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SUMMARY

In this article, we propose a simple area-preserving correction scheme for two-phase immiscible incompress-
ible flows with an immersed boundary method (IBM). The IBM was originally developed to model blood
flow in the heart and has been widely applied to biofluid dynamics problems with complex geometries and
immersed elastic membranes. The main idea of the IBM is to use a regular Eulerian computational grid for
the fluid mechanics along with a Lagrangian representation of the immersed boundary. Using the discrete
Dirac delta function and the indicator function, we can include the surface tension force, variable viscosity
and mass density, and gravitational force effects. The principal advantage of the IBM for two-phase fluid
flows is its inherent accuracy due in part to its ability to use a large number of interfacial marker points on
the interface. However, because the interface between two fluids is moved in a discrete manner, this can
result in a lack of volume conservation. The idea of an area preserving correction scheme is to correct the
interface location normally to the interface so that the area remains constant. Various numerical experiments
are presented to illustrate the efficiency and accuracy of the proposed conservative IBM for two-phase fluid
flows. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many important industrial problems involve flows with multiple constitutive components. Because
of their inherent nonlinearities and the complexity of dealing with unknown moving interfaces,
multiphase flows are challenging. There are many ways to model moving interfaces. The two main
approaches for simulating multiphase and multicomponent flows are interface tracking and interface
capturing methods. In interface tracking methods (front-tracking [1, 2], immersed interface [3, 4],
and immersed boundary [5–7]), Lagrangian particles are used to track the interfaces. In interface
capturing methods, such as level-set [8, 9] and phase-field methods [10, 11], the interface is implic-
itly captured by a contour of a particular scalar function. The numerical method we will take is
the immersed boundary method (IBM), which was originally developed by Peskin [5]. The IBM
has been applied to two-phase fluid flows [12–14]. The motion of the fluid is influenced by the
force generated by the interface and the interface moves with the local fluid velocity. The strength
of this method is that it can accurately handle the complicated and time-dependent geometry of
the interface.
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Consider a viscous incompressible fluid that fills a rectangular domain� and an interface � that is
contained in the domain. The two-dimensional example setup with an immersed boundary curve is
shown in Figure 1. We shall now consider the mathematical formulation of the equations of motion
for the immiscible two-phase fluid. Let � be the variable density and � be the variable viscosity.
The equations of motion of the mixture are then as follows:

�.I /

�
@u.x, t /

@t
C u.x, t / � ru.x, t /

�
D�rp.x, t /

C r � Œ�.I /.ru.x, t /Cru.x, t /T /�C F. x, t /C �.I /g, (1)

r � u.x, t / D 0,

F.x, t / D
Z
�

f.s, t /ı2.x�X.s, t //ds,

f.s, t / D �
@2X.s, t /
@s2

,

@X.s, t /
@t

D U.s, t /, (2)

U.s, t / D
Z
�

u.x, t /ı2.x�X.s, t //dx. (3)

The fluid velocity u.x, t /, fluid pressure p.x, t /, and singular surface tension force density F.x, t /
are functions of .x, t /, where xD .x,y/ are Cartesian coordinates. t is the time and g is the gravity.
The configuration of the immersed boundary is described by the function X.s, t /, where 0 6 s 6 L
andL is the length of the boundary (see Figure 1). The boundary force density f.s, t / and the bound-
ary velocity U.s, t / are also functions of s and t . The core of the immersed boundary method is the
delta function, which describes the interaction between the fluid and the immersed boundary. Dis-
continuous material properties can easily be accommodated through the numerical construction of
an indicator function, I.x, t /. Let us define a gradient field,

rI.x, t /D
Z
�

n.X.s, t //ı2.x�X.s, t //ds, (4)

which is zero except near the interface. To find the indicator function, the Poisson’s equation

