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Abstract. We present an algorithm for uniformly distributed circular porous pat-
tern generation on surface for three-dimensional (3D) printing using a phase-field

model. The algorithm is based on the narrow band domain method for the nonlocal

Cahn–Hilliard (CH) equation on surfaces. Surfaces are embedded in 3D grid and the
narrow band domain is defined as the neighborhood of surface. It allows one can

perform numerical computation using the standard discrete Laplacian in 3D instead

of the discrete surface Laplacian. For complex surfaces, we reconstruct them from
point cloud data and represent them as the zero-level set of their discrete signed

distance functions. Using the proposed algorithm, we can generate uniformly dis-
tributed circular porous patterns on surfaces in 3D and print the resulting 3D models.

Furthermore, we provide the test of accuracy and energy stability of the proposed

method.

AMS subject classifications: 65D18, 68U05
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1. Introduction

Three-dimensional (3D) surface models have been studied with great interest in

various fields. For this reason, design, synthesis, deformation, and transformation on

surface mesh for 3D fabrication have been studied [7, 27, 30]. Typically, 3D printing

technology is used in medical fields. Because making 3D models should be not only
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economic but also hygiene in medical field applications, additional remeshing meth-

ods are required. Likewise, additive manufacturing techniques such as representation

and optimization are also important for printing actual 3D models [3, 14, 28, 33]. In

particular, 3D surface with porous pattern is a representative example of complex struc-

tures [16]. Having porosity has many advantages in various fields: biomaterial, tissue

engineering, and clinical medicine, etc. However, a large amount of data is required

to represent such complex shapes, which requires more computational time. For this

reason, it is important to remesh the surface of 3D model. There are various strategies

to remesh surfaces. The authors in [40] used an electrospinning and 3D printing tech-

nology to fabricate a 3D composite structure. The authors in [26] showed a durable

superhydrophobic porous surface can be used to separate two fluids, oil and water,

using a 3D printing. Jakus et al. [17] introduced a procedure using extending 3D print-

ing technology and traditional salt-leaching to make 3D print materials and structures

with high porosity. These methods used 3D printing technology, however, only cre-

ated basic surfaces or structures, and it was difficult to apply it on complex surfaces.

Another widely used example of creating porous surface is the Voronoi diagram. Pel-

lerin et al. [29] and Valette et al. [36] used a remeshing method based on the Voronoi

diagrams with the finite element method. Chaidee et al. [6] generated spherical La-

guerre Voronoi diagrams for approximating spherical polygonal tessellations. In [2],

the authors presented a surface modification method to make 3D models which are

shaped with Voronoi and fractal diagram surface. In medical manufacturing field, to

make a comfortable and aesthetically orthopedic casts for patients without sacrificing

any of its functionality, a funnel-shaped cast model was proposed in [25] and it can cre-

ate smooth edges to prevent bruises from movements of injured limbs. Furthermore,

different structures of orthopedic casts such as non-uniform Voronoi, regular cell, mesh

edges pattern were designed on the surface by different technical methods. In [13],

the authors proposed a low-cost 3D scanning and used computer-aided design (CAD)

software to generate different structures of orthopedic casts as shown in Fig. 1.

Figure 1: Different structures by using Autodesk Meshmixer free software. Reprinted from Fernandez-
Vicente et al. [13] with permission from Rapid Prototyping Journal.
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The authors in [34] developed a mapping algorithm to generate Voronoi-based com-

posite structures.

Meanwhile, 3D printing using classical Voronoi type tessellation has a limitation

on the generation of uniform distribution of porosity and shape of holes on a surface.

For example, surfaces with small curvature have large holes because they have a small

number of the vertex points, hence it may cause durability problem in 3D printing

models. To address this problem, Wang et al. [37] presented two intrinsic techniques

for calculating centroidal Voronoi tessellation (CVT) on triangle meshes. The authors

adopted the Lloyd and the L-BFGS frameworks with the discrete exponential map to

calculate the Riemannian center and the center of mass for any geodesic Voronoi dia-

gram. These methods imply the independence of working spaces and are suitable for

arbitrary topology and geometry, hence they overcome shortcomings of the extrinsic

approaches. Furthermore, Zhang et al. [41] proposed the blue-noise sampling under

capacity constraints. Compared to the conventional method using Poisson disk sam-

pling with blue-noise properties [11], this method allows more precise capacity limita-

tion by applying restricted power tessellation on surfaces; hence quadratic errors with

respect to the capacities are much smaller. Recently, Schumacher et al. [31] proposed

the example-based method for stencil patterns which are evaluated by energy mini-

mizing optimization problems. This method has merit of being structurally sound and

quick to create patterns, moreover, patterns can be customized as designers want to.

