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Abstract

The primary purpose of this dissertation is to study the various partial differential

equations on non-flat surfaces. To solve the partial differential equations (the Allen–Cahn

(AC) equation, conservative Allen–Cahn (CAC) equation, and Lengyel–Epstein (LE) equa-

tion) on surfaces, we first discuss the AC, CAC, LE equations on the general domain. And

then, we describe the surface reconstruction algorithm by using modified AC equation which

source data are cloud points, and slice data (CT, MRI, X-ray). That is, reconstruction from

two-dimensional data to three-dimensional surface data. Next, we construct computational

domain which is defined by narrow band domain and quasi-Neumann boundary condition

which applied closest points method. We finally consider solving the AC, CAC, and LE

equations on the various surfaces.

We present the fast, efficient, and robust numerical method. We can use the standard

Laplacian operator instead of the Laplace–Beltrami operator by using narrow band domain

and quasi-Neumann boundary condition. For overall numerical simulations, we use operator

splitting method. The multigrid method and explicit method are used in some cases for fast

solution. Various numerical results demonstrate that the proposed methods are fast and

accurate.
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Keywords: PDE on surfaces, narrow band domain, closest points method, surface recon-

struction, Allen–Cahn equation, conservative Allen–Cahn equation, Lengyel–Epstein equa-

tion.
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Chapter 1

Introduction

The main purpose of this dissertation is solving a partial differential equations (PDEs)

on the non-flat surfaces. From this studies, we expect that researches will be applicable on

fine dust, convection current, and weather on the earth surface. Also we can study pattern

formation in nature such as animals skin, sand dunes and giant’s causeway.

The previous studies that have been carried out are as follows. In the nature and applied

sciences need solving the PDEs on surfaces. For instance, fluid flow and solidification of a

thin film [77], brain imaging [74], diblock copolymers [98], computer graphics for texture

synthesis [103], and surfactant distribution on a moving interface [107]. Since an analytic

solution is not always present, accurate and efficient numerical approximation is needed. In

[88], the authors introduced an embedding method which is closest point method for solving

PDEs on surfaces. They use of standard diffusion in higher dimension than the original

surface and the use of the closest point representation of the surface. The authors [12]

represented a framework for solving PDEs on surfaces. They apply a level set of a higher

dimensional function and solve the problems.

Also the pattern formation has been studied by many researchers. Pattern formation

based on the Turing model has been one of the notable exceptions since the middle part of

the 20th century while acceptance in bioinformatics of mathematical biology has been slower
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[71]. Most mathematical models of these patterns are based on a Turing’s [102] reaction-

diffusion model. The model is composed of two distributed reacting and diffusing chemicals,

could generate spatial patterns autonomously. The more detailed previous researches for

pattern formations are introduced in Section 5.3.

To solve the PDEs on the surfaces, our detail strategies and implementations are: sur-

face reconstruction algorithm (using modified Allen–Cahn equation, cloud points, and slice

data), construct computational domain and boundary condition (narrow band domain, and

closest points method), and then solving the Allen–Cahn equation, conservative Allen–Cahn

equation, and Lengyel–Epstein equations on the various surfaces.

This Ph.D. dissertation contains the idea and results in the following publications, that

the author devoted in the master and doctor course.

• Y. Choi, D. Jeong, S. Lee, M. Yoo, and J. Kim, Motion by mean curvature of curves

on surfaces using the Allen–Cahn equation, International Journal of Engineering

Science 97 (2015) 126–132.

• J. Kim, D. Jeong, S.D. Yang, and Y. Choi, A finite difference method for a conser-

vative Allen–Cahn equation on non-flat surfaces, Journal of Computational Physics

334 (2017) 170–181.

• J. Kim, S. Lee, and Y. Choi, A conservative Allen–Cahn equation with a space-

time dependent Lagrange multiplier, International Journal of Engineering Science 84

(2014) 11–17.

