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Abstract

Mean curvature flow is a geometric deformation process for hypersurface of Eu-
clidean space. We delve into studying mean curvature flow of smooth n−dimensional
hypersurface in Rn+1. Let M be an n-dimensional smooth manifold. We wish to
study theoretical and numerical the behavior of smooth family X(·, t) : M → Rn+1

moving by mean curvature flow. Thus, we first consider the initial value problem:
∂

∂t
X(p, t) = ~H(p, t)

X(p, 0) = X0(p)

where t > 0 and p = (x1, . . . , xn) is a local coordinate on M and ~H(p, t) denotes the
mean curvature vector at the point X(p, t) of the embedded n-dimensional manifold
X(M, t), and X0 : M → Rn+1 is a given embedding.

From a different point of view, the flow by mean curvature can be constructed as
the singular limit of the parabolic Allen–Cahn equation. For mean curvature flow,
we consider the semi-linear heat equation

∂u

dt
−4u +

W ′(u)
ε2

= 0 in Rn+1 × (0,∞)

where u, W and ε are the order parameter, double well function and small real
number. It is formulated that for ε → 0 the solution uε becomes ±1 in an interior
uε = 1 and exterior region uε = −1, respectively, and the interface between the
regions is moved by mean curvature.

To see the behavior of the Allen–Cahn equation for mean curvature flow, we
take an example of the self-similar solutions, and observe its convergence to mean
curvature.

We refer finally to the works of Angenent [2], Huisken [8], Ilmanen [10], Evans,
Soner and Souganidis [7], for a detailed analysis of mean curvature flow, self-similar
solutions and asymptotic behaviors of the Allen–Cahn equation.

Key work :Allen-Cahn equation, mean curvature flow, phase-field.
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Chapter 1

Introduction

We begin with some basic settings. The following background materials can be

found in [4, 5, 13, 15, 18, 19, 21]. Note that all manifolds M are smooth and n-

dimensional in this and next chapters. It admits that for every point p ∈ M , there

exists a coordinate neighborhood U of p in M such that in the local coordinates xi

corresponding to U .

1.1. The fundamental equations

1.1.1. The first fundamental form. We shall express the first fundamental

form in the basis {xu,xv} associated to a parametrization x(u, v) at p. Then the

parameter (u, v) is mapped to the point of Rn+1. In coordinates x(u, v), the first

fundamental form is described by the following symmetric, positive definite matrix

gij

(gij) =
(

E F
F G

)
=

((
∂x
∂u , ∂x

∂u

) (
∂x
∂u , ∂x

∂v

)
(

∂x
∂v , ∂x

∂u

) (
∂x
∂v , ∂x

∂v

)
)

(1.1)

In terms of these parameters, one writes the first fundamental form as a quadratic

differential

(ds)2 = E(u, v)(du)2 + 2F (u, v)dudv + G(u, v)(dv)2,

where ds is called the element measure.

1.1.2. Orthogonal coordinates. Let U be a surface patch, and assume that

the metric is given by

(ds)2 = E(u, v)(du)2 + G(u, v)(dv)2,
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so that F (u, v) = 0. Moreover, if we consider the coordinate curve u = const,

v = v(s) or u = u(s), u = const with the parameter s, then the direction coefficients

of the parametric curves are given by
(

0,
1√
G

)
, or

(
1√
E

, 0
)

,

since along the curve v = const, u alone varies, so that u can be taken as ds2 = Edu2,

dv being zero. At each point on the surface, let us have a vector α(s) and its

tangential vector α′(s). If we denote the direction coefficients of two directions

xu, xv at the same point by (l, m) and (l′,m′), then the angle θ between these two

directions is given by

cos θ = α · α′ = (lxu + mxv) · (l′xu + m′xv) = Ell′ + F (lm′ + l′m+) + Gmm′.

Since we have the normal vector N of α and sin θ such that

N sin θ = α× α′ = (lxu + mxv)× (l′xu + m′xv)

= (xu × xv)(lm′ − l′m) =
√

EG− F 2N(lm′ − l′m),

we get

sin θ =
√

EG− F 2(lm′ − l′m).

If we have the parametric curve C for v = const, then the direction coefficients are

given by

l =
1√
E

, m = 0, l′ = u′, m′ = v′.

Further F = 0, we have that

cos θ =
√

Eu′, sin θ =
√

Gv′. (1.2)

1.2. Geodesics

Let C be an oriented regular curve on surface S, and let α(s) be a parametriza-

tion of C, in neighborhood of p ∈ S, by the arc length s. When T is the unit tangent
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vector of a curve C on the surface S, this curvature vector ~κ is decomposed into

dT/ds, i.e.,

dT

ds
= ~κ = ~κn + ~κg.

where ~κ, ~κn and ~κg are curvature, normal curvature and tangential curvature vectors,

respectively. The tangential curvature vector is also called the geodesic curvature

vector. In word, the curvature vector is the sum of the normal and the tangential

curvature vectors. Let w be a differentiable field of unit vectors along a parametrized

curve α : I → S on an oriented surface S in some interval I ⊂ R. Since w(t), t ∈ I

is a unit vector field, (dw/dt)(t) is normal to w(t), and

Dw

dt
= λ(N × w(t)), (1.3)

where λ is the algebraic value of the covariant derivative of w at t, and is defined by

λ(t) =
[
Dw

dt

]
=

(
dw

dt
, N × w

)
. (1.4)

We now consider the vector product. The following rules are readily checked.

u× v = −v × u,

(au + bw)× v = au× v + bw × v,

u× v = 0 if and only if u and v are linearly independent,

(u× v) · u = 0, (u× v) · v = 0,

(u× v)× w = (u,w)v − (v, w)u (1.5)

where u, v, w are vectors and a, b are scalars.

