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a b s t r a c t

We consider an unconditionally gradient stable scheme for solving the Allen–Cahn
equation representing a model for anti-phase domain coarsening in a binary mixture. The
continuous problem has a decreasing total energy. We show the same property for the
corresponding discrete problem by using eigenvalues of the Hessian matrix of the energy
functional. We also show the pointwise boundedness of the numerical solution for the
Allen–Cahn equation. We describe various numerical experiments we performed to study
properties of the Allen–Cahn equation.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The Allen–Cahn (AC) equation [1] was originally introduced as a phenomenological model for anti-phase domain
coarsening in a binary alloy. It has been applied to awide range of problems such as phase transitions [2], image analysis [3,4],
themotion bymean curvature flows [5], and crystal growth [6]. An efficient and accurate numerical solution of this equation
is needed to understand its dynamics. We consider an unconditionally gradient stable algorithm for the AC equation:

∂c(x, t)
∂t

= −M(F ′(c(x, t))− ε21c(x, t)), x ∈ Ω, 0 < t ≤ T , (1)

whereΩ ⊂ Rd (d = 1, 2, 3) is a domain. The quantity c(x, t) is defined to be the difference between the concentrations of
the two mixtures’ components. The coefficientM is a constant mobility. We takeM ≡ 1 for convenience. The function F(c)
is the Helmholtz free-energy density for c . It has a double well form, i.e., F(c) = 0.25(c2− 1)2 as in Ref. [7]. Fig. 1 shows the
function F(c).
The small constant ε is the gradient energy coefficient related to the interfacial energy. The boundary condition is

∂c
∂n
= 0 on ∂Ω, (2)

where ∂
∂n denotes the normal derivative on ∂Ω . The physical meaning of the condition is that the total free energy of the

mixture decreases in time. The AC equation arises from the Ginzburg–Landau free energy,

E(c) :=
∫
Ω

(
F(c)+

ε2

2
|∇c|2

)
dx. (3)
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Fig. 1. A double well potential, F(c) = 0.25(c2 − 1)2 .

The AC equation is the L2-gradient flow of the total free energy E(c). We differentiate the energy E(c) to get
d
dt

E(c) =
∫
Ω

(F ′(c)ct + ε2∇c · ∇ct)dx

=

∫
Ω

(F ′(c)− ε21c)ctdx = −
∫
Ω

(ct)2dx ≤ 0, (4)

where we have used an integration by parts and the boundary condition (2). Therefore, the total energy is non-increasing
in time; that is, the total energy is a Lyapunov functional for solutions of the AC equation. Numerical simulations of the AC
equation, using explicit methods, impose severe time-step restrictions requiring the use of implicit type methods [8–10].
Ideally, we would like to use a stable integration algorithm allowing accuracy requirements rather than stability limitations
to determine the integration step size. We use an unconditionally gradient stable scheme to solve the resulting discrete
equations accurately and efficiently.
Eyre introduced a concept, ‘‘an unconditionally gradient stable scheme’’ in Refs. [8,9]. In Eyre’s papers [8,9], he provided

the idea and the theory of a scheme, but a little vaguely. We, here, clarify the proof of the scheme.We emphasize that, while
themethods allow us to take arbitrarily large time steps, the accuracy of the numerical solution depends on choosing a small
enough time step to resolve the dynamics [9].
This paper is organized as follows: In Section 2, we briefly review a derivation of the AC equation, based on gradient

dynamics, with a physically motivated functional. In Section 3, we describe the unconditionally gradient stable discrete
scheme and its properties such as the total energy decrease and the boundedness of the numerical solution. We present the
numerical results in Section 4. In Section 5, we conclude. Appendix follows with details.

2. The Allen–Cahn equation

In this section, we review a derivation of the AC equation as a gradient flow [11,12]. It is natural to seek a law of evolution
in the form

∂c
∂t
= −gradE(c). (5)

The symbol ‘‘grad’’ here denotes the gradient on the manifold in L2(Ω) space. Let the domain of definition for the functional
E beD = {c ∈ H2(Ω)| ∂c

∂n = 0 on ∂Ω}. Let c, v ∈ D . Then, we have

(gradE(c), v)L2 =
d
dθ

E(c + θv)
∣∣∣∣
θ=0
= lim

θ→0

1
θ
(E(c + θv)− E(c))

=

∫
Ω

(
F ′(c)− ε21c

)
vdx = (F ′(c)− ε21c, v)L2 ,

where we have used an integration by parts and the boundary condition (2). We identify gradE(c) ≡ F ′(c) − ε21c , then
Eq. (5) becomes the AC equation [12].

