
mathematics

Article

Super-Fast Computation for the Three-Asset
Equity-Linked Securities Using the Finite
Difference Method

Chaeyoung Lee 1 , Jisang Lyu 1, Eunchae Park 1, Wonjin Lee 2, Sangkwon Kim 1 , Darae Jeong 3

and Junseok Kim 1,*
1 Department of Mathematics, Korea University, Seoul 02841, Korea; chae1228@korea.ac.kr (C.L.);

lyujis96@korea.ac.kr (J.L.); 012dmsco@korea.ac.kr (E.P.); ksk8863@korea.ac.kr (S.K.)
2 Department of Financial Engineering, Korea University, Seoul 02841, Korea; wonjin381@korea.ac.kr
3 Department of Mathematics, Kangwon National University, Gangwon-do 24341, Korea;

tinayoyo@kangwon.ac.kr
* Correspondence: cfdkim@korea.ac.kr

Received: 2 February 2020; Accepted: 24 February 2020; Published: 26 February 2020
����������
�������

Abstract: In this article, we propose a super-fast computational algorithm for three-asset equity-linked
securities (ELS) using the finite difference method (FDM). ELS is a very popular investment product
in South Korea. There are one-, two-, and three-asset ELS. The three-asset ELS is the most popular
financial product among them. FDM has been used for pricing the one- and two-asset ELS because it is
accurate. However, the three-asset ELS is still priced using the Monte Carlo simulation (MCS) due to
the curse of dimensionality for FDM. To overcome the limitation of dimension for FDM, we propose
a systematic non-uniform grid with an explicit Euler scheme and an optimal implementation of the
algorithm. The computational time is less than 6 s. We perform standard ELS option pricing and compare
the results from the fast FDM with the ones from MCS. The computational results confirm the superiority
and practicality of the proposed algorithm.

Keywords: super-fast computation; Equity-linked securities; Black–Scholes equations; finite difference
method

1. Introduction

The equity-linked security (ELS) is the financial derivative whose payoff relies on the performance
of the underlying assets. It is the most common financial instrument traded in South Korea. Thus,
valuation of ELS instruments is an important issue. In the financial market, most ELS instruments are
products with three underlying assets. The structure of the products has become complex as the number
of underlying assets of the ELS increase. Three-asset step-down ELS is an option that is automatically
exercised depending on the condition of each product, that is, a kind of autocallable structured product [1].
Whether the option is exercised or not is determined at an early redemption date that is before or
at maturity.

Generally, maturity is three years, the early redemption date is every six-months until maturity,
and the price used as a criterion is the lowest price among three underlying assets. If the price is above the
designated amount, which is called the strike price at the redemption dates, the option is automatically
exercised with a coupon rate. If the early redemption did not occur and the prices of the underlying assets
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are all above the knock-in barrier until maturity, the option payoff ends with a dummy rate. Otherwise,
the option payoff ends at a loss of the amount of the option price at that time. The step-down indicates a
decrease in strike price compared to the previous redemption date. Pricing an autocallable product like
ELS is an important issue, and not only in Korea, as many options in the world have early-exercise features.

In general, the closed-form solution for pricing options is not available due to the complexity and
diversity of their structures. Therefore, one needs to approximate the solution using numerical methods,
such as Monte Carlo simulation (MCS) [2,3], the lattice method [4], the finite difference method (FDM) [5–7],
finite element method [8,9], or finite volume method [10] for the Black–Scholes (BS) equation. MCS has
the advantage of a lower calculation cost and less dependence on dimensions. Many studies have been
developed using MCS as it has been considered more suitable than FDM in high dimensional settings [11].
To overcome the high computational cost of using FDM, Leentvaar and Oosterlee [12] used a sparse grid.
They observed a satisfactory convergence on relatively coarse grids.