Lemma 1.2.1. Let a and b be differentiable functions in I with a2 + b2 = 1 and

φ0 be such that a(t0) = cos φ0, b(t0) = sinφ0. Define the differentiable function

φ = φ0 +
∫ t

t0

(ab′ − ba′)dt, (1.6)

then it is such that cosφ(t) = a(t), sinφ(t) = b(t), t ∈ I, and φ(t0) = φ0.
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Proof. Note that cosφ(t) = a(t) and sinφ(t) = b(t) follow immediately from

0 = (a− cosφ)2 + (b− sinφ)2

1 = a cosφ + b sinφ, (1.7)

since a2 + b2 = 1. Differentiating equation (1.6), (1.7) and a2 + b2 = 1 give that

0 = a′ cosφ− a(sinφ)φ′ + b′ sinφ + b(cosφ)φ′

= a′ cosφ +
bb′

a′
(sinφ)(ab′ − ba′) + b′ sinφ− aa′

b′
(cosφ)(ab′ − ba′)

= −b′(sinφ)(a2 + b2)− a′(cosφ)(a2 + b2) + a′ cosφ + b′ sinφ.

If we set h(φ) := a cosφ + b sinφ, then h′(φ) = 0. Therefore h(φ) = const and

h(φ0) = 1, as required.

Let v and w be two differentiable vector fields along the parametrized curve α : I →
S with |v(t)| = |w(t)| = 1, t ∈ I. We define a differentiable function φ : I → R in

such a way that φ(t), t ∈ I, is a determination of the angle from v(t) to w(t) in the

orientation of S. , we see the differentiable vector field v̄ along α, defined by the

condition that {v(t), v̄(t)} is an orthonormal positive basis for every t ∈ I. Thus,

this gives that

w(t) = a(t)v(t) + b(t)v̄(t). (1.8)

where a and b are differentiable functions in I and a2 + b2 = 1.

Lemma 1.2.2. Let v and w be two differentiable vector fields along the curve

α : I → S, with |w(t)| = |v(t)| = 1, t ∈ I. Then we have
[
Dw

dt

]
−

[
Dv

dt

]
=

∂φ

dt
,

where φ is the angle from v to w.
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Proof. We set the vectors v̄ = N × v and w̄ = N ×w. From (1.2.1), (1.5) and

(1.8),

w = (cosφ)v + (sinφ)v̄, (1.9)

w̄ = N × w = (cosφ)N × v + (sinφ)N × v̄ = (cosφ)v̄ − (sinφ)v. (1.10)

Differentiating (1.9) with respect to t gives

w′ = −(sinφ)φ′v + (cosφ)v′ + (cosφ)φ′v̄ + (sinφ)v̄′.

Next we take the inner product (w′, w̄) using the fact that (v, v̄) = 0, thus, (v′, v̄) =

−(v, v̄′). Further, we have that (v, v̄) = 0, (v, v′) = 0 and (1.10), then

(w′, w̄) = (sin2 φ)φ′ + (cos2 φ)(v′, v̄) + (cos2 φ)φ′ − (sin2 φ)(v̄′, v)

= φ′ + (cos2 φ)(v′, v̄)− (sin2 φ)(v̄′, v).

We get

(w′, w̄) = φ′ + (cos2 φ + sin2 φ)(v′, v̄) = φ′ + (v′, v̄).

The rest follows easily by combining (1.3) with

(w′, w̄) =
(

dw

dt
, w̄

)
=

[
Dw

dt

]
(N,×w, w̄) =

[
Dw

dt

]
.

Thus, this concludes that
[
Dw

dt

]
= (w′, w̄) = φ′ + (v′, v̄) =

dφ

dt
+

[
Dv

dt

]
,

[
Dw

dt

]
−

[
Dv

dt

]
=

dφ

dt
.

Our proof has a geometrical interpretation. If we assume that C is a curve on surface

S, and α(s) is parametrized by the arc length s of C at p ∈ C, and v(s) a parallel

field along α(s). Then by taking w(s) = α′(s), we get

κg(s) =
[
Dα′(s)

ds

]
=

dφ

ds
. (1.11)
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Thus, the geodesic curvature is the rate of change of the angle that the tangent to

the curve makes with a parallel direction along the curve.