3. Numerical analysis

In this section, we present an unconditionally gradient stable scheme for time discretization of the AC equation. In
addition, we prove a discrete version of the total free energy dissipation for any time step size, which immediately implies
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the stability of the numerical solution. For simplicity of exposition, we shall discretize the AC equation in one-dimensional
space, i.e.,Ω = (a, b). Two and three-dimensional discretizations are defined analogously.
Let N be a positive even integer, h = (b− a)/N be the uniformmesh size, andΩh = {xi = (i− 0.5)h, 1 ≤ i ≤ N} be the

set of cell-centers. Let cni be approximations of c(xi, n1t), where 1t = T/Nt is the time step, T is the final time, Nt is the
total number of time steps, and cn = (cn1 , c

n
2 , . . . , c

n
N). We first implement the zero Neumann boundary condition, Eq. (2),

by requiring that for each n,

∇hcn1
2
= ∇hcnN+ 12

= 0, (6)

where the discrete differentiation operator is ∇hcni+ 12
= (cni+1 − c

n
i )/h. We then define a discrete Laplacian by 1hci =

(∇hci+ 12 −∇hci− 12 )/h and a discrete l2 inner product by

〈c, d〉h = h
N∑
i=1

cidi.

We also define the discrete norms as ‖c‖2h = 〈c, c〉h and ‖c‖∞ = max1≤i≤N |ci|. For dissipative dynamics such as the AC
equation, a discrete time stepping algorithm is defined to be unconditionally gradient stable if the discrete total free energy
is nonincreasing for any size of a time step1t .
Eyre’s theorem [9] shows that an unconditionally gradient stable algorithm results for the AC equation if we can split the

free energy appropriately into contractive and expansive parts,

E(c) =
∫ b

a

[
F(c)+

ε2

2
c2x

]
dx

=

∫ b

a

[
c4 + 1
4
+
ε2

2
c2x

]
dx−

∫ b

a

c2

2
dx = Ec(c)− Ee(c) (7)

and then treat the contractive part Ec(c) implicitly and the expansive part −Ee(c) explicitly. We use the nonlinearly
stabilized splitting scheme [9] that involves a semi-implicit time and centered difference space discretizations of Eq. (1):

cn+1i − cni
1t

= −(cn+1i )3 + cni + ε
21hcn+1i for i = 1, . . . ,N. (8)

The boundary condition is c0 = c1 and cN+1 = cN . This splitting is similar to the one employed in Ref. [13] for the time-
depdendent Ginzberg–Landau (TDGL) equation, which treats the TDGL equation as a heat equation with a nonlinear source
term resulting in an adaptive mesh refinement scheme which is second-order in space and time.

3.1. The unconditionally gradient stable scheme

Themain purpose of this section is to show that the scheme in Eq. (8) inherits characteristic properties such as a decrease
in the total energy corresponding to Eq. (4). To show the decrease in the discrete total energy, first, we define a discrete
Lyapunov functional,

Eh(cn) =
h
4

N∑
i=1

((cni )
2
− 1)2 +

ε2h
2

N∑
i=0

|∇hcni+ 12
|
2 (9)

for each n. It is convenient to decompose Eh(cn) into three parts:

E (1)(cn) = −
h
2

N∑
i=1

(cni )
2,

E (2)(cn) =
ε2h
2

N∑
i=0

∣∣∣∇hcni+ 12
∣∣∣2 ,

E (3)(cn) =
h
4

N∑
i=1

(
(cni )

4
+ 1

)
.

