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a b s t r a c t

In this work, we propose a fast and efficient adaptive time step procedure for the
Cahn–Hilliard equation. The temporal evolution of the Cahn–Hilliard equation hasmultiple
time scales. For spinodal decomposition simulation, an initial randomperturbation evolves
on a fast time scale, and later coarsening evolves on a very slow time scale. Therefore, if
a small time step is used to capture the fast dynamics, the computation is quite costly.
On the other hand, if a large time step is used, fast time evolutions may be missed.
Hence, it is essential to use an adaptive time step method to simulate phenomena with
multiple time scales. The proposed time adaptivity algorithm is based on the discrete
maximum norm of the difference between two consecutive time step numerical solutions.
Numerical experiments in one, two, and three dimensions are presented to demonstrate
the performance and effectiveness of the adaptive time-stepping algorithm.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we propose a simple and efficient adaptive time-steppingmethod for the Cahn–Hilliard (CH) equationwith
the homogeneous Neumann boundary condition:

∂φ(x, t)
∂t

= 1µ(x, t), x ∈ Ω, t > 0, (1)

µ(x, t) = F ′(φ(x, t))− ϵ21φ(x, t), (2)
n · ∇φ(x, t) = n · ∇µ(x, t) = 0, x ∈ ∂Ω, (3)

whereΩ ⊂ Rd (d = 1, 2, 3) and n is the unit vector normal to the domain boundary ∂Ω . The quantity φ is the difference
between the mole fractions of a binary mixture (e.g., φ = mα − mβ , where mα and mβ are the mole fractions phases α and
β) [1]. The CH equation can be derived as the H−1-gradient flow of the Ginzburg–Landau energy functional [2],

E(φ) =


Ω


F(φ)+

ϵ2

2
|∇φ|

2

dx, (4)
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where the first term, F(φ) = 0.25(φ2
−1)2, is the homogeneous free energy and the second term, 0.5ϵ2|∇φ|

2, penalizes large
gradients and models capillary effects [3]. The small constant ϵ is the gradient energy coefficient related to the interfacial
energy. The chemical potential µ is defined as the variational derivative of E(φ) with respect to φ, i.e., µ = δE(φ)/δφ =

F ′(φ) − ϵ21φ. Then, using the CH equation and total energy functional, we have the following mass conservation and
decrease of total energy, respectively [1]:

d
dt


Ω

φ(x, t)dx = 0, (5)

d
dt

E(φ) = −


Ω

|∇µ(x, t)|2dx. (6)

The CH equation was proposed as a phenomenological model of phase separation in a binary alloy [4]. A review of
the physical, mathematical, and numerical derivations of the CH equation can be found in [5]. The CH equation has been
applied as a model for various problems: spinodal decomposition [4,6], which is a mechanism for the phase separation of
a mixture of liquids or solids from one thermodynamic phase; microphase separation of diblock copolymers, which is two
or more different polymer chains linked together [7]; image inpainting, which is the process of reconstructing lost parts
of images [8]; volume reconstruction [9]; co-continuous binary polymer microstructures [10]; topology optimization [11];
microstructures with elastic inhomogeneity [12], phase-field modeling for tumor growth simulation [13], and multiphase
fluid flows [14–16].

The temporal evolution of the CH equation involves multiple time scales. For example, in the spinodal decomposition
simulation, an initial randomperturbation evolves on a fast time scale and later coarsening evolves on a very slow time scale.
Therefore, if a uniform small time step is used to capture the fast dynamics, the computation is very costly. On the other
hand, if a uniform large time step is used, fast time evolutions may be overlooked. Hence, it is essential to use an adaptive
time step method to simulate phenomena with multiple time scales.

This paper is organized as follows. We briefly review the related previous adaptive time step methods in Section 2.
In Section 3, we describe the numerical solution algorithm. The one-, two-, and three-dimensional numerical results
demonstrating the performance and effectiveness of the adaptive time-steppingmethods are discussed in Section 4. Finally,
a discussion is presented in Section 5.

2. Related works

The authors in [17] proposed an adaptive time-stepping method using a criterion related to a residual of the discrete
energy law of Eq. (6), specifically, given φn, φn−1, 1tn, 1tn−1, and a parameter θ > 1, chosen to be θ = 1.1, the method
is as follows:

Step 1. Compute φn+1 and obtain

REn+1
:=

E(φn+1)− E(φn)

1tn
+


Ω

∇µn+ 1
2

2 dx. (7)

Step 2. If |REn+1
| > resmax, take1tn = 1tn/θ and go to Step 1.