Lemma 1.2.3. Let x(u, v) be an orthogonal parametrization of a neighborhood

of an oriented surface S, and w(t) be a differentiable field of unit vectors along the

curve x(u(t), v(t)). Then we have[
Dw

dt

]
=

1
2
√

EG

(
Gu

dv

dt
− Ev

du

dt

)
+

dφ

dt
, (1.12)

where φ(t) is the angle form xu to w(t).

Observe that e1 = xu/
√

E, e2 = xv/
√

G be the unit vectors tangent to the

coordinate curves. By (1.4), e1 × e2 = N and (1.2.2), we have that[
Dw

dt

]
=

[
De1

ddt

]
+

dφ

dt
, (1.13)

where e1(t) = e1(u(t), v(t)). For the next, we find[
De1

dt

]
=

(
de1

dt
,N × e1

)
=

(
de1

dt
, e2

)
= ((e1)u, e2)

du

dt
+ ((e1)v, e2)

dv

dt
. (1.14)

We get (xuu,xv) = −Ev/2, owing to F = 0 and therefore

((e1)u, e2) =
((

xu√
E

)

u

,
xv√
G

)
= −1

2
Ev√
EG

. (1.15)

In the same fashion,

((e1)v, e2) =
1
2

Gu√
EG

. (1.16)

Combining (1.14), (1.15) and (1.16) and plugging this equation into (1.13) give that[
Dw

dt

]
=

1
2
√

EG

(
Gu

dv

dt
− Ev

du

dt

)
+

dφ

dt
.
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Chapter 2

Mean curvature flow

2.1. Geometry of hypersurface

We denote the embedding map by X : M → Rn+1. The tangent vectors

∂iX(p) ≡ ∂X(p)/∂pi , 1 ≤ i ≤ n form a basis of the tangent space TxM at x = X(p)

at every p ∈ M . The metric is the same as (1.1) , but given differently by

gij = ∂iX · ∂jX for 1 ≤ i, j ≤ n, (2.1)

the inverse metric by

gij = g−1
ij , (2.2)

and the area element is given by

√
g =

√
det gij . (2.3)

Let ν be a choice of unit normal field to M . In particular, this satisfies ν · ∂iX = 0

on M for 1 ≤ i ≤ n. Note also that ∂iν is tangential vector field to M for 1 ≤ i ≤ n

since ν has unit length. The second fundamental form of M is defined by

hij = ∂iν · ∂jX = −ν · ∂i∂jX. (2.4)

The eigenvalues κ1, . . . , κn of the Weingarten map given by Aj
i = gikhkj are called

the principal curvatures of M . The mean curvature H can be expressed in terms of

the values such that

H =
n∑

i

κi = gijhij = gij∂iν · ∂jF = divM ν. (2.5)
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The mean curvature vector of M is given by

~H = −Hν = −(divM ν)ν. (2.6)

The tangential gradient of a function h : M → R is denoted by ∇Mf and defined by

∇Mh = ∇h− (∇h, ν)ν. (2.7)

Thus, it is checked that∇Mh is the projection of the standard Euclidean gradient∇h

on the hypersurface tangent to M . Given a vector field V : M → Rn+1, we denote

the components of V and the vectors of the canonical basis in Rn+1 by V 1, . . . , V n+1

and e1, . . . , en+1, respectively. Then divM V : M → R is defined by

divM V =
n+1∑

α=1

(∇MVα) · eα. (2.8)

where να is the α-component of ν. If we derive a more explicit form of divM V using

(2.7),

divM V =
n+1∑

α=1


∇Vα −




n+1∑

β

∂Vα

∂yβ
νβ


 ν


 · eα. (2.9)

The divergence theorem states that if M is a smooth and closed compact support

manifold, then for any V : M → R,
∫

M
divM V dµ =

∫

M
H(V ν)dµ. (2.10)

To see that, we decompose V into its tangent and normal parts:

V = V > + V ⊥,

where V ⊥ = (V, ν)ν. Then we have

divM V ⊥ = (ν · V ) div ν = (divM ν · ν, V ) = −( ~H, V ).

On the other hand, the tangential component V > can be evaluated by the divergence

theorem
∫

M
divM V > =

∫

∂M
(V >, ~n),
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where ~n is the inward pointing unit normal along ∂M , tangent to M . But because

V has compact support, this reduces to zero and therefore
∫

M
divM V =

∫

M
(divM V > + divM V ⊥) = −

∫

M
(H̄, V ). (2.11)

2.2. Evolution of geometry

Recall that X(·, t) is a one-parameter family of smooth hypersurface as in the

previous section. We say that it is a solution of mean curvature flow if

∂

∂t
X(p, t) = −H(p, t)ν(p, t), p ∈ Mn, t > 0. (2.12)

For the given family X evolving by mean curvature flow, we denote by Φ the function

f evaluated on M , i.e.,

Φ(p, t) = f(X(p, t), t), p ∈ M, t ∈ [0, T ).