�I.x, t /Dr �
Z
�

n.X.s, t //ı2.x�X.s, t //ds

is solved. Then, the variable fluid properties, � and �, can be represented by

�.I.x, t //D �1C .�2 � �1/I.x, t / and �.I.x, t //D �1C .�2 ��1/I.x, t /,

where �i and �i for i D 1, 2 are density and viscosity of fluid i , respectively. There is no guarantee
that the advected immersed boundary preserves area over time. Area conservation is an important
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Γ

•X (s, t)
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2 , 2
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fluid 1

Figure 1. The immersed boundary curve � on a rectangular domain �.
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issue in modeling free interface problems. If the area loss occurs, it could increase the local curva-
ture of the interface and result in overestimating the surface tension force. An overestimated surface
tension force induces an incorrect velocity field, which moves the interface to the wrong position.

When an exact projection method is used for solving the Navier–Stokes equations, the velocity
field on the Eulerian grid will be discretely divergence free, but this does not guarantee that the
interpolated velocity field through the delta function is continuously divergence free. This can result
in volume loss [15]. This is particularly problematic for interfaces under tension, which have been
shown to exhibit volume loss with the IBM [16–20]. A solution for fixing the volume loss problem
is using the modified divergence stencils of Peskin and Printz [19]. The key idea is the introduction
of a new finite difference divergence operator that is constructed in such a way that the interpolated
velocity field in which the immersed boundary moves is more nearly divergence free.

In this paper, we propose a simple area preserving correction scheme for two-phase immiscible
incompressible flows with an IBM. The idea of an area preserving correction scheme is to correct the
interface location normally to the interface so that the area remains constant. The rest of the paper
is organized as follows. In Section 2, the numerical method will be introduced. The experimental
results will be discussed in Section 3. Finally, some conclusions will be drawn in Section 4.

2. NUMERICAL METHOD

In this section, we present the numerical solution algorithm. A staggered marker-and-cell (MAC)
mesh of Harlow and Welch [21] is used in which the pressure and indicator function are stored at
cell centers and velocities at cell interfaces (see Figure 2).

Let a computational domain be partitioned in Cartesian geometry into a uniform mesh with mesh
spacing h. The center of each cell,�ij , is located at xij D .xi ,yj /D ..i�0.5/h, .j �0.5/h/ for i D
1, � � � ,Nx and j D 1, � � � ,Ny .Nx andNy are the numbers of cells in the x direction and y direction,
respectively. We use a set ofM Lagrangian points Xnl D .x

n
l

,yn
l
/ for l D 1, : : : ,M to discretize the

immersed boundary with a representative line segment �slC1 D
p
.xlC1 � xl/2C .ylC1 � yl/2.

At the beginning of each time step, given a divergence free velocity field un and a given boundary
configuration Xn, we want to find unC1, pnC1, and XnC1, which solve the following semi-implicit
scheme:

�n
unC1 � un

�t
D ��nun � rdun �rdp

nC1C��dunC FnC �ng,

rd � u
nC1 D 0,

where �n D �1C .�2 � �1/I n and gD .0,�g/.
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Figure 2. (a) Velocities are defined at cell boundaries and the pressure and indicator function are defined at
the cell centers. (b) Immersed boundary points.
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Step 1. Find the force fn on the immersed boundary from the given boundary configuration Xn.
For l D 1, : : : ,M ,

fnl D
�

�slC1=2

�
XnlC1 �Xnl
�slC1

�
Xnl �Xnl�1
�sl

�
, (5)

where �slC1=2 D .�sl C�slC1/=2 and � is a surface tension coefficient. Note that the subscript
arithmetic on l in Equation (5) has to be interpreted in a periodic sense, because the boundary is
closed: if l DM , then l C 1D 1; if l D 1, then l � 1DM .

Step 2. Spread the boundary force into the nearby lattice points of the fluid.