Unlike the methods described above, however, it is possible to fabricate surfaces

with uniformly distributed circular porous pattern regardless of curvature restriction

using the partial differential equations. As one of the major prior studies, Turk [35]

presented a method generating textures using reaction-diffusion to fit the geometry of

arbitrary polyhedral surfaces. The paper contained mesh construction and rendering

process for 3D objects. Because the method is directly applied to the surface mesh

itself, it has an advantage that the shape of patterns does not change significantly

depending on geometry of surfaces. In a related study, Jeong and Kim [18] inves-

tigated various patterns on surfaces using the nonlocal Cahn–Hilliard (CH) equation

for diblock copolymers in the field of materials science. The authors used the simple

closest point method with the pseudo-Neumann boundary condition and the narrow

band domain to simulate patterns on curved surfaces. In phase-field models, the CH

equation has been widely investigated. The CH equation was developed for modeling

the spinodal decomposition and coarsening dynamics in binary alloys [5], which is

a H−1 gradient flow from the Ginzburg–Landau free energy functional. It has been

investigated numerically [10, 23] and also has been applied in various fields such as

image segmentation [24], image inpainting [4,8], multiphase flows [15], formation of

quantum dots [38]. Furthermore, many researchers have studied the CH type equa-

tions [20, 39, 42] for pattern formation by using coarsening dynamics. The main pur-

pose of this paper is to use the nonlocal CH equation to generate uniformly distributed

circular porous pattern on simple and complex surfaces for 3D printing. We perform

the test of accuracy and energy stability of the method. Furthermore, various numerical

simulations and real 3D printed objects are presented in this paper.
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The paper is organized in the following manner. In Section 2 we describe the gov-

erning equation and its computational method. We provide the computational results

in Section 3. In Section 4 conclusions are given.

2. Governing equation and numerical solution algorithm

To generate uniformly distributed circular pattern on surface S, we use the follow-

ing temporal evolution equation [18]:

∂φ(x, t)

∂t
= ∆

[

F ′(φ(x, t)) − ǫ2∆φ(x, t)
]

− α
(

φ(x, t)− φ̄
)

, x ∈ Ωδ, t > 0, (2.1)

where

Ωδ =
{

y|x ∈ S,y = x+ θn(x) for |θ| < δ
}

is the narrow band domain embedding S and n(x) is a unit normal vector. F (φ) =
0.25(φ2−1)2, ǫ and α are positive constants, φ̄ is the average concentration, and φ(x, t)
is the order parameter. Eq. (2.1) was originally developed for modeling microphase

separation kinetics of block copolymer melts. It has the following total energy func-

tional:

E(φ) =
∫

Ω

(

F (φ) +
ǫ2

2
|∇φ|2

)

dx+
α

2

∫

Ω

|∇ψ|2dx, (2.2)

where ψ satisfies −∆ψ = φ− φ̄ [9]. Fig. 2 shows S, Ωδ, and ∂Ωδ.

(a) (b)

Figure 2: (a) Uniformly distributed circular pattern on a surface S. (b) Narrow band domain Ωδ embedding
a surface S. Here, 2δ is thickness and ∂Ωδ is boundary of Ωδ .

Next we briefly review the computational solution algorithm for the nonlocal CH

equation on Ωδ [18]. We discretize Eq. (2.1) in Ω = (a, b)× (c, d)× (e, f) that includes

Ωδ. Let

h =
(b− a)

(Nx − 1)
=

(d− c)

(Ny − 1)
=

(f − e)

(Nz − 1)
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be the uniform mesh size, whereNx,Ny, andNz are positive integers. Then the discrete

domain is defined as

Ωh = {xijk = (xi, yj , zk) : xi = a+ (i− 1)h, yj = c+ (j − 1)h, zk = e+ (k − 1)h

for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz} .