In [13], Ikonen and Toivanen used the operator splitting method (OSM) for pricing American options
with stochastic volatility. They compared the computational cost of the projected successive over relaxation
method with OSM and observed that OSM is much faster. However, using OSM still has a problem with
regard to high computational cost when it is applied to multi-dimensional models. Heinecke et al. [14]
priced European and American basket options with FDM. They used a non-uniform sparse grid to reduce
the computational time on high dimensions. They also used parallelization to reduce memory costs.
Gulen et al. [7] computed European put option values with a higher order scheme to produce a more
reliable result. They also compared the CPU time of linear and nonlinear options depending on the
number of discretization points of a domain. The results clearly show a higher computation cost as
the number of discretization points increases. Guillaume provided an analytical formula for a flexible
autocallable structure with discrete observation dates [15] and solved the multi-dimensional BS equation
analytically [16], which alleviated the curse of dimensionality.

In [17], Yoo et al. compared the implicit method and explicit finite difference method for pricing ELS.
However, they used the modified BS equation using log-transformation and applied a non-systematically
made non-uniform grid. In [18], the authors introduced a super-time-stepping technique for solving FDM
explicitly when pricing European and American put options. The result demonstrated the efficiency of the
proposed technique. High accuracy with a low computational cost was obtained compared to conventional
implicit techniques. Boyle and Tian [19] used explicit FDM when pricing different types of barrier options.
An adjusted grid was used to better accommodate the boundary conditions of the problem. To save the
computational time when pricing ELS, the authors in [20] obtained a non-uniform grid by trial and error.
They used an implicit scheme which requires solving a tridiagonal system of discrete equations.

In this paper, we propose a systematic non-uniform grid generation depending on the given different
parameters of each contract. The simple and explicit Euler scheme is used with the generated non-uniform
grid, which demonstrates an optimal implementation of the algorithm for a super-fast three-asset ELS
option pricing.

The outline of this paper is as follows. In Section 2, we introduce the BS equation, present an
example of the step-down ELS structure with three underlying assets, and describe the numerical solution
algorithms of the governing equation. In Section 3, we present the computational experiments to confirm
that the proposed algorithm is fast and accurate. Finally, our conclusions are drawn in Section 4.
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2. Numerical Method

2.1. Three-Dimensional Black–Scholes Equation

Let u(x, y, z, τ) be the option price, where x, y, and z are the prices of the three underlying assets and
τ = T − t is the time to maturity. For (x, y, z) ∈ Ω and τ ∈ (0, T], the BS equation is given as

uτ(x, y, z, τ) = rxux(x, y, z, τ) + ryuy(x, y, z, τ) + rzuz(x, y, z, τ) +
1
2

σ2
x x2uxx(x, y, z, τ)

+
1
2

σ2
y y2uyy(x, y, z, τ) +

1
2

σ2
z z2uzz(x, y, z, τ) + ρxyσxσyxyuxy(x, y, z, τ)

+ ρyzσyσzyzuyz(x, y, z, τ) + ρzxσxσzxzuzx(x, y, z, τ)− ru(x, y, z, τ), (1)

where Ω is the computational domain, r is the risk-free interest rate, σx, σy, and σz are the volatilities of
the underlying assets x, y, and z, respectively, and ρxy, ρyz, and ρzx are the correlation values between
each two underlying assets. More details about the equation can be found in [20].

2.2. Step-Down Type ELS

Figure 1 illustrates the payoff structure for a one-asset step-down ELS, which has five early repayments
and maturity repayment. We denote the underlying asset by S, strike prices by Ki, coupon rates by ci,
knock-in-barrier by D, face value by F, and dummy rate by d. Here, i is the index of early repayment and
maturity repayment (i.e., i = 1, . . . , 6).

Figure 1. Payoff structure of a one-asset step-down ELS.

The step-down type ELS has nine possible cases as shown in Figure 2. Cases 1©– 6© represent early
repayment and maturity repayment. If the repayment terms are satisfied at the time of each repayment,
the corresponding coupon is paid and the contract is closed. Case 7© represents the case when the dummy
is paid if the stock path does not hit the knock-in barrier throughout the contract period and does not
satisfy early redemptions. In the cases of 8© and 9©, the principal is lost because the stock path hits the
knock-in barrier.
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Figure 2. Nine cases of random stock path for the step-down type ELS.