Then we have

∂

∂t
Φ = ∇f · ∂F

∂t
+

∂f

∂t
. (2.13)

In order to prove the following, we use the fact that for a non-singular metric gij

with its inverse gij , the determinant g evolves according to

d

dt
g =

d

dt
(det g) = det g Tr

(
g−1 d

dt
g

)
= (det g)gij d

dt
gij . (2.14)

Lemma 2.2.1. (Evolution equations [9]) Under mean curvature flow,

∂

∂t
gij = −2Hhij , (2.15)

∂

∂t

√
g = −H2√g. (2.16)

Proof. Since Xt with time variable t, moves by mean curvature ∂X/∂t = Hν,

we can commute the mixed partial derivatives below to get

∂gij

∂t
=

∂

∂t

(
∂X

∂xi
,
∂X

∂xj

)
=

(
∂

∂xi
(−Hν),

∂X

∂xj

)
+

(
∂X

∂xi
,

∂

∂xj
(−Hν)

)

=−H

(
∂ν

∂xi
,
∂X

∂xj

)
−H

(
∂X

∂xi
,

∂ν

∂xj

)
= −2Hhij .



2.2. EVOLUTION OF GEOMETRY 10

To see the second equation, we use equations (2.14), (2.5) and (2.15). Therefore,

∂

∂t

√
g =

1
2
√

g

∂

∂t
g =

1
2
√

g
ggij ∂

∂t
gij =

1
2
√

ggij(−2Hhij) = −Hgijhij
√

g

= −H2√g

as required.

If dµt is the measure on Mt, then µ =
√

det gij , and the area element of a solution

of mean curvature flow satisfies the evolution equation

∂

∂t
dµt = −| ~H|2dµt (2.17)

for all t ∈ I the interval of times.

Lemma 2.2.2. Let Mt move by mean curvature flow in an open subset U ⊂ Rn+1

there holds

d

dt

∫

Mt

fdµ =
∫

Mt

(
∂f

∂t
−H∇f · ν −H2f

)
dµ (2.18)

for all the time interval I and f ∈ C1
0 .

Proof. Let us see that for a test function f , we have, by definition of mean

curvature flow and by (2.13) and (2.17)

d

dt

∫

Mt

fdµ =
∫

Mt

(
∂f

∂t
+∇f · ∂X

∂t

)
dµ +

∫

Mt

f
∂

∂t
dµ

=
∫

Mt

(
∂f

∂t
−H∇f · ν −H2f

)
dµ.

2.2.1. Monotonicity formula. Let ρ(y, t) be the backward heat kernel for

any t̄ ≥ t1 with t ∈ (t0, t1),

ρ(y, t) =
1

(4π(t̄− t))n/2
exp

(
− |y|2

4(t̄− t)

)
, y ∈ Rn+1, t < t̄.
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Theorem 2.2.1. (Huisken’s theorem from [8]) If a surface Mt satisfies for t < 0

then we have the monotonicity formula

d

dt

∫

Nt

ρ(x, t)dµt = −
∫

Nt

ρ(x, t)
∣∣∣∣ ~H − 1

2t
~X⊥

∣∣∣∣ dµt,

where X⊥ is the normal component of X.

Proof. Let us introduce the vector field V : Rn+1 → Rn+1,

V = y exp
( |y|2

4τ

)

where y = (y1, . . . , yn+1) and τ = t̄ − t. Applying the tangential divergence of V

and considering the below equation

∂Vα

∂yβ
=

(
δαβ −

yαyβ

2τ

)
exp

(
−|y|

2

4τ

)

give that

divM V =
(

n + 1− |y|2
2τ

)
exp

(
−|y|

2

4τ

)
−

(
|ν|2 − (y, ν)2

2τ

)
exp

(
−|y|

2

4τ

)

=
(

n− |y⊥|2
2τ

)
exp

(
−|y|

2

4τ

)
,

where y⊥ denotes the normal component of y. Together with the divergence theorem

(2.11), we get
∫

M

(
n− |yT |2

2τ

)
exp

(
−|y|

2

4τ

)
dµ =

∫

M
H(V · ν)dµ. (2.19)

We start off again by introducing τ = t̄− t and calculate

∂ρ

∂t
=

(
n

2τ
− |y|2

4τ2

)
ρ, ∇ρ = − y

2τ
ρ. (2.20)

From this, we get

∂ρ

∂t
−H∇ρ · ν −H2ρ =

n

2τ
ρ−

∣∣∣ y

2τ
−Hν

∣∣∣
2
ρ + H∇ρ · ν.. (2.21)

From (2.20),

∇ρ = − ρ

2τ
· y exp

(
−|y|

2

4τ

)
/ exp

(
−|y|

2

4τ

)
= − ρ

2τ

V

exp
(
− |y|2

4τ

)
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Observe that V can be expressed by ∇ρ and a space independent variable such that

V = ∇ρ
exp

(
− |y|2

4τ

)

− ρ
2τ

= −(4πτ)n/2

2τ
.