Let φnijk and µnijk be approximations of φ(xi, yj, zk, n∆t) and µ(xi, yj , zk, n∆t), respec-

tively. We define

Ωh
δ = {xijk : |ψijk| < δ|∇hψijk|}

as the discrete narrow band domain with δ = 1.1
√
3h (see Fig. 3(a)), where

∇hψijk =
1

2h
(ψi+1,jk − ψi−1,jk, ψi,j+1,k − ψi,j−1,k, ψij,k+1 − ψij,k−1).

Let ∂Ωh
δ = {(xi, yj, zk) : Iijk|∇hIijk| 6= 0} be the discrete domain boundary points (see

Fig. 3(a)). Here, Iijk = 0 if (xi, yj , zk) ∈ Ωh
δ , and Iijk = 1 otherwise. We use the

unconditionally stable discretization of the nonlocal CH system:

φn+1
ijk − φnijk

∆t
= ∆hµ

n+1
ijk − α

(

φn+1
ijk − φ̄

)

, (2.3)

µn+1

ijk =
(

φn+1

ijk

)3

− φnijk − ǫ2∆hφ
n+1

ijk , (2.4)

where

∆hφijk =
1

h2
(φi+1,jk + φi−1,jk + φi,j+1,k + φi,j−1,k + φij,k+1 + φij,k−1 − 6φijk).

The boundary condition on ∂Ωh
δ is given as

φn+1
ijk = φn+1(cp(xijk)), µn+1

ijk = µn+1(cp(xijk)).

Therefore, since the boundary condition is used, we can employ the standard Laplace

operator to solve Eqs. (2.3) and (2.4) instead of the Laplace-Beltrami operator [22].

Let xijk ∈ ∂Ωh
δ . Then

cp(xijk) = xijk −
∇hψijk

|∇hψijk|2
ψijk

is the closest point to the surface S. In general, cp(xijk) /∈ ∂Ωh
δ . Therefore, we calculate

φn(cp(xijk)) by using trilinear interpolation (see Fig. 3(a)). We solve Eqs. (2.3) and

(2.4) numerically using the Jacobi iteration method [18].

Fig. 3(b) is a schematic illustration in 2D slice: how to make narrow volume with

uniformly distributed circular porous pattern as a post processing. The solid line indi-

cates the zero-level set and dotted lines are ∂Ωδ. The • indicates the point in Ωh
δ and

◦ is the point in ∂Ωh
δ . The point indicated by △ is the rest of points in the discrete do-

main. At ◦ and △ positions, we set φ = 1. Finally, to get the 3D model with uniformly

distributed circular porous pattern we make an isosurface of φ at a constant level.
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(a) (b)

Figure 3: (a) Schematic illustration of the discrete narrow band domain Ωh
δ . Reprinted from Jeong and

Kim [18] with permission from EDP Sciences. (b) Schematic illustration of making narrow volume in the
2D discrete domain. Ωh

δ (indicated by •) is the discrete narrow band and ∂Ωh
δ (indicated by ◦) is its ghost

points. Shaded regions in Ωh
δ are set φ = −1 and the rest of the domain (indicated by △), points in ∂Ωh

δ

and points excluded from shaded regions in Ωh
δ are set to φ = 1.

3. Numerical experiments

In this section, we perform the test of accuracy and energy stability of our method,

present numerical experiments on curved surfaces, and print the resulting 3D mod-

els. The interfacial length parameter ǫm is defined by ǫ = mh/[2
√
2 tanh−1(0.9)] ≈

0.24015mh. This means that we have an mh transition layer width approximately when

α = 0 [21]. Moreover, we determine the stopping time T when the following consecu-

tive error ec is less than a given tolerance level tol = 10−3,

ec = ‖φn+1 − φn‖2,

where ‖ · ‖2 is the discrete l2-norm. We first perform the numerical investigation on

basic closed surfaces such as sphere and torus. Furthermore, we present more complex

surfaces such as Stanford Bunny, Armadillo, etc.

3.1. Accuracy test

Because the proposed method has first-order accuracy in time, we investigate the

spatial accuracy of the method in this section. To measure the spatial accuracy, we take

the numerical solution in a finer mesh as the reference solution. The domain is defined

as

ψ(x, y, z) =
√

(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 − 0.3, (3.1)

where (x, y, z) ∈ Ω = [0, 1]3. An initial condition is given as follows:

φ(x, y, z, 0) = −0.3 + 0.5 cos(2πx) cos(2πy) cos(2πz).
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We fix the following parameters for all grids: ∆t = 10−6, α = 1000, and ǫ = 0.03. We

use Nx = Ny = Nz = M for M = 33, 65, 129, 257, hence h = 1/32, 1/64, 1/128, 1/256.