We define a decomposition of Eh(cn) as Ehc (c
n) = E (2)(cn)+E (3)(cn) and Ehe (c

n) = −E (1)(cn), i.e., Eh(cn) = Ehc (c
n)−Ehe (c

n).
We define gradh the variational derivative with respect cni , i.e.,

gradhE
h(cn)i =

δEh(cn)
δcni

= (cni )
3
− cni − ε

21hcni . (10)
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We can rewrite the numerical scheme in Eq. (8) in terms of a gradient of the discrete total energy, i.e.,

cn+1i − cni
1t

= −gradhE
h
c (c

n+1)i + gradhE
h
e (c

n)i, for i = 1, . . . ,N. (11)

The Hessian of E (i)(c), denoted by H(i), is the Jacobian of the gradhE (i)(c) and is thus given for i = 1, 2, 3 by{
H(1),H(2),H(3)

}
=
{
JgradhE

(1)(c), JgradhE
(2)(c), JgradhE

(3)(c)
}

=


−


1 0
1

. . .

1
0 1

 , ε
2

h2


1 −1 0
−1 2 −1

. . .
. . .

. . .

−1 2 −1
0 −1 1

 , 3

c21 0

c22
. . .

c2N−1
0 c2N




,

where we have used the boundary condition in Eq. (6). The eigenvalues of H(1), H(2), and H(3) are

λ
(1)
k = −1, λ

(2)
k =

4ε2

h2
sin2

(k− 1)π
2N

, λ
(3)
k = 3c

2
k where k = 1, 2, . . . ,N. (12)

Note that λ(1)k is negative and that λ
(2)
k and λ

(3)
k are non-negative. Let vk for k = 1, . . . ,N be the orthonormal eigenvector

of H(2) corresponding to the eigenvalue λ(2)k and let vk,l = cos((k − 1)π(2l − 1)/(2N)) for l = 1, . . . ,N denote the lth
component of vk. We can take the orthonormal eigenvector of H(1) corresponding to the eigenvalue λ

(1)
k , the same as vk. Let

λe1, λ
e
2, . . . , λ

e
N be eigenvalues of J(gradhE

h
e ) = −H

(1); i.e.,

λek = −λ
(1)
k = 1, k = 1, 2, . . . ,N. (13)

We can expand cn+1 − cn in a basis of eigenvectors vk as follows.

cn+1 − cn =
N∑
k=1

αkvk. (14)

The decrease of the discrete energy functional is established in the following theorem: If cn+1 is the solution of Eq. (8)
with a given cn, then

Eh(cn+1) ≤ Eh(cn). (15)

Next, we prove Eq. (15). With an exact Taylor expansion of Eh(cn) about cn+1 up to the second order, we have

Eh(cn) = Eh(cn+1)+ 〈gradhE
h(cn+1), cn − cn+1〉h +

〈
J(gradhEh)(ξ)

2
(cn − cn+1), cn − cn+1

〉
h
,

where ξ = θcn + (1 − θ)cn+1 and 0 ≤ θ ≤ 1. Rearranging the terms and using Eh = E (1) + E (2) + E (3), Eq. (11), Eq. (14),
and the mean value theorem, we have

Eh(cn+1)− Eh(cn) =
〈
gradhE

h(cn+1)−
J(gradhEh)(ξ)

2
(cn+1 − cn), cn+1 − cn

〉
h

≤

〈
gradhE

h(cn+1)−
1
2
(H(1) + H(2))(cn+1 − cn), cn+1 − cn

〉
h

=
〈
gradhE

h(cn+1), cn+1 − cn
〉
h −

N∑
j,k=1

〈
1
2
(H(1) + H(2))αjvj, αkvk

〉
h

=

〈
gradhE

h
c (c
n+1)− gradhE

h
e(c
n+1)−

1
1t
(cn+1 − cn)− gradhE

h
c (c
n+1)

+ gradhE
h
e(c
n), cn+1 − cn

〉
h
−

N∑
j,k=1

〈
1
2
(λ
(1)
j + λ

(2)
j )αjvj, αkvk

〉
h

= −
〈
gradhE

h
e(c
n+1)− gradhE

h
e(c
n), cn+1 − cn

〉
h −

1
1t
‖cn+1 − cn‖2h

−

N∑
j,k=1

〈
1
2
(λ
(1)
j + λ

(2)
j )αjvj, αkvk

〉
h
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Fig. 2. Graph of hF(c).