• D. Jeong, Y. Li, Y. Choi, M. Yoo, D. Kang, J. Park, J. Choi, and J. Kim, Numerical

simulation of the zebra pattern formation on a three-dimensional model, Physica A:

Statistical Mechanics and its Applications 475 (2017) 106–116.
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• Y. Li, J. Shin, Y. Choi, and J. Kim, Three-dimensional volume reconstruction from

slice data using phase-field models, Computer Vision and Image Understanding 137

(2015) 115–124.

This dissertation is organized as follows. In Chapter 2, we present the partial differential

equations which are Allen–Cahn, conservative Allen–Cahn, and Lengyel–Epstein equations

on the general domain. In Chapter 3, we explain surface reconstruction algorithm with

modified Allen–Cahn equation and from cloud points, slice data to three-dimensional sur-

face reconstruction. Construction of computational domain and boundary condition are

presented in Chapter 4. Numerical results to solve a various partial differential equations on

various non-flat surfaces are presented in Chapter 5. We present our conclusions in Chapter

6.
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Chapter 2

Partial differential equations

2.1. Allen–Cahn equation

2.1.1. Governing equations. The Allen–Cahn (AC) equation [2] was introduced orig-

inally as a phenomenological model for antiphase domain coarsening in a binary alloy:

∂φ

∂t
(x, t) = −M

(

F ′(φ(x, t))

ǫ2
−∆φ(x, t)

)

, x ∈ Ω, t > 0, (2.1)

n · ∇φ(x, t) = 0, x ∈ ∂Ω. (2.2)

Here, bounded domain Ω, time t, a positive coefficient M , and unit outer normal vector

n on the domain boundary. Double-well potential energy function F (φ) = 0.5φ2(1 − φ)2

and interfacial energy ǫ which is small positive value. And order parameter φ(x, t) ∈ [0, 1]

which is one of the concentrations of the two components in a binary mixture. That is,

φ = 1 in the one phase and φ = 0 in the other phase. Or we can denote φ = 1 in the one

phase and φ = −1 in the other phase. When φ = 1 and φ = 0, the interface is defined by

Γ = {x ∈ Ω|φ(x, t) = 0.5}.

On a single closed interface Γ, Allen and Cahn [2] introduced the normal velocity v is

governed by its mean curvature κ(x, t):

v(x, t) = κ(x, t), x ∈ Γ. (2.3)
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2.1. ALLEN–CAHN EQUATION

The property of above equation has been researched in [11, 68, 86, 93]. Figure 2.1 represents

the evolutions for the classical AC equation in two dimension. The perturbed shape (dashed

lines) is the initial condition and the temporal evolutions of interfaces (solid lines). The

arrow shows the directions of evolutions. Therefore, AC equation does not conserve the

mass. We can check analytically:

d

dt

∫

Ω

φdx =

∫

Ω

φt dx

=

∫

Ω

M

(

−F
′(φ)

ǫ2
+∆φ

)

dx

= −
∫

Ω

MF ′(φ)

ǫ2
dx+

∫

∂Ω

Mn · ∇φds

= −
∫

Ω

MF ′(φ)

ǫ2
dx

6= 0,

which is not always zero. Here, we set M = 1 for simplicity.

Figure 2.1. Evolutions of perturbed shape with the AC equation. The
initial condition is dashed lines.
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2.1. ALLEN–CAHN EQUATION

2.1.2. Discretization. We solve the AC equation. In order to simplify the description,

we consider a two-dimensional space. The three-dimensional case is defined analogously. Let

a computational domain Ω = [a, b]× [c, d] be partitioned into a uniform mesh with spatial

step size h = (b− a)/Nx = (d− c)/Ny. Here, Nx and Ny are the numbers of cells in x- and

y- directions, respectively.

Figure 2.2. Schematic of computational domain Ω = [a, b] × [c, d], cells,
and boundary.