Because δ = 1.1
√
3h depends on the value of h, we restrict the points of a coarse grid to

the points only in narrow band of the finer grid when we compute the error. Let ΩR be

the set of the restricted points {xijk} of coarse grid such that xijk ∈ Ω
h/2
δ . We measure

the spatial accuracy at certain time n∗∆t using ‖eh,n∗‖2 defined as follows:

∥

∥eh,n
∗
∥

∥

2
=

√

√

√

√

1

|ΩR|
∑

xijk∈ΩR

(

eh,n
∗

ijk

)2

,

where eh,n
∗

ijk is an error between coarse and fine grids, i.e.

eh,n
∗

ijk =
∣

∣

∣
φh,n

∗

ijk − φ
h/2,n∗

ijk

∣

∣

∣
, xijk ∈ ΩR.

Table 1 shows the second-order convergence rate of the spatial accuracy. We define the

rate of convergence as log2(‖eh,n
∗‖2/‖eh/2,n

∗‖2).

Table 1: Spatial accuracy of our method. All the values are evaluated at t = 30∆t.

(h, h/2) (1/32, 1/64) Rate (1/64, 1/128) Rate (1/128, 1/256)

‖eh,n∗‖2 0.0247 1.9475 0.0064 2.0907 0.0015

3.2. Basic surfaces

We consider a spherical surface and the signed distance function to the spherical

surface is defined as Eq. (3.1). We set the initial phase condition φ(x, y, z, 0) = −0.3 +
0.5 rand(x, y, z) on the surface of a sphere. The parameters Nx = Ny = Nz = 131,

h = 1/(Nx − 1), ∆t = 100h, α = 1400, T = 329∆t, and ǫ = ǫ4 are used. Figs. 4(a),

4(b), and 4(c) are snapshots of φ at t = 5∆t, 15∆t, and T , whereas Figs. 4(d), 4(e),

and 4(f) are isosurfaces of the final result at φ = 0.3, φ = 0, and φ = −0.3, respectively,

and Figs. 4(g), 4(h), and 4(i) are 3D printed models constructed from isosurfaces with

φ = 0.3, φ = 0, and φ = −0.3, respectively.

Furthermore, we perform the numerical investigation to see the effect of parameter

α on the size and number of porous holes. In this test, we use Nx = Ny = Nz = 181,

h = 1/180 and the other parameters are the same as above. In particular, we choose

α = 800, 1400, and 2200. As shown in Fig. 5, the value of α affects the size and the

number of circular patterns, indeed.

Our next example is the surface of a torus. The signed distance function to the torus

surface is defined as

ψ(x, y, z) =

[

(

√

(x− 0.5)2 + (y − 0.5)2 − 0.3
)2

+ (z − 0.5)2
]1/2

− 0.15.
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The parameter values are the same as those of the spherical surface, except for T =
358∆t. Figs. 6(a), 6(b) and 6(c) show the phase separation on the surface of torus

with initial condition φ(x, y, z, 0) = −0.3 + 0.5 rand(x, y, z) at t = 5∆t, 15∆t, and T
on Ω = [0, 1]3. Figs. 6(d), 6(e) and 6(f) show isosurfaces of the phase-field function of

Fig. 6(c) at φ = 0.3, φ = 0 and φ = −0.3, respectively, and Figs. 6(g), 6(h) and 6(i) are

3D printed models constructed from isosurfaces of Fig. 6(c) with φ = 0.3, φ = 0, and

φ = −0.3, respectively.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: (a),(b), and (c) are snapshots of φ at t = 5∆t, 15∆t, and 329∆t with an initial condition
φ(x, y, z, 0) = −0.3 + 0.5 rand(x, y, z). (d),(e), and (f) are isosurfaces at φ = 0.3, φ = 0, and φ = −0.3,
respectively. (g),(h), and (i) are 3D printed models constructed from isosurfaces with φ = 0.3, φ = 0, and
φ = −0.3, respectively.
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(a) 583∆t (b) 323∆t (c) 263∆t

(d) (e) (f)

Figure 5: (a),(b), and (c) are snapshots of φ on sphere with α = 800, 1400, and 2200, respectively. The
elapsed time is written under each figure. (d),(e), and (f) are isosurfaces corresponding to (a),(b), and (c),
respectively.