= −

N∑
j,k=1

〈[
J(gradhE

h
e )+

1
2
(λ
(1)
j + λ

(2)
j )I

]
αjvj, αkvk

〉
h
−
1
1t
‖cn+1 − cn‖2h

= −

N∑
k=1

1
2

(
λek + λ

(2)
k

)
α2k −

1
1t
‖cn+1 − cn‖2h ≤ 0,

where we have used the fact that λek is positive and λ
(2)
k is non-negative. Therefore, we have proven the decrease of the

discrete total energy. This completes the proof. The theoremholds for any time step1t; hence, themethod is unconditionally
gradient stable. It should be emphasized thatwhile themethodswill allowus to take arbitrarily large time steps, the accuracy
of the numerical solution depends on choosing a small enough time step to resolve the fast-time-scale dynamics.

3.2. Boundedness of the numerical solution

Next, we show that the decrease of the discrete total energy functional implies the pointwise boundedness of the
numerical solution for the AC equation. If cn is a numerical solution for the discrete Eq. (8), then there exists a constant
K , independent of n, such that

‖cn‖∞ ≤ K . (16)

We prove Eq. (16) by a contradiction. Assume on the contrary that there is an integer nK , dependent on K , such that
‖cnK ‖∞ > K for all K . Then there is an index i (1 ≤ i ≤ N) such that |cnKi | > K . Let K be the largest solution of

hF(K) = Eh(c0), i.e., K =
√
1+ 2

√
Eh(c0)/h. Note that K ≥ 1. Then, F(c) is a strictly increasing function on (K ,∞)

(see Fig. 2). Since the total energy is non-increasing, we have Eh(c0) = hF(K) < hF(|cnKi |) ≤ Eh(cnK ) ≤ Eh(c0). This
contradiction implies that Eq. (16) should be satisfied.

4. Numerical experiments

In this section, we perform the following: finding relation between ε value and the width of transition layer, comparing
the numerical equilibrium solution with the analytic equilibrium solution, investigating properties of AC equation, and
checking the total energy decrease. We also implement the unconditionally gradient stable scheme in Eq. (8) with the
recently developed adaptive mesh refinement (AMR) methodology. For detailed descriptions of the numerical method used
in solving these equationswith AMR,we refer to Refs. [14,15] and the references therein. A uniformmesh solution algorithm
using a nonlinear multigrid is described in Appendix.

4.1. The relation between the ε value and the width of the transition layer

In our first numerical experiment, we consider the relation between the ε value and the width of the transition layer for
the AC equation. From our choice of the total energy density Eq. (7) and an equilibrium profile c(x) = tanh(x/(

√
2ε)) on

the infinite domain, the concentration field varies from−0.9 to 0.9 over a distance of about 2
√
2ε tanh−1(0.9). Therefore, if

we want this value to be aboutm grid points, then

εm =
hm

2
√
2 tanh−1(0.9)

. (17)
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Fig. 3. The evolution of an initial random distribution of concentration, c(x, 0) = 0.01rand(x). The concentration profile is shown at t = 0, 6, and 10.

Fig. 4. (a) Lines with circles and stars denote the analytic and numerical equilibrium solutions with an initial concentration c(x, 0) = 0.8 tanh(x/(
√
2ε8)),

respectively. (b) Numerical equilibrium solutions with an initial concentration c(x, 0) = 0.8 tanh(x/(
√
2ε8)) onΩ = (−0.5, 0.5). Lines with the symbols,

‘�’, ‘◦’, ‘+’, and ‘?’, are numerical results with 64, 128, 256, and 512 mesh sizes with ε4 , respectively.

To confirm this, we ran a simulation with the initial condition c(x, 0) = 0.01rand(x) on the unit domain Ω = (0, 1) with
h = 1/128,1t = 0.05, and ε4 (see the line with stars in Fig. 3). Here, rand(x) is a random number between −1 and 1. In
Fig. 3, we see that the transition layer (from c = −0.9 to c = 0.9) is about 4 grid points at time t = 10.