In this paper, we consider the pricing of three-asset ELS options. Let St = min(xt, yt, zt) be the
minimum of the three underlying assets. Let u(S, τ) be the solution when the asset price has been below
the knock-in barrier and v(S, τ) be the solution when not. The initial payoff functions of ELS option are

u(S, 0) =

{
(ST/S0)F, if ST < K6,

(1 + c6)F, otherwise,
(2)

v(S, 0) =


(1 + c6)F, if ST ≥ K6,

(1 + d)F, if D < ST < K6,

(ST/S0)F, otherwise.

(3)

We overlay v(S, τ) with u(S, τ) under the knock-in barrier before solving v(S, τ). Figure 3 shows the
schematic diagram of the differences between u and v at τ = 2.5. More details regarding ELS structure can
be found in [20].
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Figure 3. Schematic illustration of u and v at τ = 2.5.

2.3. Solution Algorithm

First, we discretize Ω = [0, L] × [0, M] × [0, N] with steps hx
i−1 = xi − xi−1, hy

j−1 = yj − yj−1,
and hz

k−1 = zk − zk−1. Here, x0 = y0 = z0 = 0, xNx = L, yNy = M, and zNz = N. Nx, Ny, Nz, and Nτ

are the numbers of grid points in the x-, y-, z-, and τ-directions, respectively. ∆τ = T/Nτ is a time step
size. Let un

ijk ≡ u(xi, yj, zk, n∆τ) be the computational approximation of the solution, where i = 0, . . . , Nx,
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j = 0, . . . , Ny, k = 0, . . . , Nz, and n = 0, . . . , Nτ . We use the first and second order partial derivatives at the
discrete point (xi, yj, zk) as follows:

(Dxu)ijk = −
hx

i
hx

i−1(h
x
i−1 + hx

i )
ui−1,jk +

hx
i − hx

i−1
hx

i−1hx
i

uijk +
hx

i−1
hx

i (h
x
i−1 + hx

i )
ui+1,jk,

(Dyu)ijk = −
hy

j

hy
j−1(h

y
j−1 + hy

j )
ui,j−1,k +

hy
j − hy

j−1

hy
j−1hy

j
uijk +

hy
j−1

hy
j (h

y
j−1 + hy

j )
ui,j+1,k,

(Dzu)ijk = −
hz

k
hz

k−1(h
z
k−1 + hz

k)
uij,k−1 +

hz
k − hz

k−1
hz

k−1hz
k

uijk +
hz

k−1
hz

k(h
z
k−1 + hz

k)
uij,k+1,

(Dxxu)ijk =
2

hx
i−1(h

x
i−1 + hx

i )
ui−1,jk −

2
hx

i−1hx
i

uijk +
2

hx
i (h

x
i−1 + hx

i )
ui+1,jk,

(Dyyu)ijk =
2

hy
j−1(h

y
j−1 + hy

j )
ui,j−1,k −

2
hy

j−1hy
j

uijk +
2

hy
j (h

y
j−1 + hy

j )
ui,j+1,k,

(Dzzu)ijk =
2

hz
k−1(h

z
k−1 + hz

k)
uij,k−1 −

2
hz

k−1hz
k

uijk +
2

hz
k(h

z
k−1 + hz

k)
uij,k+1,

(Dyxu)ijk =
ui+1,j+1,k − ui−1,j+1,k − ui+1,j−1,k + ui−1,j−1,k

hx
i hy

j + hx
i−1hy

j + hx
i hy

j−1 + hx
i−1hy

j−1

,

(Dzyu)ijk =
ui,j+1,k+1 − ui,j−1,k+1 − ui,j+1,k−1 + ui,j−1,k−1

hy
j hz

k + hy
j−1hz

k + hy
j hz

k−1 + hy
j−1hz

k−1

,

(Dxzu)ijk =
ui+1,j,k+1 − ui+1,j,k−1 − ui−1,j,k+1 + ui−1,j,k−1

hz
khx

i + hz
k−1hx

i + hz
khx

i−1 + hz
k−1hx

i−1
.