Fnij D
MX
lD1

fnl ı
2
h.xij �Xnl /�slC1=2 for i D 1, : : : ,Nx and j D 1, : : : ,Ny ,

where ı2
h

is a smoothed approximation to the two-dimensional Dirac delta function:

ı2h.x/D
1

h2
	
�x
h

�
	
�y
h

�
,

where

	.r/D

8̂<
:̂

3�2jr jC
p
1C4jr j�4r2

8
if jr j6 1,

5�2jr j�
p
�7C12jr j�4r2

8
if 1 < jr j6 2,

0 if 2 < jr j.

One-dimensional and two-dimensional Dirac delta functions are shown in Figure 3. The motivation
for this particular choice of 	.r/ is given in [22].

Step 3. Solve the Navier–Stokes equations on the rectangular lattice to obtain unC1 and pnC1

from un and Xn.
Solve an intermediate velocity field, Qu, which generally does not satisfy the incompressible

condition, without the pressure gradient term,

Qu� un

�t
C un � rdun D

�

�n
�dunC

1

�n
FnC g.

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

r

(a)

−4
0

4

−4

0

4
0

0.05

0.1

0.15

0.2

0.25

x/hy/h

(b)

Figure 3. (a) One-dimensional and (b) two-dimensional Dirac delta functions.
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The resulting finite difference equations are written out explicitly. They take the form

QuiC 12 ,j D un
iC 12 ,j

��t.uux C vuy/
n

iC 12 ,j
C

�t

�n
iC 12 ,j

F
x�edge

iC 12 ,j

C
��t

h2�n
iC 12 ,j

�
un
iC 32 ,j

C un
i� 12 ,j

� 4un
iC 12 ,j

C un
iC 12 ,jC1

C un
iC 12 ,j�1

�
,

Qvi ,jC 12
D vn

i ,jC 12
��t.uvx C vvy/

n

i ,jC 12
C

�t

�n
i ,jC 12

F
y�edge

i ,jC 12
� g�t

C
��t

h2�n
i ,jC 12

�
vn
i ,jC 32

C vn
i ,j� 12

� 4vn
i ,jC 12

C vn
iC1,jC 12

C vn
i�1,jC 12

�
,

where the advection terms, .uux C vuy/n
iC 12 ,j

and .uvx C vvy/n
i ,jC 12

, are defined by

.uux C vuy/
n

iC 12 ,j
D un

iC 12 ,j
Nunx
iC 1
2

,j

C
vn
i ,j� 12

C vn
iC1,j� 12

C vn
i ,jC 12

C vn
iC1,jC 12

4
Nuny
iC 1
2

,j
,

.uvx C vvy/
n

i ,jC 12
D vn

i ,jC 12
Nvny
i ,jC 1

2

C
un
i� 12 ,j

C un
i� 12 ,jC1

C un
iC 12 ,j

C un
iC 12 ,jC1

4
Nvnx
i ,jC 1

2

.

The values Nunx
iC 1
2

,j
and Nuny

iC 1
2

,j
are computed using the upwind procedure. The procedure is

Nunx
iC 1
2

,j
D

8̂<
:̂

un
iC 1
2

,j
�un
i� 1
2

,j

h
if un

iC 12 ,j
> 0

un
iC 3
2

,j
�un
iC 1
2

,j

h
otherwise

and

Nuny
iC 1
2

,j
D

8̂<
:̂

un
iC 1
2

,j
�un
iC 1
2

,j�1

h
if vn

i ,j� 12
C vn

iC1,j� 12
C vn

i ,jC 12
C vn

iC1,jC 12
> 0

un
iC 1
2

,jC1
�un
iC 1
2

,j

h
otherwise.