Therefore, applying this with equation (2.19), we have
∫

M
H(∇ρ · ν)dµ = −

∫

M

(
n− |y|2

2τ

)
ρ

2τ
dµ. (2.22)

Putting together with (2.18), (2.21) and (2.22) gives

d

dt

∫

M
ρ(y, t)dµ =

∫

M

(
−

∣∣∣ y

2τ
−Hν

∣∣∣
2
ρ +

|y>|2
4τ2

ρ

)
dµ. (2.23)

Note that
∣∣∣ y

2τ
−Hν

∣∣∣
2

=
∣∣∣∣
(

y⊥

2τ
−Hν

)
+

y>

2τ

∣∣∣∣
2

=
∣∣∣∣
y⊥

2τ
−Hν

∣∣∣∣
2

+
|y>|2
4τ2

. (2.24)

Combining (2.24) with (2.23) and y ≡ X give

d

dt

∫

Mt

ρ(x, t)dµt = −
∫

Mt

ρ(x, t)
∣∣∣∣ ~H − 1

2t
~X⊥

∣∣∣∣ dµt. (2.25)

2.3. Self-similar solutions

A self-similar solution forms the surface that translates or shrinks under homo-

thetically. In this section, self-shrinking doughnut and self-translating grim reaper

solutions are considered. Note that there are other examples such as plane, sphere,

cylinder, Tom Ilmanen’s shrinker of genus 8 [10] and [11], self- shrinking trumpet

ends [12], toruspheres [16] and desingularizing the intersection of grim reapers [17].

We first deduce the equation that holds for any self-similar solution. For conve-

nience, we assume that the surface Xt becomes singular at T = 0. We further

impose the ansatz as the self-similar shrinker

Pt = λ(t) · P0 (2.26)

where P1 is the surface at time t = −1 and λ(t) : R− ∪ {0} → R+ ∪ {0} is the

homothety factor such that λ(−1) = 1 and λ(0) = 0. Suppose X be the embedding
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of M and X̄ = λ · X, then the metric ḡij and second fundamental form h̄ij of the

Xt change accordingly

ḡij = ∂iXt · ∂jXt = λ2gij

h̄ij = −ν · ∂i∂jXt = λhij .

Note that we get

H̄ = ḡij h̄ij =
1
λ2

gij · λhij =
1
λ

H. (2.27)

Now we apply the ansatz Pt = λ(t) · P0 into the mean curvature flow equation

∂

∂t
(λ(t) ·X) =

~H

λ(t)
.

Now working on,

dλ

dt
· λ ·X = ~H, (2.28)

we get the following ordinary difference equation

dλ

λ
· λ = C,

where C is a constant, and the equation is independent of ~H and X since it is

the self-shrinking surface. Thus, solve it, we have λ(t) =
√

C · t. Applying the

conditions λ(−1) = 1 and λ(0) = 0, we have

λ(t) =
√−t. (2.29)

This leads to

λ(t) = −t
1
2 , λ′(t) = −1

2
(−t)−

1
2 , λ(t) · λ′(t) = −1

2
. (2.30)

If we plug (2.29) into (2.28) and use (2.30), we get the the following elliptic para-

metric equation

H +
X · ν

2
= 0. (2.31)
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2.3.1. Liouville’s formula.

Lemma 2.3.1. If α(s) is a parametrization on the surface S. Let φ(s) be the

angle between xu and α′(s). Then

κg =
dφ

ds
− (

√
E)v√
EG

cosφ +
(
√

G)u√
EG

sinφ. (2.32)

This can be written as

κg =
dφ

ds
+ κu cosφ + κv sinφ,

where

κu = −(
√

E)v√
EG

, κv =
(
√

G)u√
EG

.

Thus, κu and κv are the geodesic curvatures of the curves {v = const}, and the

curves {u = const}, respectively.

Proof. If we let w = α′(s) in (1.12) and use (1.11), we have

κg =
1

2
√

EG

(
Gu

dv

ds
− Ev

du

ds

)
+

dφ

ds
. (2.33)

For the orthogonal coordinate, we have dv/ds = 0 and du/ds = 1/
√

E in the case

of v = const and u = u(s). For the each case, we plug these equations into (2.33).

Then we obtain the following equations, respectively.

(κg)1 = − Ev

2E
√

G
,

(κg)2 =
Gu

2G
√

E
.

If we put these equations in (2.33), then

κg = (κg)1
√

E
du

ds
+ (κg)2

√
G

dv

ds
+

dφ

ds
. (2.34)

Since (1.2), we finally have the following

κg = (κg)1 cosφ + (κg)2 +
dφ

ds
.
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2.3.2. Self-shrinking doughnut. By definition a self-similar shrinker (2.26),

one finds that self similar solution satisfies (2.31). Indeed, the solutions to (2.31)

are exactly the immersions X0 : Mn → Rn+1 at which the functional

A(X) =
∫

Mn

e−|X(p)|2/4dσn
X(p

is stationary. The measure dσn
X is called the n-dimensional volume element which

X : M → Rn+1 induces on M . A direct calculation verifies that first variation of

A(X) under a normal variation X(ε, p) = X0(p)+εu(p)νX0(p) for any given C∞(Mn)

is given by

dA(X0 + εuνX0)
dε

∣∣∣∣
ε=0

= −
∫

Mn

e−|X(p)|2/4

{
nHX0(p) +

1
2
(X0(p), νX0)

}
dσn

X(p).