We apply the homogenous Dirichlet boundary condition at x = 0, y = 0, and z = 0; and zero
Neumann boundary condition at x = L, y = M, and z = N [21]. That is,

un
0jk = 0, for 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz,

un
i0k = 0, for 1 ≤ i ≤ Nx, 1 ≤ k ≤ Nz,

un
ij0 = 0, for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny,

un
Nx jk = un

Nx−1,jk, for 1 ≤ j ≤ Ny − 1, 1 ≤ k ≤ Nz − 1,

un
iNyk = un

i,Ny−1,k, for 1 ≤ i ≤ Nx, 1 ≤ k ≤ Nz − 1,

un
ijNz

= un
ij,Nz−1, for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny.

We first solve Equation (1) explicitly with considering the knock-in event. For i = 1, . . . , Nx − 1,
j = 1, . . . , Ny − 1, and k = 1, . . . , Nz − 1,

un+1
ijk = un

ijk + ∆τ
(

Aijk,1un
i,j−1,k−1 + Aijk,2un

i−1,j,k−1 + Aijk,3un
ij,k−1 + Aijk,4un

i+1,j,k−1

+Aijk,5un
i,j+1,k−1 + Aijk,6un

i−1,j−1,k + Aijk,7un
i,j−1,k + Aijk,8un

i+1,j−1,k + Aijk,9un
i−1,jk (4)

+Aijk,10un
ijk + Aijk,11un

i+1,jk + Aijk,12un
i−1,j+1,k + Aijk,13un

i,j+1,k + Aijk,14un
i+1,j+1,k

+Aijk,15un
i,j−1,k+1 + Aijk,16un

i−1,j,k+1 + Aijk,17un
ij,k+1 + Aijk,18un

i+1,j,k+1 + Aijk,19un
i,j+1,k+1

)
.
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Here, we define Aijk,m for m = 1, . . . , 19 as follows:

Aijk,1 =
ρyzσyσzyjzk

hy
j hz

k + hy
j−1hz

k + hy
j hz

k−1 + hy
j−1hz

k−1

, Aijk,2 =
ρzxσzσxzkxi

hz
khx

i + hz
k−1hx

i + hz
khx

i−1 + hz
k−1hx

i−1
,

Aijk,3 =
(σzzk)

2

hz
k−1(h

z
k−1 + hz

k)
−

rzkhz
k

hz
k−1(h

z
k−1 + hz

k)
, Aijk,4 = −Aijk,2, Aijk,5 = −Aijk,1,

Aijk,6 =
ρxyσxσyxiyj

hx
i hy

j + hx
i−1hy

j + hx
i hy

j−1 + hx
i−1hy

j−1

, Aijk,7 =
(σyyj)

2

hy
j−1(h

y
j−1 + hy

j )
−

ryjh
y
j

hy
j−1(h

y
j−1 + hy

j )
,

Aijk,8 = −Aijk,6, Aijk,9 =
(σxxi)

2

hx
i−1(h

x
i−1 + hx

i )
−

rxihx
i

hx
i−1(h

x
i−1 + hx

i )
,

Aijk,10 = rxi
hx

i − hx
i−1

hx
i−1hx

i
+ ryj

hy
j − hy

j−1

hy
j−1hy

j
+ rzk

hz
k − hz

k−1
hz

k−1hz
k
− (σxxi)

2

hx
i−1hx

i
−

(σyyj)
2

hy
j−1hy

j
− (σzzk)

2

hz
k−1hz

k
− r,

Aijk,11 =
(σxxi)

2

hx
i (h

x
i−1 + hx

i )
+

rxihx
i−1

hx
i (h

x
i−1 + hx

i )
, Aijk,12 = −Aijk,6,

Aijk,13 =
(σyyj)

2

hy
i (h

y
j−1 + hy

j )
+

ryjh
y
j−1

hy
j (h

y
j−1 + hy

j )
, Aijk,14 = Aijk,6, Aijk,15 = −Aijk,1, Aijk,16 = −Aijk,2,

Aijk,17 =
(σzzk)

2

hz
k(h

z
k−1 + hz

k)
+

rzkhz
k−1

hz
k(h

z
k−1 + hx

k )
, Aijk,18 = Aijk,2, Aijk,19 = Aijk,1.

Figure 4 illustrates the 19-point discrete stencil for updating un+1
ijk .

Figure 4. The 19-point discrete stencil for un+1
ijk .