4.2. An equilibrium profile

Next, we compare numerical equilibrium solutions with analytic ones. We stop the numerical computations when the
discrete l2-norm of the difference between (n+ 1)th and nth time step solutions becomes less than 10−10, ‖cn+1 − cn‖h ≤
10−10 and we take cn+1 as a numerical equilibrium solution. The initial concentration is c(x, 0) = 0.8 tanh(x/(

√
2ε8))

on Ω = (−0.5, 0.5). We take h = 1/128, ε8, and 1t = 0.1. In Fig. 4(a), the solid, ‘∗’, and ‘◦’ denoted lines are the
initial condition, the numerical equilibrium solution, and the analytic equilibrium solution, respectively. The numerical
equilibrium profile matches well with the analytic equilibrium solution c∞eq (x) = tanh(x/(

√
2ε8)) onΩ = (−∞,∞).

In Fig. 4(b), numerical equilibrium solutions with an initial concentration c(x, 0) = 0.8 tanh(x/(
√
2ε4)) on Ω =

(−0.5, 0.5)with variousmesh sizes are shown. Lines with the symbols, ‘�’, ‘◦’, ‘+’, and ‘?’, denote the numerical results with
64, 128, 256, and 512 mesh sizes with ε4, respectively. In this case, ε24/h

2 is constant in Eq. (8); therefore, we have the same
discrete equations and have almost the same values with different mesh sizes with respect to grid points from the origin.

4.3. The exact solution

The partial differential equation (1) in one dimensional space may be written as

ct = −c3 + c + ε21c. (18)
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Fig. 5. The evolution of the constant value of c(x, t)with different time steps up to the final time, T = 3.02257.

Fig. 6. Numerical traveling wave solutions with an initial profile, c(x, 0) = 1
2 (1 − tanh

x
2
√
2ε
). The final time is T = 1/s. The analytic solution is a solid

line. Lines with symbols, ‘◦’, ‘�’, and ‘·’ represent mesh sizes of 64, 128, and 256, respectively.

If we take the initial condition as a constant, i.e., c(x, 0) = c0, then, the exact solution of Eq. (18) is

c(x, t) =
c0et√

1+ c20 (e2t − 1)
. (19)

If c0 = 0.1, then in order to find a t that satisfies c(x, t) = 0.9, we solve the Eq. (19) and get an approximate value,
t ∼ 3.02257. The initial state is taken to be c(x, 0) = 0.1 on the computational domainΩ = (0, 1) with h = 1/32 and ε4.
We set the final time T = 3.02257 and time step1t = T/100. Fig. 5 shows an evolution of the constant concentration c(x, t)
with different time steps (1t = 0.0604, 1t/4, 1t/16) up to the final time. We can see the convergence of the numerical
solutions with respect to the time steps.

4.4. Traveling wave solutions

We seek traveling wave solutions of Eq. (1) as a following form,

c(x, t) =
1
2

(
1− tanh

x− st

2
√
2ε

)
, (20)

where s is the speed of the traveling wave. By substituting Eq. (20) into Eq. (1), we arrive at the following equation.
√
2s− 3ε
8ε

sech2
(
x− αt

2
√
2ε

)
= 0. (21)

Therefore, the speed of the traveling wave is s = 3ε/
√
2. In Fig. 6, the numerical traveling wave solutions (where symbols

‘◦’, ‘�’, and ‘·’ represent mesh sizes of 64, 128, and 256, respectively) with an initial profile, c(x, 0) = 1
2 (1− tanh

x
2
√
2ε
) and

on a computational domain,Ω = (−0.5, 1.5). The final time is T = 1/s and the fixed time step is1t = T/400. The analytic
final profile is c(x, 1/s) = 1

2 (1− tanh
x−1
2
√
2ε
). The convergence of the results with grid refinement is qualitatively evident.

To obtain a quantitative estimate of the rate of convergence, we perform a number of simulations for the same initial
problem on a set of increasingly finer grids and time steps. The numerical solutions are computed on the uniform grids and
time steps, h = 2/2n and1t = 5h2, for n = 6, 7, and 8. The errors and rates of convergence are given in Table 1. The results
suggest that the scheme is indeed second order accurate in space and first order in time.
In Fig. 7, we shownumerical travelingwave solutionswith an initial profile, c(x, 0) = 1 if x < 0.2; c(x, 0) = 0, otherwise.

Solid, circle, diamond, and star lines are an initial profile, ε4, 2ε4, and 4ε4, respectively. The results match well with the
theoretical prediction of the speed, which depends linearly on the ε value.
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Table 1
Convergence results.