3.3. Energy stability

In this section, we verify that our proposed method is the energy stabilized scheme

by showing the energy decrease with large time step sizes. We consider the discretiza-

tion of Eq. (2.2) as follows:

Eh(φn) =
∑

xijk∈Ω
h
δ

[

F
(

φnijk
)

+
ǫ2

2

∣

∣∇hφ
n
ijk

∣

∣

2
+
α

2

∣

∣∇hψ
n
ijk

∣

∣

2

]

h3, (3.2)

where ψn is obtained by solving −∆hψ
n = φn − φ̄ in the narrow band domain. Note

that we set ψ̄ = 0 because the Poisson equation has the unique solution up to constant.

Fig. 7 shows the normalized discrete energy over iterations until Nt = 100 with

various time step sizes: ∆t = 0.1h, 10h, and 1000h. This test is conducted on sphere

defined by Eq. (3.1). We use the same parameters listed above, Nx = Ny = Nz = 131,

h = 1/130, α = 1400, and ǫ = ǫ4. As shown in Fig. 7, the discrete total energy is

non-increasing over time and with large time step sizes, which implies the method is

energy stable.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: (a),(b), and (c) are snapshots of φ at t = 5∆t, 15∆t, and 358∆t with an initial condition
φ(x, y, z, 0) = −0.3 + 0.5 rand(x, y, z). (d),(e), and (f) are isosurfaces of (c) at φ = 0.3, φ = 0, and
φ = −0.3, respectively. (g),(h), and (i) are 3D printed models constructed from isosurfaces of (c) with
φ = 0.3, φ = 0, and φ = −0.3, respectively.

0 10 100

0.8

0.85

0.9

0.95

1

Figure 7: Normalized discrete energy dissipation over iterations until Nt = 100. Note that the horizontal
axis is on log-scale.
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3.4. Complex surfaces

We present further examples for complex surfaces with uniformly distributed circu-

lar porous patterns. Assume we have a point cloud with sufficiently dense points on

a complex surface. Otherwise, we add more points. If we have triangular patches, then

we can add more points by using the following procedure [19]: First, we start with

a triangular patch. If the longest edge of the triangle is larger than a given tolerance,

then we divide the triangle by adding the mid point. We recursively repeat this proce-

dure until the maximum length is less than the given tolerance. Fig. 8 shows schematic

illustrations of adding points.

(a) (b) (c)

Figure 8: Schematic illustrations of adding points: (a) initial triangular patch, (b) after 1 iteration, and (c)
after 2 iterations.

We use the Stanford Bunny [1] as an example for the complex surface. Figs. 9(a)

and 9(b) show the original coarse point cloud and the augmented dense point cloud

after applying the algorithm.

(a) (b)

Figure 9: (a) Initial point cloud. (b) Augmented point cloud.

To make a discrete signed distance function, we use an image segmentation tech-

nique using the following equation [19]:

∂ψ(x, t)

∂t
= g(x)

[

−F
′(ψ(x, t))

ǫ2
+∆ψ(x, t) + λF (ψ(x, t))

]

, (3.3)

where λ is a parameter and g(x) is an edge stopping function defined as the minimum

Euclidean distance from point data to local mesh grid x. More details can be found
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in [19]. Once we get the discrete signed distance function, then the procedure is the

same as before.

Figs. 10(a), 10(b), and 10(c) show the phase separation on the Stanford Bunny at

t = 25∆t, t = 50∆t, and t = T , respectively. Here, Nx = 131, Ny = 129, Nz = 105,

h = 1/130, ∆t = 100h, α = 2200, T = 239∆t, and ǫ = ǫ4 are used. Figs. 10(d), 10(e),

and 10(f) show constructed isosurfaces of Fig. 10(c) to make 3D printed models, at

φ = 0.3, φ = 0, and φ = −0.3, respectively. Figs. 10(g), 10(h), and 10(i) are snapshots

of 3D printed models for Figs. 10(d), 10(e), and 10(f), respectively.