Step 3. If |REn+1
| < resmin, take1tn+1

= θ1tn.
Here, a trial and error choice of resmax and resminwas used.
An adaptive time-stepping method using the time derivative of the total energy was considered in [18]; that is,

1t = max


1tmin,

1tmax
1 + α|E ′(t)|2


, (8)

where the constant α is chosen in experience to adjust the level of adaptivity. A large value of |E ′(t)| leads to a small time
step, whereas a small |E ′(t)| value yields a large time step.

The following adaptive time-stepping technique was developed in [19]:
Step 1. Calculate e = ∥φn+1

BE −φn+1
α ∥/∥φn+1

α ∥, where φn+1
BE and φn+1

α are the numerical solutions using the backward Euler
method and a second-order generalized-α method with1tn, respectively.

Step 2. If e > tol, then reset the time step size 1tn = ρ
√
tol/e1tn and return to Step 1, where ρ = 0.9 and tol = 10−3

are used. Otherwise, set1tn+1
= ρ

√
tol/e1tn.

To equally distribute the locally computable discretization error, the authors in [20] proposed the following algorithm:
Step 1. The global relative time discretization error estimate is defined by

e =
∥φn+1

− φ̂n+1
∥

1tn max(∥φn+1∥, ∥φ̂n+1∥)
, (9)
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where φn+1 and φ̂n+1 are the numerical solutions obtained by taking two time steps of size1tn/2 and a single time step of
size1tn from φn, respectively.

Step 2. If e < eMAX , then set

1tn+1
= 1tn

 eTOL
e

 1
p
, (10)

where eMAX is a target error tolerance and p is the global convergence rate of the time-stepping algorithm being used. If
e ≥ eMAX , then that time step is rejected and go to Step 1, and recalculated with halving, i.e.,1tn = 1tn/2.

Kuhl and Schmidt [21] suggested an adaptive time-stepping scheme based on the convergence behavior of
Newton–Raphson iterations. If more than six Newton iterations are required to reach the incremental equilibrium state,
then the time step size is divided by two. Otherwise, the time step is increased by 10%.

The majority of previous adaptive time-stepping algorithms are based on the difference between a high- and low-order
numerical solution or a temporal derivative of the total energy functional. Moreover, the algorithms are iterative, which is
costlier. In this paper, we propose a very simple and efficient adaptive time-stepping procedure based on the maximum
norm of the difference between two consecutive numerical solutions.

3. Numerical solution algorithm

In this section, we present the proposed adaptive time-stepping method for the CH equation. We discretize the CH
equations (1) and (2) in one-dimensional space, i.e., Ω = (a, b) for the clear exposition. Let Nx be a positive even integer,
h = (b − a)/Nx be the uniform mesh size, and Ωh = {xi : xi = a + (i − 0.5)h, 1 ≤ i ≤ Nx} be the set of cell-centers. Let
φn
i and µn

i be approximations of φ(xi, tn) and µ(xi, tn), respectively. Here, 1 ≤ n ≤ Nt and Nt is the total number of time
steps. tn = tn−1

+1tn−1 and1tn−1 is the nonuniform time step. We then discretize Eqs. (1) and (2) in time by a nonlinear
splitting algorithm [22]:

φn+1
i − φn

i

1tn
= ∆dµ

n+1
i , (11)

µn+1
i = (φn+1

i )3 − φn
i − ϵ2∆dφ

n+1
i , (12)

where the discrete Laplacian is defined by ∆dψi = (ψi−1 − 2ψi + ψi+1)/h2. The resulting system of discrete equations is
solved by using a multigrid method [23,24]. The nonlinear scheme (11) and (12) is unconditionally energy gradient stable,
which implies arbitrary large time steps are allowed.However, for the sake of accuracy, a very large time step is unacceptable.
To improve the efficiency of the scheme without losing accuracy, we propose an adaptive time-stepping strategy in the
following procedure.

Set the minimum and maximum time step sizes, 1tmin and 1tmax, respectively. Let 1t0 be an initial time step (in this
paper, we set1t0 = 1tmin). Then, for n = 1, 2, . . . , we define the next time step to be

1tn = min

max


tol

∥φn − φn−1∥∞

,1tmin


,1tmax


, (13)

where ∥φ∥∞ = max1≤i≤Nx |φi| and tol is a tolerance, which is important for choosing time steps. Too small a tolwill lead to
time steps close to1tmin, and too large will produce time steps close to1tmax.