The center of each cell, Ωij , is located at xij = (xi, yj) = (a+ (i − 0.5)h, c+ (j − 0.5)h)

for i = 1, . . . , Nx and j = 1, . . . , Ny. Let φnij be approximations of φ(xi, yj, n∆t), where

∆t = T/Nt is the temporal step size, T is the final time, and Nt is the total number of time

steps. For the zero Neumann boundary condition, we use

∇dφ
n
1/2,j = ∇dφ

n
Nx+1/2,j = ∇dφ

n
i,1/2 = ∇dφ

n
i,Ny+1/2 = 0,

where

∇dφ
n
i+1/2,j =

φni+1,j − φnij
h

.
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2.1. ALLEN–CAHN EQUATION

A discrete Laplacian operator is defined as

∆dφ
n
ij =

∇dφ
n
i+1/2,j −∇dφ

n
i−1/2,j

h

and the discrete l2 inner product by

(φ, ψ)h = h2
Nx
∑

i=1

Ny
∑

j=1

φijψij .

We also define the discrete norm as ||φ||2 = (φ, φ)h.

We use an operator splitting method, in which we numerically solve the original problem

Eq. (2.1) by solving successively a sequence of simpler problems:

φt = ∆φ, (2.4)

φt = −F
′(φ)

ǫ2
, (2.5)

First, we solve Eq. (2.4) by applying the implicit Euler’s method:

φn+1,1
ij − φnij

∆t
= ∆dφ

n+1,1
ij . (2.6)

We use the multigrid method [4, 14, 101] to solve the implicit discrete Eq. (2.6). We

should note that we can use the Crank–Nicolson scheme as in [57] to solve Eq. (2.4).

However, although the Crank–Nicolson scheme is unconditionally stable, it is well-known

that the scheme suffers from oscillatory behavior with large time steps.

Next, Eq. (2.5) is solved analytically using the method of separation of variables [95].

From F (φ) = 0.5φ2(1 − φ)2, we obtain F ′(φ) = φ − 3φ2 + 2φ3. Then Eq. (2.5) can be

rewritten as follows:

dφ

dt
= −F

′(φ)

ǫ2

= −φ− 3φ2 + 2φ3

ǫ2

-7-



2.1. ALLEN–CAHN EQUATION

By using the separation of variables,

− 1

F ′(φ)
dφ =

1

ǫ2
dt

⇔ − 1

φ(1− φ)(2 − φ)
dφ =

1

ǫ2
dt

⇔
(

− 1

φ
+

1

1− φ
− 4

1− 2φ

)

dφ =
1

ǫ2
dt

And then, integrating both sides,

∫ φn+1,2
ij

φn+1,1
ij

(

− 1

φ
+

1

1− φ
− 4

1− 2φ

)

dφ =

∫ (n+1)∆t

n∆t

1

ǫ2
dt,

⇔ ln

∣

∣

∣

∣

∣

(1− 2φn+1,2
ij )2

φn+1,2
ij (1− φn+1,2

ij )

∣

∣

∣

∣

∣

− ln

∣

∣

∣

∣

∣

(1− 2φn+1,1
ij )2

φn+1,1
ij (1− φn+1,1

ij )

∣

∣

∣

∣

∣

=
1

ǫ2
∆t,

⇔
∣

∣

∣

∣

∣

(1− 2φn+1,2
ij )2

φn+1,2
ij (1− φn+1,2

ij )

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(1− 2φn+1,1
ij )2

φn+1,1
ij (1− φn+1,1

ij )

∣

∣

∣

∣

∣

e
∆t

ǫ2 .

It can be rewritten in the following polynomial form,







(

1− 2φn+1,1
ij

)2

φn+1,1
ij

(

1− φn+1,1
ij

)e
∆t

ǫ2 + 4







(

φn+1,2
ij

)2

−







(

1− 2φn+1,1
ij

)2

φn+1,1
ij

(

1− φn+1,1
ij

)e
∆t

ǫ2 + 4






φn+1,2
ij + 1 = 0. (2.7)

The polynomial equation (2.7) is solved as

φn+1,2
ij =

1

2
±

∣

∣

∣1− 2φn+1,1
ij

∣

∣

∣

2

√

(

1− 2φn+1,1
ij

)2

+ 4φn+1,1
ij

(

1− φn+1,1
ij

)

e−
∆t

ǫ2

.

