileexchange/22409-stl-file-reader
https://kr.mathworks.com/matlabcentral/fileexchange/22409-stl-file-reader
http://www.dayin.la
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5. Conclusion

In this paper, we proposed a modified AC equation for curves
and surfaces smoothing, which is the AC equation with a fidelity
term. We demonstrated the proposed algorithm is effective and
efficient for smoothing curves and surfaces. As we expected,
the numerical results are smooth and preserve the initial vol-
umes. We also computed the MSE of volume against iteration
steps and compare our results with the current state of the art
method. Through these results, we can see that the proposed
method is able to perform smoothing procedure almost without
total volume loss but with the high surface smoothing quality
of visual effect. We also applied the method to smoothing 3D
printed models. We introduced detailed 3D model generation
methods for first-time users. Our proposed method can be useful
for smoothing 3D models with rough surface.
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