Next, we set vn+1 at the knock-in-barrier with un+1 and use it as the Dirichlet boundary condition.
s is where the stock price is equal to the knock-in barrier.

vn
sjk = un

sjk, for s ≤ j ≤ Ny, s ≤ k ≤ Nz,

vn
isk = un

isk, for s ≤ i ≤ Nx, s ≤ k ≤ Nz,

vn
ijs = un

ijs, for s ≤ i ≤ Nx, s ≤ j ≤ Ny.
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The homogeneous Neumann boundary condition is applied at x = L, y = M, z = N:

vn
Nx jk = vn

Nx−1,jk, for 1 ≤ j ≤ Ny − 1, 1 ≤ k ≤ Nz − 1,

vn
iNyk = vn

i,Ny−1,k, for 1 ≤ i ≤ Nx, 1 ≤ k ≤ Nz − 1,

vn
ijNz

= vn
ij,Nz−1, for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny.

For i = s + 1, . . . , Nx − 1, j = s + 1, . . . , Ny − 1, k = s + 1, . . . , Nz − 1, we solve the following

vn+1
ijk = vn

ijk + ∆τ
(

Aijk,1vn
i,j−1,k−1 + Aijk,2vn

i−1,j,k−1 + Aijk,3vn
ij,k−1 + Aijk,4vn

i+1,j,k−1

+Aijk,5vn
i,j+1,k−1 + Aijk,6vn

i−1,j−1,k + Aijk,7vn
i,j−1,k + Aijk,8vn

i+1,j−1,k + Aijk,9vn
i−1,jk (5)

+Aijk,10vn
ijk + Aijk,11vn

i+1,jk + Aijk,12vn
i−1,j+1,k + Aijk,13vn

i,j+1,k + Aijk,14vn
i+1,j+1,k

+Aijk,15vn
i,j−1,k+1 + Aijk,16vn

i−1,j,k+1 + Aijk,17vn
ij,k+1 + Aijk,18vn

i+1,j,k+1 + Aijk,19vn
i,j+1,k+1

)
.

2.4. Weak Condition of Time Step

In this section, we derive the weak conditions of time step under the fully explicit scheme for
Equation (4). Since all coefficients of un

ijk in Equation (4) are positive, namely,

Aijk,10 +
1

∆τ
(6)

= xi
hx

i − hx
i−1

hx
i−1hx

i
+ ryj

hy
j − hy

j−1

hy
j−1hy

j
+ rzk

hz
k − hz

k−1
hz

k−1hz
k
− (σxxi)

2

hx
i−1hx

i
−

(σyyj)
2

hy
j−1hy

j
− (σzzk)

2

hz
k−1hz

k
− r +

1
∆τ

> 0,

we will use increasing space step sizes, i.e., hx
i−1 ≤ hx

i , hy
j−1 ≤ hy

j , hz
k−1 ≤ hz

k for some large i, j, k. Then,
we write Equation (6) as follows:

1
∆τ

>
(σxxi)

2

hx
i−1hx

i
+

(σyyj)
2

hy
j−1hy

j
+

(σzzk)
2

hz
k−1hz

k
+ r.

Let hmin = min{hx
i , hy

j , hz
k} for some i, j, k, then

∆τ <
h2

min
(σxxi)2 + (σyyj)2 + (σzzk)2 + rh2

min
.

Due to xNx = L, yNy = M, and zNz = N, we have

∆τ <
h2

min
(σxL)2 + (σy M)2 + (σzN)2 + rh2

min
. (7)

3. Numerical Experiments

In this section, we demonstrate the performance of the proposed algorithm using numerical
experiments with three types of ELS and comparison with MCS. For all the tests, we use the same
parameters: risk-free interest rate r = 0.03, volatilities σx = σy = σz = 0.3, correlation ρxy = ρyz =

ρzx = 0.5, the computational domain Ω = [0, L]× [0, M]× [0, N] with L = M = N = 150, coupon rates
[c1, c2, c3, c4, c5, c6] = [0.05, 0.1, 0.15, 0.2, 0.25, 0.3], knock-in-barrier D = 50, face value F = 100, and dummy
rate d = 0.27. We test three types of ELS, which have the same parameters as previously mentioned
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except for strike percentages. The first type of ELS has strike percentages [K1, K2, K3, K4, K5, K6] =