As remarked in [17], the choice of resmax and resmin in the scheme using the residual (7) is not a trivial task because
its values depend on the physical and discrete parameters. If resmin is large, then the accuracy of the solutions could be
deteriorated. If resmax is small, then no improvement in the computational cost is obtained. Therefore, depending on
the numerical results, a trial and error choice of resmax and resmin must be made. Most other adaptive time-stepping
algorithms [18–21] choose the maximum and minimum time steps or a tolerance by trial and error. We also choose the
parameters using trial and error. In general, the choice of the minimum andmaximum time steps is case by case depending
on the specific experiment of interest. Typically, the following time steps were used in the numerical simulations of the CH
equation: 1t = 10h2 [25], 1t = h2

∼ 4h2 [26], 1t = 0.5h2 [27], 1t = 25h2/3 [28], and 1t = h2 [29]. Therefore, unless
otherwise specified, we use1tmin = h2 and1tmax = 101tmin ∼ 1001tmin.

4. Numerical results

In this section, we present numerical experiments for the CH equation obtained using the proposed adaptive time-
stepping algorithm to demonstrate the effectiveness of themethod. The phase-fieldφ varies from−0.9 to 0.9 over a length of
approximately 2

√
2ϵ tanh−1(0.9) across the interfacial transition layer. Therefore, if wewant the length to be approximately

hm, then ϵ = ϵm = hm/[2
√
2 tanh−1(0.9)] should be used [30]. Here, m is the number of grid cells. All the algorithms are

implemented using generic C on a Windows 8 platform with Dual 3.20 GHz CPU and 8 GB of RAM.
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Fig. 1. ∥φn
− φn−1

∥∞ versus time tn .

Fig. 2. Numerical solutions at the times as indicated in Fig. 1.

4.1. Temporal evolution with a uniform time step

As a first test, we perform a temporal evolution of the CH equation with a uniform time step. The computational domain
isΩ = (0, 1)with h = 1/256,1t = h2, Nt = 10 000, and ϵ = ϵ15. The initial condition is

φ(x, 0) = 0.1 cos(20πx)+ 0.1 cos(30πx2)+ 0.1 cos(40πx3). (14)

Note that although most initial conditions have been generated using a random perturbation for phase separation
simulations, we use sinusoidal perturbation for the purpose of reproductivity of the tests. In this paper, we use the sameΩ ,
h, ϵ = ϵ15, and initial condition, unless otherwise specified.

Fig. 1 shows ∥φn
−φn−1

∥∞ versus the time tn. Notice several picks in the figure, which imply that there are fast evolutions
such as growth and coalescence. Fig. 2(a) and (b) show the numerical solutions at the times indicated in Fig. 1.

Fig. 3(a) plots ∥φn
−φn−1

∥∞ versus the time tn with three different time steps,1t = 100h2, 10h2, and h2. The results for
1t = 10h2 and h2 are observed be almost similar. However, the result with1t = 100h2 is significantly different. In Fig. 3(b),
numerical results obtained by using three different time steps at t = 10 000h2 are shown. If a large time step1t = 100h2

is used, then we obtain a qualitatively different result, which implies that a sufficiently small time step should be used to
accurately capture the evolution dynamics.

4.2. Temporal evolution with the proposed adaptive time step

In this section, we present the performance of the proposed adaptive time step. Here, we set1tmin = h2,1tmax = 20h2,
and tol = 2 × 10−6. Fig. 4(a) shows ∥φn

− φn−1
∥∞ (solid line) and 501tn (dotted line) versus the time tn and1tn is scaled

for better visualization. Notice that the time step adaptively adjusts its size according to the magnitude of ∥φn
− φn−1

∥∞.
Fig. 4(b) shows the numerical results obtained by using two uniform time steps (1t = 10h2, h2) and the adaptive time step
at t = 10 000h2. The numbers of the time steps are Nt = 1000, 10000, and 851 for 1t = 10h2, h2, and the adaptive time
step, respectively. As can be seen from Fig. 4, the numerical solution using the adaptive time step is closer to the solution
with 1t = h2 than that with 1t = 10h2. Table 1 lists CPU times (in seconds) for 1t = 10h2, 1t = h2, and the adaptive
time step. The extra computational cost for the adaptive time step is marginal.
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Fig. 3. (a) ∥φn
− φn−1

∥∞ versus time tn for three different time steps, 1t = 100h2 , 10h2 , and h2 . A logarithmic scale for the time axis is used for better
visualization. (b) Numerical results obtained by using three different time steps at t = 10 000h2 .