The quantities Nvnx
i ,jC 1

2

and Nvny
i ,jC 1

2

are computed in a similar manner. Then, we solve the

following equations for the advanced pressure field at .nC 1/ time step.

unC1 � Qu
�t

D �
1

�n
rdp

nC1, (6)

rd � u
nC1 D 0. (7)

After applying the discrete divergence operator to Equation (6), we find the Poisson’s equation
for the pressure at the advanced time .nC 1/

rd �

�
1

�n
rdp

nC1

�
D

1

�t
rd � Qu, (8)
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where we have made use of Equation (7) and the terms are defined as follows:

rd �

�
1

�n
rdp

nC1
ij

�
D

1
�n
iC 1
2

,j

pnC1iC1,j C
1

�n
i� 1
2

,j

pnC1i�1,j C
1

�n
i ,jC 1

2

pnC1i ,jC1C
1

�n
i ,j� 1

2

pnC1i ,j�1

h2

�

1
�n
iC 1
2

,j

C 1
�n
i� 1
2

,j

C 1
�n
i ,jC 1

2

C 1
�n
i ,j� 1

2

h2
pnC1ij ,

rd � Quij D
QuiC 12 ,j � Qui� 12 ,j

h
C
Qvi ,jC 12

� Qvi ,j� 12
h

,

where �n
iC 12 ,j

D .�nij C�
n
iC1,j /=2 and the other terms are similarly defined. The boundary condition

for the pressure is

n � rdp
nC1 D n �

�
��n

unC1 � un

�t
� �n.u � rdu/nC��dunC FnC �ng

�
,

where n is the unit normal vector to the domain boundary.
The resulting linear system of Equation (8) is solved using a multigrid method [23], specifically,

V-cycles with a Gauss–Seidel relaxation. Then the divergence-free normal velocities unC1 and vnC1

are defined by

unC1 D Qu�
�t

�n
rdp

nC1, i.e.,

unC1
iC 12 ,j

D QuiC 12 ,j �
�t

�n
iC 12 ,j

h
.piC1,j � pij /,

vnC1
i ,jC 12

D Qvi ,jC 12
�

�t

�n
i ,jC 12

h
.pi ,jC1 � pij /.

Step 4. Once the updated fluid velocity, unC1, has been determined, we can find the velocity,
UnC1, and then the new position, XnC1, of the immersed boundary points. This is done using a
discretization of Equations (2) and (3). That is, for l D 1, : : : ,M ,

UnC1
l

D

NxX
iD1

NyX
jD1

unC1ij ı2h.xij �Xnl /h
2,

XnC1
l

D Xnl C�tU
nC1
l

. (9)

This completes the description of the process (Steps 1–4, above) by which the quantities unC1,
pnC1, and XnC1 are calculated.

2.1. Discretization of the indicator function

In this section, we will present the numerical method to calculate the indicator function. Let the
discretization of the right hand side of Equation (4) be Gn

ij :

Gn
ij D

MX
lD1

nnl ı
2
h.xij �Xnl /�slC 12 .

For a given interface position Xl , the corresponding unit normal vector nl D .ml ,nl / can be
calculated by using three points Xl�1 D .xl�1,yl�1/, Xl D .xl ,yl/, XlC1 D .xlC1,ylC1/ with the
quadratic polynomial approximation. Let the approximation be

x.t/D ˛1t
2C ˇ1t C 
1 and y.t/D ˛2t

2C ˇ2t C 
2.
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And assume Xl�1D.x.0/, y.0//, XlD.x.�sl/,y.�sl//, and XlC1 D .x.�slC�slC1/, y.�slC
�slC1//, then the parameters ˛1, ˇ1, 
1, ˛2, ˇ2, and 
2 can be calculated by the following equations:

0
@ ˛1
ˇ1

1

1
A D

0
@ 0 0 1

�s2
l

�sl 1

.�sl C�slC1/
2 �sl C�slC1 1

1
A
�10
@ x.0/

x.�sl/

x.�sl C�slC1/

1
A ,

0
@ ˛2
ˇ2

2

1
A D

0
@ 0 0 1

�s2
l

�sl 1

.�sl C�slC1/
2 �sl C�slC1 1

1
A
�10
@ y.0/

y.�sl/

y.�sl C�slC1/

1
A .

Now we get the unit normal vector as

nl D .ml ,nl/D

0
BB@

dy.�sl /
dtr�

dx.�sl /
dt

�2
C
�

dy.�sl /
dt

�2 ,
� dx.�sl /

dtr�
dx.�sl /

dt

�2
C
�

dy.�sl /
dt

�2

1
CCA .

Then, we solve the following Poisson’s equation using the multigrid method.