From the condition of φn+1,2
ij in [0, 1], we obtain the solution:

φn+1,2
ij =

1

2
−

1− 2φn+1,1
ij

2

√

(

1− 2φn+1,1
ij

)2

+ 4φn+1,1
ij

(

1− φn+1,1
ij

)

e−
∆t

ǫ2

. (2.8)
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2.1. ALLEN–CAHN EQUATION

Thus our scheme [49] can be summarized as

φn+1,1
ij − φnij

∆t
= ∆dφ

n+1,1
ij , (2.9)

φn+1,2
ij =

1

2
−

1− 2φn+1,1
ij

2

√

(

1− 2φn+1,1
ij

)2

+ 4φn+1,1
ij

(

1− φn+1,1
ij

)

e−
∆t

ǫ2

, (2.10)

2.1.3. Numerical experiments. We simulate numerical experiments: the basic mech-

anism of the model, comparison of numerical and theoretical results, and the evolution of

time in the two- and three-dimensional spaces. The equilibrium order parameter

φ =
1

2

(

1 + tanh
[ x

2ǫ

])

varies from 0.05 to 0.95 over a distance of approximately 4ǫ tanh−1(0.9) across the interfacial

regions. Therefore, if we want this value to be approximately m grid points, then ǫ value is

given as the following form [48]

ǫm =
hm

4 tanh−1(0.9)
.

2.1.3.1. Basic mechanism of the model. The AC Eqs. (2.9)–(2.10) have the following

basic mechanism in Fig. 2.3. When we use the initial guess taken elliptic shape (dotted line

in Fig. 2.3). The AC Eqs. (2.9) and (2.10) make the initial elliptic shape shrinks to circle

under the motion by mean curvature [43]. The higher curvature moves faster than lower

curvatures on the curve. That is, the initial ellipse condition goes to the circular shape and

finally disappear.

-9-



2.1. ALLEN–CAHN EQUATION

 

 

Initial shape

Allen−Cahn

Figure 2.3. Basic mechanism of the AC equation.

2.1.3.2. Comparison with theoretical radius. We compare the changes in theoretical and

numerical radius over time. The parameters are used 128×128×128mesh, positive constant

value ǫ = ǫ4, spatial step size h = 0.0157, time step size ∆t = 0.1h2 in the computational

domain Ω = (−1, 1)× (−1, 1)× (−1, 1). Radius of the sphere is r = 0.7.

t = 0 t = 0.0744 t = 0.0992

Figure 2.4. Shrink the sphere over time. Each time is denoted under the figures.

The size of the theoretically reduced radius over time is defined as [53]

Ranal =
√

r20 − 4t

where Ranal is analytic radius and r0 is initial radius of sphere.

-10-



2.1. ALLEN–CAHN EQUATION

Figure 2.5 shows the comparison of theoretical and numerical radius over time. And we

obtain that the theoretical and numerical results are matched.

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

analytic R
numerical R

Figure 2.5. Comparison of the theoretical and numerical radius.

2.1.3.3. Temporal evolution in the two- and three-dimensional spaces. We simulate the

simple test in the two- and three-dimensional spaces. On a computational domain Ω =

[0, 1]× [0, 1], we use 128× 128 mesh grid, and the two initial conditions are given as

(i) φij = 1 if 40 ≤ i, j ≤ 88,

(ii) φij = 1 if 56 ≤ i, j ≤ 72,

and otherwise we take φij = 0 (see Fig. 2.6(a)). The time step size is chosen as ∆t = 1.0e-5.

Figures 2.6(b) and (c) show the numerical time evolution results for large initial object

and small initial object. As time goes by, both shape will be disappeared.
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2.1. ALLEN–CAHN EQUATION

T = 0 T = 0.016 T = 0.0256

T = 0
(a)

T = 0.0003
(b)

T = 0.0011
(c)

Figure 2.6. (a) Initial conditions with two different shapes. (b) and (c)
are time evolution results. Each simulation time are denoted under the
figures.