Case 64 Rate 128 Rate 256

l2 1.0709e−2 1.9938 2.6887e−3 2.0140 6.6570e−4

Fig. 7. Numerical traveling wave solutions with an initial profile (solid line), c(x, 0) = 1 if x < 0.2; c(x, 0) = 0, otherwise. The circle, diamond, and star
delineated lines represent numerical solutions with ε4 , 2ε4 , and 4ε4 , respectively. The computational mesh is 512,1t = 0.1, and the final time is T = 40.

Fig. 8. The evolution of the initial concentration is shown; c(x, 0) = 1 if x < 0.2 and c(x, 0) = −1 if x > 0.8; c(x, 0) = 0.001, otherwise with ε4 , 2ε4 , and
4ε4 . The computational mesh is 512,1t = 1/40, and the final time is T = 10.

Fig. 8 shows evolution of the initial concentration, c(x, 0) = 1 if x < 0.2, c(x, 0) = −1 if x > 0.8; c(x, 0) = 0.001,
otherwise with ε4, 2ε4, and 4ε4. The computational mesh is 512,1t = 1/40, and the final time is T = 10. The two transition
layers at around x = 0.2 and x = 0.8 travels like traveling wave solution. On the other hand, in the middle in the domain
behaves like a constant solution, Eq. (19). And this constant solution does not depend on ε values.

4.5. Metastable states

In Fig. 9(a) and (b) show the evolutions of the concentration c(x, t) with 12 points and 13 points negative one with ε7,
respectively. The computational mesh is 128 and 1t = 1/128. In Fig. 9(c), the open circles denote εm and the number of
points that have constant equilibrium solutions; while the stars indicate parameters that have non-constant equilibrium
solutions.

4.6. Linear stability analysis

We perform a linear stability analysis around a spatially constant critical composition solution c ≡ 0. Linearizing the
partial differential equation (8) about c ≡ 0 gives

ct = c + ε21c. (22)
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Fig. 9. (a) and (b) are the evolutions of the concentration c(x, t)with 12 points and 13 points negative one with ε7 , respectively. (c) The stars denote the
pairs of εm and the number of negative one points that have constant equilibrium solutions as shown in (a), while the open circles indicate parameters that
have non-constant equilibrium solutions as shown in (b).

Fig. 10. Numerical and exact λ values for different wave numbers k (k = 0, 1, . . . , 10) and ε = 0.04. The insets illustrate time evolutions of the initial
profiles.

Next, we let c = α(t) cos(kπx). Then from Eq. (22) we have

α′(t) cos(kπx) = α(t) cos(kπx)− (εkπ)2α(t) cos(kπx). (23)
By dividing Eq. (23) by cos(kπx), we obtain

α′(t) = [1− (εkπ)2]α(t). (24)
The solution of the ordinary differential equation (24) is given by

α(t) = α(0)eλt , (25)
where λ = 1− (εkπ)2. The numerical growth rate is defined by

λ̃ =
1
T
log

 max1≤i≤N
|cNti |

α(0)

 . (26)

The initial state is taken to be c(x, 0) = 0.01 cos(kπx) on the computational domain,Ω = (0, 1). We use parameters such
as the final time T = 0.1, time step1t = 0.01, α(0) = 0.01, ε = 0.04, and N = 256. In Fig. 10, numerical λ̃ (‘◦’) and exact
λ (solid line) values for different wave numbers k (k = 0, 1, . . . , 10) are shown and are in good agreement.

4.7. The decrease of the total energy

In order to demonstrate that the numerical scheme is unconditionally gradient stable, we consider the evolution of
the discrete total energy. The initial state is taken to be c(x, y, 0) = 0.01rand(x, y) on the computational domain Ω =
(0, 1) × (0, 1) with 128 × 128. rand(x, y) is a random number between −1 and 1. We use the simulation parameters ε4
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Fig. 11. The time dependent non-dimensional discrete total energy Eh(cn)/Eh(c0) of the numerical solutions with the initial data, c(x, y, 0) =
0.01rand(x, y).

and1t = 10/128. In Fig. 11, the time evolution of the non-dimensional discrete total energy Eh(cn)/Eh(c0) is shown. Also,
the inscribed small figures are the concentration fields at the indicated times. The total discrete energy is non-increasing as
predicted by Eq. (15).