�dI
n Drd �G

n.

2.2. The area correction algorithm

To measure the volume enclosed by the immersed boundary points, we connect adjacent immersed
boundary points with straight lines and then compute the area of the resulting polygon. For a given
interface position X, the polygonal area and the relative area error are defined as follows:

A.X/D
1

2

MX
lD1

.XlYlC1 � YlXlC1/, Aerror.X/D
jA.X0/�A.X/j

A.X0/
.

The outline of the area correction procedure is
1) Update the interface XnC1

l
, Y nC1
l

according to Equation (9)

.XnC1
l

,Y nC1
l

/D .Xnl ,Y nl /C�t.U
nC1
l

,V nC1
l

/.

2) Compute the polygonal area A.XnC1/
For a given tolerance, tol, check Aerror.XnC1/ < tol or not. If not, update the interface NXnC1

l
,

NY nC1
l

with the following area correction algorithm by taking steps 3) and 4).

. NXnC1
l

, NY nC1
l

/D .XnC1
l

,Y nC1
l

/� �.ml ,nl/.

Here it should be noted that .ml ,nl/ is the unit normal vector at the l-th interface node at time
level tnC1.

3) Determine the parameter �

� D
�ˇ˙

q
ˇ2 � 4˛.A.XnC1/�A.X0//

2˛
.

The parameter � is a root of a quadratic equation from the area correction.

A.X0/D A.XnC1/C ˛�2C ˇ�,

we get

˛ D 1
2

MP
lD1

.mlnlC1 � nlmlC1/ ,

ˇ D 1
2

MP
lD1

�
mlY

nC1
lC1
C nlC1X

nC1
l
� .nlX

nC1
lC1
CmlC1Y

nC1
l

/
�

.
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4) Choose parameter �
The following two case statements are directly obtainable from the above definitions. Let ˛ > 0

and

�1 D
�ˇC

q
ˇ2 � 4˛.A.XnC1/�A.X0//

2˛
,

�2 D
�ˇ �

q
ˇ2 � 4˛.A.XnC1/�A.X0//

2˛
.

If A.XnC1/ > A.X0/, then �2 < �1 < 0. Using any of �1 and �2, we can preserve the
volume by moving the boundary position. However, in the case of �2, the boundary position is
moved far enough to entirely invert it (see Figure 4). To avoid this situation, we choose �1. If
A.XnC1/ < A.X0/, then �2 < 0 < �1 and we choose �1 for the same reason (see Figure 5).
Therefore, we always choose �1.

3. NUMERICAL EXAMPLES

It is well known that the immersed boundary method does not conserve the area enclosed by the
immersed boundary although the velocity field on the Eulerian grid satisfies a discrete divergence
free condition [15, 19, 24]. However, we overcome the area loss problem with the area correction
algorithm that was described in Section 2.2. Our proposed scheme can be used in conjunction with
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1
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(b)(a)

Figure 4. �2 < �1 < 0. Area correction with (a) �1 and with (b) �2.
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Figure 5. �2 < 0 < �1. Area correction with (a) �1 and with (b) �2.
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the techniques of other methods [16–19]. In this section, we perform a number of numerical experi-
ments to investigate the effect of our area correction algorithm for the immersed boundary problem.
For all tests, we set the area correction tolerance to be tolD 1e � 4.