Fig. 4. (a) ∥φn
− φn−1

∥∞ and 501tn versus time tn . Here,1tn is scaled for better visualization. (b) Numerical results obtained by using two uniform time
steps (1t = 10h2 , h2) and the adaptive time step at t = 10 000h2 .

Table 1
CPU times (in seconds) for1t = 10h2 ,1t = h2 , and the adaptive time step1tmin = h2 ,1tmax = 20h2 .

Time step 1t = 10h2 1t = h2 Adaptive time step

CPU time 1.421 10.390 1.265

Table 2
Effect of the parameters: tolerance, 1tmin , and 1tmax on the CPU time (in seconds) and accuracy. The CPU time for the uniform time step (1t = 10h2) is
10.390.

1tmin 1tmax tol CPU time ∥e∥2

h2 1.1h2 2 × 10−6 9.608 0.0033
h2 2h2 2 × 10−6 5.499 0.0330
h2 5h2 2 × 10−6 2.577 0.1288
h2 20h2 2 × 10−6 1.265 0.1634
h2 80h2 2 × 10−6 1.171 0.1732
h2 20h2 1 × 10−6 1.546 0.1051
h2 20h2 3 × 10−6 1.125 0.2116

Next, we consider the effect of the parameters: tolerance, 1tmin, and 1tmax on the CPU time and accuracy. Table 2 lists
the CPU times and errors with a reference solution, which is the numerical result using the uniform time step,1t = h2, at
t = 10 000h2. The CPU time for the uniform time step (1t = 10h2) is 10.390. Here, the error is defined as the difference
between the adaptive time step result and the reference solution, which is obtained with fine uniform time step 1t = h2.

The discrete l2-norm is defined as ∥e∥2 =

Nx
i=1 e

2
i /Nx.
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Fig. 5. (a) Early evolution and (b) later evolution.

Fig. 6. (a) ∥φn
− φn−1

∥∞ and 1501tn versus time tn . (b) Temporal evolution of φ.

As can be observed from Table 2, CPU time decreases as1tmax or tolerance is increased. For a fixed tolerance, the accuracy
increases as we decrease the maximum time step size 1tmax. On the other hand, for a fixed 1tmax, the error decreases as
tolerance decreases.

4.3. Comparison with a previous study

We consider a test example from [28]. The initial condition is

φ(x, 0) = 0.1 sin(2πx)+ 0.01 cos(4πx)+ 0.05 sin(4πx)+ 0.02 cos(10πx)

and the parameters are h = 1/128,1t = 1/1200, and ϵ =
√
0.0005. Fig. 5(a) and (b) show the early and later evolutions,

respectively.
Next, we run the same test with the adaptive time-stepping algorithm. We set 1tmin = 1/1200, 1tmax = 31tmin, and

tol = 10−3. Fig. 6(a) shows ∥φn
− φn−1

∥∞ and 1501tn versus the time tn. Observe that the time step adaptively adjusts
itself according to the magnitude of the consecutive time step solutions. Fig. 6(b) shows some selected profiles of φ at
intermediate times. If we compare this result to the previous test with a uniform time step, it is clear that the main features
of the dynamics can be captured with less time step iterations by using the adaptive time step procedure.

4.4. Comparison test with a previous method

In this section, we perform a comparison testwith the previous adaptive time-steppingmethod [20]. The initial condition
on a computational domainΩ = (0, 1) is

φ(x, 0) = 0.1 cos(20πx)+ 0.1 cos(30πx2)+ 0.1 cos(40πx3). (15)

We take a reference solution with a uniform time step. The parameters used are h = 1/256, 1t = h2, Nt = 10 000, and
ϵ = ϵ15. The CPU time for the uniform time step is 10.390. We set1tmin = h2 and1tmax = 50h2 for both the methods and
change eTOL and tol for the previous method and the proposed method, respectively (see Fig. 7).
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Fig. 7. Solutions obtained from the uniform and adaptive time-stepping methods with various tolerances at t = 10 000h2: (a) iterative method [20] and
(b) proposed method.

Fig. 8. Morphological patterns during spinodal decomposition: (a) t = 100, (b) t = 2000, (c) t = 10 000, (d) t = 30 000.