Thus, the solutions to (2.31) are the minimal hypersurfaces in Rn+1 with respect to

the metric ds2 = e−|x|2/4n{(dx0)2 + . . . + (dxn)2}. If we consider hypersurfaces of

revolution, the X0 has the form

X0(s, ω) = x(s)~e0 + r(s)~ω : (a, b)× Sn−1 → Rn+1,

where we rotate an x0 − x1 plane curve x(s), r(s) with r(s) > 0 (s ∈ (a, b)) around

the x0 axis. We note that Sn−1 is the standard unit sphere and ~e0 is the first unit

basis vector (1, 0, · · · , 0) in Rn+1.

To construct a self-similar doughnut in R3, we are required to find the curve

{(x(s), r(s)|s ∈ [a, b])}, a, b ∈ R, is geodesic in the upper half plane r > 0 with

metric ds2 = r2e(−x2+r2)(dx2 + dr2). In fact, the volume element dσn
X is given by

dσn
X = r(s)n−1

√
x′(s)2 + r′(s)2 · ds dωn−1,

where dωn−1 is the volume element on the n− 1 sphere. Thus, we have

A(x0) =
∫ b

a

∫

Sn−1

rn−1(s)
√

x′(s)2 + (r′(s))2 · e−(x2(s)+r2(s))/4dsdωn−1

= vol(Sn−1)
∫ b

a
rn−1(s)

√
x′(s)2 + r′(s)2ds.

The functional A(X) will be stationary at X corresponding to x(s), r(s) if and only

if the curve {(x(s), r(s)) : s ∈ (a, b)} is a geodesic in the upper half plane {r > 0}



2.3. SELF-SIMILAR SOLUTIONS 16

with metric

(ds)2 = r(s)2(n−1)e−(x2+r2)/4((dx)2 + (dr)2).

Then the Liouville’s formula 2.32 induces the following ordinary differential equa-

tions and the curve forms a torus by rotating a simple closed curve around an r-axis.

We denote the angle of the unit tangent vector (dx/ds, dr/ds) by θ and s is the arc-

length parameter. Plugging into the formula, we get

dθ

ds
=

1
2

{
∂

∂r
log(r2(n−1) · e−(x2+r2)) · cos θ − ∂

∂x
log(r2(n−1) · e−(x2+r2)) · sin θ

}

=
1
2

[{
2(n− 1)

r
− 2r

}
cos θ + 2x sin θ

]
.

Since the geodesic must be zero, we have that

ẋ = cos θ,

ṙ = sin θ,

θ̇ =
x

2
sin θ +

(
n− 1

r
− r

2

)
cos θ,

(2.35)

where prime denotes a derivative with respect to the parameter s. To find such a

curve, we are allowed to use a shooting method.

2.3.3. Self-translating solution. Consider a translating solution of mean cur-

vature flow given by that

u(x, t) = αt− log cos(αx)
α

, (2.36)

for time t ∈ I = [0,∞), x ∈ (−π/2, π/2). We see that the solutions move at the

speed α. We refer the reader to [2, 5, 21] for an explanation.

Let us consider that our surface is an entire graph u(·, t) on Rn, and time t ∈ I.

Then we can express the graph of the first n components such that

X(p, t) = (x, u(x), t)) (2.37)
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where x = (x1, x2, . . . , xn) ∈ Rn. Now taking the derivative with respect to time t

of the equation (2.37), we have

∂X

∂t
=

(
∂x
∂t

,∇u · ∂x
∂t

+
∂u

∂t

)
. (2.38)

The unit normal vector field is given by ν = (−∇u, 1)/
√

1 + |∇u|2 and the mean

curvature by

−H = ∇ ·
(

∇u√
1 + |∇u|2

)
. (2.39)

Since Mt is moving by the mean curvature ∂X/∂t = −H(X(p, t))ν, we calculate

−H(X(p, t)) =
∂X

∂t
(p, t) · ν(X(p, t)) =

(
∂x
∂t

,∇u · ∂x
∂t

+
∂u

∂t

)
· ν(X(p, t))

= − 1√
1 + |∇u|2

∂u

∂t
.

Together with (2.39), we obtain the nonlinear and parabolic partial differential equa-

tion

∂u

∂t
=

√
1 + |∇u|2 div

(
∇u√

1 + |∇u|2

)
. (2.40)

2.3.3.1. Curves in R2. Now we want to study the evolution under mean curva-

ture flow of graphs. If we consider the flow of planar curves in dimension n = 1,

we can describe the translating solution with the initial curve and speed 1 as

u(x, t) = u0(x) + t. Consider the equation of mean curvature flow in R2

α =
du

dt
=

√
1 + |u′|2

(
u′√

1 + |u′|2

)′
. (2.41)

where primes above denote derivatives with respect to x. Then we solve the differ-

ential equation with the initial profile u0 when t = 0, as follows

α =

(
1− u

′2
0

1 + u
′2
0

)
u′′0 =

u′′0
1 + u

′2
0

= (arctanu
′
0)
′

This gives the graph of u(x, t) = − log cosx + αt where x ∈ (0, π).
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Chapter 3

Asymptotic analysis

The phase field approach to interface evolution is based on physical models for

problems involving phase transitions. If Ω is a bounded domain, and Γ(t) is a

hypersurface moving through, then one of two phases has the notion of an order

parameter u : Ω × (0, T ) → R, which means the phase of a material by associating

with the phases the minima of a C2 double well bulk energy function W (·) : R→ R.