3.1. Convergence test

To obtain an estimate of the convergence rate, we perform a number of simulations for a problem
on a set of increasingly finer grids. We consider the passive advection of a disk by the background
velocity field, such as

uD .u, v/D .16�.y � 0.5/,�16�.x � 0.5//. (10)

The disk with a radius of 0.1 is centered at .0.5, 0.8/ in the computational domain�D .0, 1/�.0, 1/.
The numerical solutions are computed on the uniform grids, hD 1=2n, and with corresponding time
steps, �t D h=16, for nD 6, 7, 8, 9, and 10. The calculations are run up to time T D 1=32. � D 1,
� D 0.01, and � D 0 are used. In this test, we let A.n/ be an initial polygonal area as shown
in Figure 6(a). The error E.n/ is defined as the area differences between the calculated immersed
boundary and the rotated disk with an area A.n/ at T D 1=32 (see Figure 6(b)). The rate of conver-
gence is defined as: log2.E.n/=E.nC1//. The errors and rates of convergence are given in Table I.
The results suggest that the scheme is indeed first order accurate.

3.2. Relaxation to a disk

The perturbed surface of the droplet is given in polar coordinates .r , / and the initial droplet
boundary on the computational domain �D .0, 1/� .0, 1/ is

xD .x,y/D .0.5C r cos./, 0.5C r sin.//, 06  < 2� ,

where r D 0.25C 0.1 cos.n/ and n is the oscillation mode. It is well known that the boundary will
relax to a disk with the area unchanged. The computations are carried out for three different modes
of nD 3, 5, and 8 (see the first row of Figure 7). We take hD 1=128, �t D h=64, �D 1, �D 0.01,
and � D 130 as the parameters. The results with area correction are shown in the second, third, and
fourth rows of Figure 7. As we expected, all three modes of the interfaces relaxed to a circle. We

A(n)

(a) (b)

Figure 6. (a) Initial polygon and (b) schematic illustration of error E.n/ (an area of shaded regions).

Table I. Convergence result.

Mesh size Error Rate

64� 64 4.7115e�3
128� 128 2.3349e�3 1.0128
256� 256 1.1620e�3 1.0068
512� 512 5.7853e�4 1.0061
1024� 1024 2.8915e�4 1.0006
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Figure 7. The evolution of interface with area correction for three different modes (a) nD 3, (b) nD 5, and
(c) nD 8. The times are shown below each figure.

also see that the larger the mode is, the more quickly the interface relaxes to a circle because of the
effect of the higher curvature of the interface.

Next, we compute the computational cost with different tolerance values when the area correction
is applied. The problem is the same as above. When 4096 iterations have been executed, CPU times
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and numbers of the taken area correction algorithms are calculated. The results are in Table II and
they indicate the following: (1) there is nearly no difference between CPU times with and without
correction, and (2) varying the tolerance value does not impact the computational cost significantly.
This shows that our proposed scheme requires only a slight additional computational cost to con-
serve the polygonal area and this is an improvement over previous attempts [16–19] that demanded
more expensive computational costs.

3.3. Pressure difference of drop

In this section, we theoretically and numerically calculate the pressure difference Œp� with differ-
ent mesh sizes. In the absence of viscous, gravitational, or other external forces, surface tension
causes a static drop to become spherical. Laplace’s formula for an infinite cylinder surrounded by a
background fluid at zero pressure, Equation (1), gives the internal drop pressure

pdrop D
�

r
,

where r is the drop radius.
In this experiment, the droplet is placed at the center of the unit domain, and has a radius of 0.1.

The pressure differences are computed on the uniform grids, hD 1=2n, and with corresponding time
steps, �t D h=64, for nD 5, 6, 7, and 8. The calculations are run up to time T D h=64, and � D 1
and � D 20 are employed. In this test, the exact pressure difference Œp� is 200. As shown in Table III,
this sequence of events for the numerical pressure difference Œp� is qualitatively in agreement with
the theoretical values by refining the mesh.