Table 3 lists the CPU times in seconds: the iterative algorithm [20] (left column) and proposed algorithm (right column).
We can observe that the proposed algorithm is better than the iterative algorithm in terms of CPU time under equivalent
accuracy. Moreover, we can see the error decreases as tol is reduced.

4.5. Spinodal decomposition

The computational domain Ω = (0, 1024) × (0, 1024), h = 1, ϵ4, tol = 1, 1tmin = h2, and 1tmax = 100h2 are used.
The initial condition is φ(x, y, 0) = 0.1rand(x, y), where rand(x, y) is a random number between 1 and −1. Fig. 8 shows
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Table 3
CPU times in seconds: the iterative algorithm [20] (left column) and proposed algorithm (right column).

eTOL Nmax CPU time ∥e∥2 tol Nmax CPU time ∥e∥2

0.1 7996 33.218 0.0016 1 × 10−8 7427 8.625 0.0011
1 2692 13.968 0.4095 1 × 10−7 3493 4.703 0.0123
10 631 3.890 0.0667 5 × 10−7 1516 2.265 0.0668
100 230 1.453 0.4519 3 × 10−6 630 1.015 0.2180

Fig. 9. ∥φn
− φn−1

∥∞ and 0.151tn versus time tn .

Fig. 10. Morphological patterns during spinodal decomposition: (a) t = 116.96, (b) t = 1508.6, (c) t = 5001, (d) t = 25 010.

temporal evolution of morphological patterns during spinodal decomposition and subsequent coarsening. We obtain the
result in Fig. 8(d) with only 3077 time step iterations. Previously, it was obtained with 30000 iterations [29].

Fig. 9 shows ∥φn
− φn−1

∥∞ and 0.151tn versus the time tn. Notice that the time step changes adaptively according to
the maximum norm of the difference between two consecutive numerical solutions.
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Fig. 11. ∥φn
− φn−1

∥∞ and 0.11tn versus time tn .

Finally, we perform a three-dimensional test onΩ = (0, 256)× (0, 256)× (0, 256)with h = 1, ϵ4, tol = 5,1tmin = h2,
and1tmax = 100h2. The initial condition is φ(x, y, 0) = 0.1rand(x, y, z), where rand(x, y, z) is a random number between
1 and −1. Fig. 10 shows temporal evolution of morphological patterns during spinodal decomposition and subsequent
coarsening. We obtain the result in Fig. 10(d) with only 1483 time step iterations. Fig. 11 shows ∥φn

− φn−1
∥∞ and 0.11tn

versus the time tn. We can observe that the time step changes adaptively according to the maximum norm of the difference
between two consecutive numerical solutions.

5. Conclusions

In this paper, we proposed a fast and simple adaptive time step algorithm for the CH equation, which has multiple time
scales for temporal evolution. To capture multiple time scale dynamics, we proposed an adaptive time step technique. Since
the proposed time adaptivity is based on the discrete maximum norm of the difference between two consecutive time
step numerical solutions, the algorithm is very simple. If the norm is large or small, then small or large time steps are
used, respectively. Furthermore, after a small modification of the pre-existing codes for the CH equation, the new adaptive
algorithm can easily be implemented. The one-, two-, and three-dimensional numerical experiments demonstrated the
effectiveness of the adaptive time-stepping algorithm.
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[8] A. Bertozzi, S. Esedoḡlu, A. Gillette, Inpainting of binary images using the Cahn–Hilliard equation, IEEE Trans. Image Process. 16 (2007) 285–291.
[9] Y. Li, J. Shin, Y. Choi, J. Kim, Three-dimensional volume reconstruction from slice data using phase-field models, Comput. Vis. Image Underst. 137

(2015) 115–124.
[10] D. Carolan, H.M. Chong, A. Ivankovic, A.J. Kinloch, A.C. Taylor, Co-continuous polymer systems: A numerical investigation, Comput. Mater. Sci. 98

(2015) 24–33.
[11] S. Zhou,M.Wang,Multimaterial structural topology optimizationwith a generalized Cahn–Hilliardmodel ofmultiphase transition, Struct.Multidiscip.