[90, 90, 90, 90, 90, 90], the second type has [K1, K2, K3, K4, K5, K6] = [95, 95, 90, 90, 85, 85], and the third
type has [K1, K2, K3, K4, K5, K6] = [95, 90, 85, 80, 75, 70]. In other words, the first type of ELS has the same
strike percentages at all early repayment dates, the second type has the three different strike percentages,
and the last type has a different strike percentage at all repayment dates. Computations were performed
on a 2.7 GHz Intel (Intel, Santa Clara, CA, USA) PC with 16 GB of RAM loaded with C language for FDM
and with MATLAB 2019b (MathWorks, Natick, MA, USA) for MCS.

We propose a systematic grid generation for fast FDM for pricing a three-asset ELS as shown in
Figure 5a.

(a)

(b)

(c)

(d)

(e)

Figure 5. (a) Schematic illustration of the suggested grid Ωx = Ω1 ∪Ω2 ∪Ω3 ∪Ω4. (b–e) are schematic
illustrations of Ω1, Ω2, Ω3, and Ω4.

The generation of the non-uniform grid is as follows: Let h be a given basic grid size.

Ω1 = {0, 0.5D, D− h, D, D + h, S0},

which is the fixed grid points. Let H be the grid size between D + h and K6 − 0.5h. If we want H to be
approximately H̃, then H = (K6 − 1.5h− D)/

[
(K6 − 1.5h− D)/H̃ + 1

]
, where [ ] is the floor function.

Then, we have the grid point set between D + h and K6 − 0.5h:

Ω2 = {D + h + H, D + h + 2H, . . . , K6 − 0.5h}.

Additionally, we have

Ω3 = {K6 + 0.5h, K6 + 1.5h, . . . , S0 − 0.5h, S0 + 0.5h},
Ω4 = {S0 + 0.5h + d, S0 + 0.5h + 3d, . . . , L},



Mathematics 2020, 8, 307 9 of 13

where d = 2(L− S0 − 0.5h)/[m(m + 1)] for some integer m, which implies the gap between points next
to each other forms an arithmetic sequence. See Figure 5b–e for the schematic illustration of Ω1, Ω2, Ω3,
and Ω4, respectively. Finally, we have a grid set for the x-axis:

Ωx = Ω1 ∪Ω2 ∪Ω3 ∪Ω4.

Let Ωy = Ωx and Ωz = Ωx, therefore, the discrete domain is Ωx ×Ωy ×Ωz.
Now, we present comparison tests for three types of ELS using standard MCS and fast FDM. For more

information regarding the numerical method of MCS for three-asset ELS pricing, refer to [22]. The first
type of ELS has strike percentages [K1, K2, K3, K4, K5, K6] = [90, 90, 90, 90, 90, 90]. Figure 6 shows Type 1
ELS MCS price versus the number of samples together with the result of the fast FDM. Here, we plot
100 MCS results for each case. The solid line is the result of the fast FDM.

103 104 105

Number of samples

86

87

88

89

90

91

92

93

94

95

E
LS

 P
ric

e

Standard MCS with Type 1
FDM with Type 1

Figure 6. Type 1 equity-linked securities (ELS) price versus the number of samples. Here, we plot 100
simulation results for each case.

Table 1 lists the price and computation time of Type 1 ELS with two different methods. For the
standard MCS, the price and computation time are obtained with 106 samples. For the fast FDM, the results
are obtained with h = 2.5, H̃ = 2.5h, m = 3, and ∆τ = 1/1440.

Table 1. The price and computation time of Type 1 ELS prices with the standard Monte Carlo simulation
(MCS) and the fast finite difference method (FDM).

Case Price CPU Time (s)

Standard MCS 90.3002 369.4568
Fast FDM 90.2910 2.3900

The second type of ELS has strike percentages [K1, K2, K3, K4, K5, K6] = [95, 95, 90, 90, 85, 85]. Figure 7
shows the Type 2 ELS MCS price versus the number of samples together with the result of the fast FDM,
which is represented by the solid line.
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Figure 7. The type 2 ELS price versus the number of samples. Here, we plot 100 simulation results for
each case.