Another example of complex surface is the Stanford Armadillo from the Stanford

3D repository. Figs. 11(a), 11(b), and 11(c) show the phase separation on the Stanford

Armadillo at t = 10∆t, t = 50∆t, and t = T , respectively. Here, we use Nx = 130,

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10: (a),(b), and (c) are snapshots of phase separation on the Stanford Bunny at t = 25∆t, t = 50∆t,
and t = 239∆t, respectively. (d),(e), and (f) are isosurfaces of (c) at φ = 0.3, φ = 0, and φ = −0.3,
respectively. (g),(h), and (i) are snapshots of 3D printed models constructed from isosurfaces of (c) at
φ = 0.3, φ = 0, and φ = −0.3, respectively.
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Ny = 151, Nz = 119, h = 1/150, ∆t = 100h, α = 1800, T = 234∆t, and ǫ = ǫ4.
Figs. 11(d), 11(e), and 11(f) show constructed isosurfaces of Fig. 11(c) to make 3D

printed models, at φ = 0.3, φ = 0, and φ = −0.3, respectively. Figs. 11(g), 11(h),

and 11(i) are snapshots of 3D printed models constructed from isosurfaces for each

Figs. 11(d), 11(e), and 11(f), respectively.

Fig. 12 shows several results on other complex surfaces. Note that this method

is fast because it solves the partial differential equations directly on the embedded

narrow band mesh; hence one can perform the conventional computations in 3D, not

on surface. We measure an elapsed time that is taken to obtain a solution using our

proposed method at the determined mesh size for each model. The results are listed in

Table 2. In this examination, h depends on the maximum size of each mesh, however

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11: (a),(b), and (c) are snapshots of phase separation on the Stanford Armadillo at t = 10∆t, t =
50∆t, and t = 234∆t, respectively. (d),(e), and (f) are isosurfaces at φ = 0.3, φ = 0, and φ = −0.3,
respectively. (g),(h), and (i) are snapshots of 3D printed models constructed from isosurfaces at φ =
0.3, φ = 0, and φ = −0.3, respectively.
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Table 2: Elapsed time to find a solution for each model using the proposed method.

Model Mesh Size (X×Y×Z) Elapsed Time (sec)

Bunny 131× 129× 105 532.1

Armadillo 130× 151× 119 952.7

Turtle 151× 97× 68 639.5

Owl 86× 79× 151 712.9

Zebra 48× 151× 117 527.1

∆t is set to 100h and the final time T is set to 500∆t. Elapsed times are all truncated

from the second decimal place.

In addition, we present a post-processing to control the size of circular patterns

on surfaces. For simplicity, we consider scaling using a linear function f . Fig. 13

shows 2D schematic illustrations of controlling the size of circular patterns with the

linear function. The post-process was applied to the Stanford bunny described above.

Figs. 14(a) and 14(b) show isosurfaces at φ = 0 by adding and subtracting the linear

function for z-direction, respectively. Figs. 14(c) and 14(d) show 3D printed models

corresponding to Figs. 14(a) and 14(b), respectively.

(a) (b) (c)

Figure 12: Each isosurface at φ = 0 of (a) turtle, (b) owl, and (c) zebra, respectively.
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Figure 13: (a) Circular patterns before scaling process. (b) Circular patterns after scaling process to
y−direction. (c) Level curve cut from the center of circular patterns with respect to y−direction. φ+ f is
the level curve after scaling process by adding the linear function f to the phase field φ. Note that every
circular pattern is the contour line at φ = 0.
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(a) (b)

(c) (d)

Figure 14: (a) Isosurface at φ = 0 by adding the linear function for z−direction. (b) Isosurface at φ = 0 by
subtracting the linear function for z−direction. (c) 3D printed model with respect to (a). (d) 3D printed
model with respect to (b).

4. Conclusions

In this article, we presented an algorithm for uniformly distributed circular porous

pattern generation on surface in 3D printing using the nonlocal CH equation on the

narrow band domain. If a surface is not represented by a level set of analytic function,

then we reconstruct the surface from point cloud data and represent it as the zero-level

set of discrete signed distance function. Using the proposed algorithm, we can gener-

ate uniformly distributed circular porous patterns on surface in 3D. We have verified

our method has second-order accuracy in space and is the energy stabilized scheme.

The computational results confirm that the proposed method is useful in designing

3D models of uniformly distributed circular porous surfaces for 3D printing applica-

tions. In future work, we will develop a numerical scheme which is of second-order in

time [12,32] for the nonlocal CH equation in the narrow band domain.
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