Optim. 33 (2007) 89–111.
[12] M.A. Zaeem, H.E. Kadiri, M.F. Horstemeyer, M. Khafizov, Z. Utegulov, Effects of internal stresses and intermediate phases on the coarsening of coherent

precipitates: A phase-field study, Curr. Appl. Phys. 12 (2012) 570–580.
[13] S.M. Wise, J.S. Lowengrub, H.B. Frieboes, V. Cristini, Three-dimensional multispecies nonlinear tumor growth-I: model and numerical method,

J. Theoret. Biol. 253 (2008) 524–543.

http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref1
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref2
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref3
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref4
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref5
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref6
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref7
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref8
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref9
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref10
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref11
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref12
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref13


1864 Y. Li et al. / Computers and Mathematics with Applications 73 (2017) 1855–1864

[14] H. Heida, On the derivation of thermodynamically consistent boundary conditions for the Cahn–Hilliard–Navier–Stokes system, Internat. J. Engrg. Sci.
62 (2013) 126–156.

[15] Y. Li, J,-I. Choi, J. Kim, Multi-component Cahn–Hilliard system with different boundary conditions in complex domains, J. Comput. Phys. 323 (2016)
1–16.

[16] Y. Li, J,-I. Choi, J. Kim, A phase-field fluid modeling and computation with interfacial profile correction term, Commun. Nonlinear Sci. Numer. Simul.
30 (2016) 84–100.

[17] F. Guillén-González, G. Tierra, Second order schemes and time-step adaptivity for Allen–Cahn and Cahn–Hilliard models, Comput. Math. Appl. 68
(2014) 821–846.

[18] Z. Zhang, Z. Qiao, An adaptive time-stepping strategy for the Cahn–Hilliard equation, Commun. Comput. Phys. 11 (2012) 1261–1278.
[19] H. Gomez, V.M. Calo, Y. Bazilevs, T.J.R. Hughes, Isogeometric analysis of the Cahn–Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg.

197 (2008) 4333–4352.
[20] R.H. Stogner, G.F. Carey, B.T.Murray, Approximation of Cahn–Hilliard diffuse interfacemodels using parallel adaptivemesh refinement and coarsening

with C1 elements, Internat. J. Numer. Methods Engrg. 76 (2008) 636–661.
[21] E. Kuhl, D.W. Schmidt, Computational modeling of mineral unmixing and growth, Comput. Mech. 39 (2007) 439–451.
[22] D.J. Eyre, Unconditionally gradient stable time marching the Cahn–Hilliard equation, in: Computational and Mathematical Models of Microstructural

Evolution (San Francisco, CA, 1998), Mater. Res. Soc. Sympos. Proc. Warrendale, PA, vol. 529, 1998, pp. 39–46.
[23] U. Trottenberg, A. Schüller, C. Oosterlee, Multigrid, Academic Press, New York, 2000.
[24] J.S. Kim, A numericalmethod for the Cahn–Hilliard equation with a variable mobility, Commun. Nonlinear Sci. Numer. Simul. 12 (2007) 1560–1571.
[25] H. Song, Energy stable and large time-stepping methods for the Cahn–Hilliard equation, Int. J. Comput. Math. 92 (2015) 2091–2108.
[26] G. Sheng, T. Wang, Q. Du, K.G.Wang, Z.K. Liu, L.Q. Chen, Coarsening kinetics of a two phasemixture with highly disparate diffusionmobility, Commun.

Comput. Phys. 8 (2010) 249–264.
[27] L. He, Y. Liu, A class of stable spectral methods for the Cahn–Hilliard equation, J. Comput. Phys. 228 (2009) 5101–5110.
[28] D. Furihata, A stable and conservative finite difference scheme for the Cahn–Hilliard equation, Numer. Math. 87 (2001) 675–699.
[29] J.Z. Zhu, L.Q. Chen, J. Shen, V. Tikare, Coarsening kinetics from a variable-mobility Cahn–Hilliard equation: Application of a semi-implicit Fourier

spectral method, Phys. Rev. E 60 (1999) 3564–3572.
[30] J.S. Kim, Phase-field models for multi-component fluid flows, Commun. Comput. Phys. 12 (2012) 613–661.

http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref14
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref15
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref16
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref17
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref18
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref19
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref20
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref21
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref23
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref24
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref25
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref26
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref27
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref28
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref29
http://refhub.elsevier.com/S0898-1221(17)30100-1/sbref30

	Computationally efficient adaptive time step method for the Cahn--Hilliard equation
	Introduction
	Related works
	Numerical solution algorithm
	Numerical results
	Temporal evolution with a uniform time step
	Temporal evolution with the proposed adaptive time step
	Comparison with a previous study
	Comparison test with a previous method
	Spinodal decomposition

	Conclusions
	Acknowledgments
	References