Table 2 lists the price and computation time of Type 2 ELS with two different methods. For the
standard MCS, the price and computation time are obtained with 106 samples. For the fast FDM, the results
are obtained with h = 2.5, H̃ = 2.5h, m = 3, and ∆τ = 1/1440.

Table 2. Price and computation time of Type 2 ELS prices with the standard MCS and the fast FDM.

Case Price CPU Time (s)

Standard MCS 89.1673 386.3436
Fast FDM 89.0452 3.3280

The third type of ELS has strike percentages [K1, K2, K3, K4, K5, K6] = [95, 90, 85, 80, 75, 70]. Figure 8
shows the Type 3 ELS MCS price versus the number of samples together with the result of the fast FDM,
which is represented by the solid line.
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Figure 8. Type 3 ELS price versus the number of samples. Here, we plot 100 simulation results for each case.



Mathematics 2020, 8, 307 11 of 13

Table 3 lists the price and computation time of Type 3 ELS with two different methods. For the
standard MCS, the price and computation time are obtained with 106 samples. For the fast FDM, the results
are obtained with h = 2.5, H̃ = 2.5h, m = 3, and ∆τ = 1/1440. From these three types of ELS results,
we can confirm that the proposed explicit FDM is fast and accurate.

Table 3. Price and computation time of Type 3 ELS prices with the standard MCS and the fast FDM.

Case Price CPU Time (s)

Standard MCS 90.8376 369.9680
Fast FDM 90.7650 5.1090

Finally, we compare our method with the previous work [20], which used an operator splitting
method (OSM) to verify that the proposed algorithm is fast and accurate. In the OSM, we solve the
governing equations with multiple steps:

un+1
ijk − un

ijk

∆τ
= (Lx

BSu)
n+ 1

3
ijk +

(
Ly

BSu
)n+ 2

3

ijk
+ (Lz

BSu)n+1
ijk , (8)

where Lx
BS, Ly

BS, and Lz
BS are given as

(Lx
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2
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1
3

σxσyρxyxiyjDxyun
ijk (9)

+
1
3

σyσzρyzyjzkDyzun
ijk +

1
3

σzσxρzxzkxiDzxun
ijk −

1
3

run+ 1
3

ijk ,(
Ly

BSu
)n+ 2

3

ijk
=
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+
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+
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We solve the below equations, one by one, using the Thomas algorithm:

un+ 1
3

ijk − un
ijk

∆τ
= (Lx

BSu)
n+ 1

3
ijk ,

un+ 2
3

ijk − un+ 1
3

ijk

∆τ
=
(
Ly

BSu
)n+ 2

3

ijk
,

un+1
ijk − un+ 2

3
ijk

∆τ
= (Lz

BSu)n+1
ijk . (12)

For more details about the numerical procedure, please refer to [20]. For comparison, we take the
Type 3 ELS with all the same parameter values. The absolute errors of the computed option values with the
reference MCS value are 0.0726 and 0.3409 for the proposed method and the OSM, respectively. We achieve
a more accurate result. Furthermore, the CPU time for the OSM is 74.2174, which is about 14 times longer
than the proposed method.

4. Conclusions

In this paper, we presented a super-fast computational algorithm for three-asset ELS using FDM,
which is the most popular investment product in South Korea. To overcome the limitations of
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dimension for FDM, we developed a systematic non-uniform grid with an explicit Euler scheme and an
optimal implementation of the algorithm. The computational time is less than 6 s, which is very fast.
We performed standard ELS option pricing and compared the results from the fast FDM with the ones
from MCS. The computational results confirmed the superiority and practicality of the proposed algorithm.
We used the BS model, which assumed interest rates and volatility as constant for simplicity. However,
this assumption can cause serious errors when calculating prices as they are not constants in real financial
markets. Moreover, there is a limitation of the BS model because the Brownian motion oriented asset
pricing is not adequate in the case where the stochastic processes’ finite dimensional distributions’ tails are
heavier, compared to the tails of the elliptic distributions. For future work, we will consider the Heston
model [23] and the Heston–Hull–White model [24], which assume the interest rates and volatility as
variable and the case that the stochastic processes’ finite dimensional distributions’ tails are heavier.
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