4.8. Mean curvature flow

After rescaling the time variable, Eq. (1) becomes

ct = −
c(c2 − 1)

ε2
+1c. (27)

It was first formally proved that, as ε → 0, the zero level set of c , denoted by Γ ε
t := {x ∈ Ω; c(x, t) = 0} approaches to a

surface Γt that evolves according to the geometric law

V = −κ = −
(
1
R1
+
1
R2

)
, (28)

where V is the normal velocity of the surface Γt at each point, κ is its mean curvature, and R1, R2 are the principal radii of
curvatures at the point of the surface [1]. In two dimensions, with a single radius of curvature, Eq. (28) becomes V = −1/R.
An initial condition is given with a circle centered at the center of a domain Ω = (0, 1) × (0, 1). If we set the initial

radius of the circle to r0 and denote the radius at time t as r(t), then Eq. (28) becomes dr(t)/dt = −1/r(t). Its solution is
given as

r(t) =
√
r20 − 2t. (29)

Let r0 = 0.25. Then, the initial condition is

c(x, y, 0) = tanh
0.25−

√
(x− 0.5)2 + (y− 0.5)2
√
2ε

. (30)

In Fig. 12, (a), (b), and (c) are evolutions of the initial concentration c(x, y, 0), Eq. (30). The times are shown below each
figure. (d) Illustrates the zero level contour lines of (a), (b), and (c). We observe that the circle shrinks as theoretically
predicted.
In Fig. 13, we show that as the mesh size decreases from h = 1/64 (‘◦’) to h = 1/128 (‘�’) and h = 1/256 (‘·’), the plot of

numerical radius of the circle r(t) in time becomes closer and closer to the asymptotic value (solid line) given by Eq. (29).
We note that as mesh sizes decrease the actual value of ε4 decreases also. This result confirms the theory that as ε → 0 then
Γ ε
t → Γt .

4.9. Adaptive mesh refinement

Across the spatial interfaces, the solution undergoes an O(1) change over an O(ε) interval. If these interfaces are to be
accurately resolved, a fine discretization of space is required. Therefore, an adaptive mesh refinement (AMR) of the space
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Fig. 12. (a), (b), and (c) show evolutions of the initial concentration c(x, y, 0), Eq. (30). The times are shown below each figure. (d) Illustrates the zero level
contour lines of (a), (b), and (c).

Fig. 13. Mesh refinement with ε4 .

is necessary. In this approach, the computational mesh is locally refined in regions where greater accuracy is desired. We
use Marsha Berger’s and Phillip Colella’s block-structured approach; where refinement is organized in logically rectangular
regions of the domain [16–20]. We also implement the unconditionally gradient stable scheme in Eq. (8) with the recently
developed adaptivemesh refinementmethodology. For a detailed description of the numericalmethod used in solving these
equations with AMR, please refer to Refs. [14,15].
In this simulation we consider the evolution of an initial state is taken to be c(x, y, 0) = 0.01rand(x, y) on the

computational domainΩ = (0, 1)×(0, 1). We use a base 64×64meshwith two levels of refinement ratios of 2. Therefore,
the effective fine mesh size is 256× 256. We use the simulation parameters such as ε4 based on the effective fine mesh and
1t = 0.1. Fig. 14 shows the evolution of the concentration c(x, y, t) at times t = 100 and 300. At t = 300, the mesh adapts
around the zero level set.



1802 J.-W. Choi et al. / Physica A 388 (2009) 1791–1803

(a) t = 100. (b) t = 300.

Fig. 14. The evolution of the mesh and concentration c(x, y, t) = 0 under anti-phase domain coarsening. The times are shown below each figure. The
effective fine grid resolution for 2 levels of adaptivity is 256× 256.