3.4. Area loss by spurious velocity fields induced by surface tension

The circular drop is surrounded by a small amplitude velocity field because of the slight imbal-
ance between the stresses at the sites in the interfacial region. Such unphysical flow is a spurious
velocity. There are many studies for spurious velocities in incompressible flow problems [25–29].
In order to estimate the effect of a spurious velocity, we consider the circular drop with zero initial
velocity field. The initial drop has a radius of 0.3 and is centered at the center of the unit domain.
The other parameters we choose are h D 1=128, �t D h=64, � D 1, � D 0.01, � D 130, and
T D 3. Figures 8(a), (b), and (c) show evolutions of the circular drop without area correction. The
computational times are shown below each figure. Spurious velocities near the interface lead to a
false appearance (the arrows represent amplitudes and directions of these velocities presented in
Figure 8). As a result, we observe that the area is not conserved as predicted and the area loss is as
large as 18.34% when T D 3. However, an exact mass conservation is achieved using the correction
scheme. Figure 8(d) illustrates the area loss rates with and without correction.

Table II. CPU times with different tolerance values during 4096 iterations. The number in
parentheses indicates the number of the taken area correction algorithms.

With correction

Case Without correction tolD 1e � 3 tolD 1e � 4 tolD 1e � 5

nD 3 125.32s 124.90s (52) 124.87s (483) 125.48s (4001)
nD 5 112.18s 112.59s (47) 112.54s (432) 113.12s (3422)
nD 8 105.35s 105.28s (38) 105.40s (357) 106.17s (4077)

Table III. The pressure difference Œp� with � D 20 and r D 0.1 for different
mesh sizes.

Mesh sizes

32� 32 64� 64 128� 128 256� 256

Œp� 201.147 200.673 200.379 200.312
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Figure 8. (a), (b), and (c) show evolutions of the circular drop by surface tension without area correction.
(d) illustrates the area loss rates with and without correction.

3.5. Area change by the background fluid flows

Even if a velocity field remains discretely divergence free on the Lagrangian grid, there is still a vol-
ume loss because we use a discrete time step. To confirm this, we consider the passive advection of a
disk by the background velocity field such as in Equation (10). This velocity field is divergence free.
The disk with a radius of 0.1 is centered at the center of the unit domain. One thousand immersed
boundary points are on the circle. For each time step, the interface is advected for only one time
step. Figure 9 shows the area errors versus time step size. From these results, when we discretely
evolve Lagrangian particles, we see that the advected interface does not conserve the volume even
though the velocity field is divergence free. However, using our proposed scheme, we completely
eliminate the area errors when we are using a discrete time step. To show this, we consider the
passive advection of a disk by the background velocity field, such as in Equation (10). The disk
with a radius of 0.25 is placed at the center of the unit domain. We use the following simulation
parameters: h D 1=128, � D 1, � D 0.01, � D 0, �t D h=64, and T D 2. Figures 10(a), (b), and
(c) show evolutions of the disk without area correction. As can be seen, the area does not conserve
as predicted. The larger the time step is, the more severe the area change becomes. We will discuss
this in Section 3.6. Figure 10(d) illustrates the area gain rates with and without correction. If we
solve for the velocity field without correction, then the area gains as much as 36.13%. However, the
correction step completely eliminates the area errors.

3.6. Rotated disk by background fluid flows

We consider the passive advection of a disk by the background velocity field such as in Equation
(10). The disk with a radius of 0.1 is centered at .0.5, 0.8/ in the unit domain. We take h D 1=128,
� D 1, � D 0.01, � D 0, and T D 1=8 with different time steps �t D h=128 and �t D h=16. For
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Figure 9. The area errors versus time-step size without correction.
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Figure 10. (a), (b), and (c) show evolutions of the disk by rotation without area correction. (d) illustrates the
area change rates with and without correction.

each time step, evolutions are shown in Figure 11. As can be seen from the area error in Table IV,
the area is more conservative when the time step is smaller. CPU times with and without correction
are shown in Table V for each time step.