For convenience, we suppose that minima of W (·) are at ±1 and W (s) = W (−s)

such that

W (s) =
1
4
(s2 − 1)2, s ∈ R.

Consider the gradient energy functional

E(u) =
∫

Ω

(
ε

2
|∇u|2 +

W (s)
ε

)
dx,

where ε is a small parameter. Gradient flow for this functional leads to the Allen–

Cahn equation for singular mean curvature flow

uε
t −4uε +

1
ε2

f(uε) = 0 in Rn × (0, T )

uε = uε
0,

with Neumann boundary conditions. The equation was originally introduced by

Allen and Cahn [1] to describe the motion of anti-phase boundaries. In some contexts

in the literature this equation is also referred as the parabolic Ginzburg-Landau

equations. Here and from now on, we consider Rn, instead of previous Rn+1.
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3.1. The distance function

In this part we again assume that Γ is a smooth interface of Ω. Then the distance

function of Γ ⊂ Rn is defined by

dist(x,Γ) = inf
y∈Γ

|x− y|, x ∈ Rn,

and define the inside and outside of the evolution at time t

It ≡ {x ∈ Rn|u(x, t) > 0}, and Ot ≡ {x ∈ Rn|u(x, t) < 0}.

From this, we write that

(.p, t) =
{

dist(p,Γt) if p ∈ It,
−dist(p,Γt) if p ∈ Ot,

}
,

for p ∈ Rn, 0 ≤ t ≤ t∗. Moreover, geometric properties of the distance function d

imply

4d(p, t) =
n−1∑

i=1

−κi(p, t)
1− d(p, t)κi(p, t)

= −(κ1 . . . κn−1)− d(p, t)h(p, t) + O(d(p, y)2),

(3.1)

where h(p, t) =
∑n−1

i=1 κ2
i (p, t).

Theorem 3.1.1. Let d be the signed distance function as above, then

dt −4d ≥ 0 in I ∩ (Rn × (0, t∗])

dt −4d ≤ 0 in O ∩ (Rn × (0, t∗]).

In other words,

dt −4d = 0 on Γt. (3.2)

If Γ is a smooth evolution via mean curvature, a direct calculation [6] and limiting

behavior of solutions [7] verify dt−4d ≥ 0 and dt−4d ≤ 0 inside and outside of γ.
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3.2. The Allen–Cahn equation

Consider the Allen–Cahn equation

uε
t −4uε +

1
ε2

w(uε) = 0, (3.3)

in Rn × (0, T ) with initial condition uε = uε
0. The potential W is to satisfy

w(s) = W ′(s),

where

w(−1) = w(1) = w(1) = 0, w > 0 on (−1, 0), f < 0 on (0, 1),

w′(−1) > 0, w′(1) > 0 w′(0) < 0,

W (−1) = W (1) = 0 and W > 0 on (−1, 1).

Thus, w forms a double well potential

W (s) =
1
2
(s2 − 1)2, s ∈ R.

The potential W has exactly two minima at ±1 which are both stable. As the

minima of W are stable, the equation forces the solution to get close to ±1 except

on a small intermediate layer of width O(ε). This intermediate layer represents the

sharp free boundary we are going to approximate. Let Γt be a free boundary evolving

and consider its signed distance function d(x,Γt) to be positive in the interior of Γt

and negative outside. Let q(s) = tanh(s), it follows that

q′(s) = sech2(s)

q′′(s) = −2 sech2(s) tanh(s).

Consequently,

q′′(s) = −2q′(s) · q(s) = w(q(s)). (3.4)

We then introduce a new function uε by

uε ≈ q(
d

ε
),
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where q : R→]− 1, 1[ is the profile of the solution around the free boundary which

has to be determined. We compute that

∂tu
ε = q′

(
d

ε

)
· ∂td

ε
,

∇uε = q′
(

d

ε

)
· ∇

ε
,

4uε = q′′
(

d

ε

)
· |∇d|2

ε2
+ q′

(
d

ε

)
· 4d

ε
.

Combining with (3.3) and (3.4),

0 = q′
(

d

ε

)
· ∂td

ε
−

{
q′′

(
d

ε

)
· |∇d|2

ε2
+ q′

(
d

ε

)
· 4d

ε

}
+

1
ε
w(uε)

=
1
ε
{∂td−4d +

1
ε2

{
−2q′

(
d

ε

)
q

(
d

ε

)
(1− |∇d|2)

}

= d−4d +
2d

ε
(|∇d|2 − 1|).