5. Conclusions

In this paper, we reviewed a derivation of the AC equation as a gradient flow and showed that a numerical scheme for
the AC equation is unconditionally gradient stable by using eigenvalues of the Hessian matrix of the energy functional. We
also showed that the decrease of the discrete total energy functional implies the pointwise boundedness of the numerical
solution for the AC equation. We investigated a variety of phenomena associated with the AC equation. We have uncovered
a traveling wave solution to the AC equation and found that its speed depends linearly on the interfacial energy parameter,
i.e., s = 3ε/

√
2.
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Appendix. Numerical solution — A nonlinear multigrid method

In this section, we use a nonlinear Full Approximation Storage (FAS) multigrid method to solve the nonlinear discrete
Eq. (8) at the implicit time level. The nonlinearity is treated using one step of Newton’s iteration. A pointwise Gauss–Seidel
relaxation scheme is used as the smoother in the multigrid method. See the reference text [21] for additional details and
background. The algorithm of the nonlinear multigrid method for solving the discrete AC system is : First, we rewrite Eq. (8)
as follows.

N(cn+1) = φn, (A.1)

where N(cn+1) = cn+1/1t + (cn+1)3 − ε21hcn+1 and the source term is φn = cn/1t + cn.
In the following description of one FAS cycle, we assume a sequence of gridsΩk (Ωk−1 is coarser thanΩk by a factor of

2). Given the number β of pre- and post-smoothing relaxation sweeps, an iteration step for the nonlinear multigrid method
using the V-cycle is formally written [21]:
FAS multigrid cycle

cm+1k = FAScycle(k, cmk ,Nk, φ
n
k , β).

That is, cmk and c
m+1
k are the approximation of cn+1(xi, yj) before and after an FAScycle. Now, define the FAScycle.

Step (1) Presmoothing

c̄mk = SMOOTH
β(cmk ,Nk, φ

n
k ),
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which means performing β smoothing steps with the initial approximation cmk , source term φ
n
k , and SMOOTH relaxation

operator to get the approximation c̄mk . Here, we derive the smoothing operator in two dimensions. Since (c
n+1
ij )3 in Eq. (A.1)

is nonlinear with respect to cn+1ij , we linearize (c
m
ij )
3 at cmij , i.e.,

(cn+1ij )3 ≈ (cmij )
3
+ 3(cmij )

2(cn+1ij − c
m
ij ).

After substituting this expression into (A.1), we obtain(
1
1t
+
4ε2

h2
+ 3(cmij )

2
)
cn+1ij = φ

n
ij + ε

2 c
n+1
i+1,j + c

n+1
i−1,j + c

n+1
i,j+1 + c

n+1
i,j−1

h2
+ 2(cmij )

3. (A.2)

Next, we replace cn+1αβ in Eq. (A.2) with c̄
m
αβ if (α ≤ i) or (α = i and β ≤ j); otherwise, with c

m
αβ , i.e.,(

1
1t
+
4ε2

h2
+ 3(cmij )

2
)
c̄mij = φ

n
ij + ε

2 c
m
i+1,j + c̄

m
i−1,j + c

m
i,j+1 + c̄

m
i,j−1

h2
+ 2(cmij )

3. (A.3)

Step (2) Coarse grid correction

• Compute the defect: d̄mk = φ
n
k − Nk(c̄

m
k ).

• Restrict the defect and c̄mk : d̄
m
k−1 = I

k−1
k (d̄mk ), c̄

m
k−1 = I

k−1
k (c̄mk ).

• Compute the right-hand side: φnk−1 = d̄
m
k−1 + Nk−1(c̄

m
k−1).

• Compute an approximate solution ĉmk−1 of the coarse grid equation onΩk−1, i.e.

Nk−1(cmk−1) = φ
n
k−1. (A.4)

If k = 1, we apply the smoothing procedure in Step (1) to obtain the approximate solution. If k > 1, we solve (A.4) by
performing a FAS k-grid cycle using c̄mk−1 as an initial approximation:

ĉmk−1 = FAScycle(k− 1, c̄
m
k−1,Nk−1, φ

n
k−1, β).

• Compute the coarse grid correction (CGC): v̂mk−1 = ĉ
m
k−1 − c̄

m
k−1.

• Interpolate the correction: v̂mk = I
k
k−1v̂

m
k−1.

• Compute the corrected approximation onΩk: c
m, after CGC
k = c̄mk + v̂

m
k .

Step (3) Postsmoothing: cm+1k = SMOOTHβ(cm, after CGCk ,Nk, φnk ).
This completes the description of a nonlinear FAScycle.
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