3.7. Deformation of a drop under shear flow

Next, we investigate the deformation of a drop under shear flow. A simulation of this problem has
previously been performed by Chinyoka et al. [30]. The initial drop is circular with a radius of 0.5H
centered at .H ,H/ in the computational domain�D .0, 2H/�.0, 2H/. The top moves to the right
with velocity U and the bottom moves to the left with velocity �U . Figure 12 (a) shows a schematic
illustration of the initial condition. To compare the result of Chinyoka et al. [30], we begin with a
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Figure 11. A rotated disk with a time step (a) �t D h=16 and (b) �t D h=128.

Table IV. Area error without correction.

Time step

�t D h=128 �t D h=16

Aerror.X/ 1.94% 16.61%

Table V. CPU times for each time step with and without correction. In the num-
ber A=B in parentheses, A indicates the number of the taken area correction

algorithms and B indicates the number of total iterations.

Case Without correction With correction

�t D h=16 1.266s 1.265s (256/256)
�t D h=128 5.687s 5.688s (186/2048)

Fluid 1

Fluid 2

−U

U

x

y

2H

2H

0

(a)
0 0.5 1 1.5 2

0

0.5

1

1.5

2
Our method
Chinyoka et al.[30]

(b)

Figure 12. (a) Schematic illustration of the initial condition. (b) The deformation of a drop under shear flow:
the solid line and the open circle represent the results using our proposed method and that of Chinyoka et al.

[30], respectively.

drop of radius 0.5 positioned at the center of the computational domain � D .0, 2/ � .0, 2/. In
this simulation we take the following parameters: � D 1, � D 0.8, and U D 1. A mesh size of
128 � 128 and a time step of �t D h2=16 are used. The calculation is run up to time T D 1.5.
Figure 12(b) shows that our result and the previous result of Chinyoka et al. [30] are in good
qualitative agreement.
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3.8. Buoyancy-driven flow

In this section, we consider the buoyancy-driven flow. The initial bubble with radius r D 0.1 is posi-
tioned at .0.5, 0.5/ in the computational domain �D .0, 1/� .0, 2/ with 128� 256 mesh grids. The
densities are �1 D 1000 and �2 D 500 (�1 and �2 are the densities outside and inside the bubble,
respectively). Other parameters are defined as follows:�D 0.01, � D 0.1, g D 9.81e�3, hD 1=128,
and�t D 0.01. To solve the buoyancy-driven flow, we use a periodic boundary condition to vertical
boundaries and no-slip boundary condition to the top and bottom domains. Therefore,

n � rdp
nC1 D n � �ng, i.e., py D��

ng at y D 0 and y D 2.

Figure 13 shows that the bubble starts to rise because of the effect of buoyancy in the cylinder and
it eventually deforms to a steady-state shape. We obtained similar results as the results in [31].

3.9. The effect of the correction algorithm on capillary forces

Because the new interface position is updated by NX
nC1
D XnC1 � �n, we have NX

nC1

ss D XnC1ss C
�.�sXnC1s C �XnC1ss / by using the identity ns D ��Xs . Here, � is the curvature of the interface.
Therefore, it is possible that if either the curvature or its derivative is large then the original force
f.s, t / D �Xss may change significantly because of this area correction. However, the results from
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Figure 13. Instantaneous bubble shapes at different time.
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the comparison with and without area correction algorithm show that there is no significant differ-
ence. This is partly because when � is large, the surface curvature is not large. To confirm this, we
set the initial shape as shown in Section 3.2 with nD 8. The simulation parameters are hD 1=128,
�t D 2h2, � D 1, � D 0.005, � D 300, and T D 0.1. In Figure 14, the line and circle are the

numerical solutions with f1 D �XnC1ss and f2 D � NX
nC1

ss , respectively. Which means that we define
the interfacial force before and after area correction. As can be seen in Figure 14, results from the
two types of interface force are almost identical.

4. CONCLUSIONS

We proposed a simple area preserving correction scheme for two-phase immiscible incompress-
ible flows with an IBM. The idea is to correct the interface location normal to the interface so that
the area remains constant. Various numerical tests were presented to illustrate the efficiency and
accuracy of our proposed scheme for two-phase fluid flows.
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