Since the above equation suggests that |∇d| = 1, we get

dε
t −4dε = 0.

For the smooth case, we set

uε
± = q

(
d

ε

)
+ ενε

±

and observe that sub and supersolutions

ε∂tu
ε
± − ε4uε

± +
1
ε
W ′(uε

±) ≤ 0

ε∂tu
ε
± − ε4uε

± +
1
ε
W ′(uε

±) ≥ 0,

respectively. Then the comparison principle gives

uε
− ≤ uε ≤ uε

+.

Since

uε =
{

+1 if d(p, t) > 0,
−1 if d(p, t) < 0,

uε approximates Γt. Finally, (2.12), (3.1) and (3.2) imply that the evolution of Γt

follows mean curvature flow.
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3.3. Discretization of the Allen–Cahn equation

In this section, we describe an unconditionally stable and hybrid numerical

method for the Allen–Cahn equation. Let a computational domain be partitioned

into a uniform mesh with spacial step h. The center of each cell, Ωij , is located at

xij = (xi, yj) = (a + (i− 0.5)h, b + (j − 0.5)h) for i = 1, · · · , Nx and j = 1, · · · , Ny.

Here, Nx and Ny are the numbers of cells in x- and y-directions, respectively. Let

φn
ij be approximations of φ(xi, yj , n∆t), where ∆t = T/Nt is the time step, T is

the final time, and Nt is the total number of time steps. In this paper, we use an

operator splitting method, which is to split the Allen–Cahn equation into a sequence

of simpler problems for governing equations:

φt = ∆φ, (3.5)

φt =
φ− φ3

ε2
. (3.6)

As first step, we solve equation (3.5) by applying the Crank–Nicolson method, that

is,

φ∗ij − φn
ij

∆t
=

1
2
(∆hφ∗ij + ∆hφn

ij). (3.7)

And we use the multigrid method [3, 20] for the numerical solver. The next step is

to solve equation (3.6) analytically. Then, the solution is found by

φn+1
ij =

φ∗ij√
e−

2∆t
ε2 + (φ∗ij)2

(
1− e−

2∆t
ε2

) . (3.8)

The readers can refer to [14] for more details of the unconditionally stable hybrid

scheme.

3.3.1. Self-shrinking doughnut. Figure 3.1 shows the evolution of the shrink-

ing doughnut’s interface in a curvature-driven flow on the computational domain,

Ω = (−4, 4) × (−4, 4) × (−4, 4), with a 128 × 128 × 128 mesh. The computation is

run up to T = 0.6 with ∆t = 0.002.
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(a) t = 0 (b) t = 0.06

Figure 3.1. Shrinking doughnut profile
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Figure 3.2. initial shrinking doughnut and its cross section.

Figures 3.1 and 3.2 show the evolution of mean curvature flow. In figure 3.1, we

verify that the torus is shrinking, and figure 3.2 shows the shape of the cross-section

of shrinking doughnut, and (a) is a simple curve which starts and ends on the x-axis,

and whose tangents on the x-axis are orthogonal to the r-axis. The dot line in (b)

is the evolution of the shrinking doughnut. We define the ratio such as

ρ(0) =
m2

m1
. (3.9)

Then ρ(t) remains constant while the evolution goes on. However, the absence of

the rescaling procedure [8] limits the numerical simulations.
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0 0.5 1 1.5 2 2.5
 4

1.6

1.8

2

2.2

ρ(t)

Figure 3.3. ρ(t) remains constant with respect to time t

3.3.2. Grim reaper. On the computational domain [0, 3π] × [0, π] numerical

test is performed with a spatial step size 512× 1024 and a temporal step size ∆ =

3.52e−4. Figure 3.4 visualizes the graph of analytic and numerical solutions by mean

curvature flow. In this graph, we translate by π/2 to the x-axis for computational

convenience.

0 2 4 6 8

0

1

2

3

u

x

Analytic solutions

Numerical solutions

Figure 3.4. Graph u(x, t) = − log cos(x + π/2) + t by mean curva-
ture flow with speed α = 1.0.
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Chapter 4

Conclusion

We now finished derivations of self-similar solutions and motion by mean cur-

vature as the singular limit of the Allen-Cahn equation. Furthermore, we applied

the phase-field model for simulating the self-similar solutions. In this thesis I theo-

retically and numerically studied mean curvature flow and self-similar solutions. In

theoretical aspect, we showed that the interface motion of the Allen–Cahn equation

is driven by mean curvature flow. In numerical aspect, the results are coincided with

the theoretical meaning. Actually, many self-similar solutions are not known as well

as only indicated by various computations, so that this work benefits us to simulate

the motion by mean curvature flow in the phase-field method.
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[16] Møller, M. (2011) Closed self-shrinking surfaces in R3 via the torus, arxiv.1111.7318v1.
[17] Nguyen, X.H. (2012) Complete Embedded Self-Translating Surfaces Under Mean Curvature

Flow, J Geomet Anal. 1–48.
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