Next, we simulate numerical simulations of three-dimensional cubes in Fig. 2.7. The

initial conditions are given on Ω = [0, 1]× [0, 1]× [0, 1] with h = 1/128 as

(i) φijk = 1, if 40 ≤ i, j, k ≤ 88,

(ii) φijk = 1, if 56 ≤ i, j, k ≤ 72,

and φijk = 0 otherwise (see Fig. 2.7(a) for the isosurfaces φ = 0.5). The time step ∆t = 1.0e-

5 is used. The three-dimensional results are also the same tendency as the two-dimensional

result.
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2.1. ALLEN–CAHN EQUATION

(a) (b) (c)

Figure 2.7. Temporal evolution of objects. (a) Initial condition, (b) top:
t = 0.01, row: t = 0.0007, (c) top: t = 0.015, row: t = 0.0011.

2.1.4. Summary. In this section, we explain the Allen–Cahn equation and show var-

ious numerical results. The Allen–Cahn equation was originally introduced for antiphase

domain coarsening in a binary alloy [2]. The original Allen–Cahn equation and modified

formulae have been applied to a various problems: image analysis [13], motion by mean

curvature [22, 25], fluid flows [108], phase transitions [2], and crystal growth [24]. And the

Allen–Cahn equation has some properties: energy decreasing, non-mass conservation, shrink

the object, and phase separation. We also show these properties on the non-flat surfaces in

Chapter 5.
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2.2. CONSERVATIVE ALLEN–CAHN EQUATION

2.2. Conservative Allen–Cahn equation

2.2.1. Governing equations. The original AC equation does not conserve the mass

that the detail explain in Section 2.1. Rubinstein and Sternberg [87] introduced a Lagrange

multiplier β(t) into the AC model to preserve the mass as follows

∂φ

∂t
(x, t) = −F

′(φ(x, t))

ǫ2
+∆φ(x, t) + β(t). (2.11)

To keep the mass conservation, β(t) must satisfy

β(t) =

∫

Ω
F ′(φ(x, t)) dx

ǫ2
∫

Ω dx
.

Equation (2.11) has been widely used [6, 108, 114]. The normal velocity v on a single closed

interface Γ is given by the volume-preserving mean curvature flow:

v(x, t) = κ(x, t)− 1

|Γ|

∫

Γ

κ ds, x ∈ Γ, (2.12)

where |Γ| is the total length of curve in two-dimensional space and the total area in three-

dimensional space. Rubinstein and Sternberg’s model has been various researched [7, 11,

15, 104, 106, 112]. However, since Lagrangian multiplier is a function of the time variable,

there are drawbacks to preserving small features. For example, there is a critical radius of

drop which eventually disappears below the radius. This phenomenon is observed in the

frame of the Cahn–Hilliard model [112].

The main purpose of this study is to propose a practically unconditionally stable nu-

merical scheme for the conservative AC equation with a space-time dependent Lagrange

multiplier. The scheme is based on the recently developed hybrid scheme for the AC equa-

tion [57] with an exact mass-conserving update at each time step.

-14-



2.2. CONSERVATIVE ALLEN–CAHN EQUATION

Figure 2.8. Temporal evolutions of arbitrary curves with the conserva-
tive AC equation. The initial curves (dashed lines) and directions of time
evolutions are indicated by arrows.

The authors in [11] proposed the following conservative AC equation which guarantees

to preserve small geometric features:

∂φ(x, t)

∂t
= −F

′(φ(x, t))

ǫ2
+∆φ(x, t) + β(t)

√

2F (φ(x, t)), (2.13)

where β(t) =
∫

Ω F
′(φ(x, t)) dx/[ǫ2

∫

Ω

√

2F (φ(x, t)) dx]. Then, the solution φ(x, t) of the

conservative AC Eq. (2.13) possesses the total mass conservation property, i.e.,

d

dt

∫

Ω

φdx =

∫

Ω

φt dx

=

∫

Ω

[

−F
′(φ)

ǫ2
+∆φ+ β(t)

√

2F (φ)

]

dx

= − 1

ǫ2

∫

Ω

F ′(φ) dx +

∫

∂Ω

n · ∇φds+ β(t)

∫

Ω

√

2F (φ) dx

= − 1

ǫ2

∫

Ω

F ′(φ) dx + β(t)

∫

Ω

√

2F (φ) dx

= 0,

where we used the zero Neumann boundary condition (2.2). We note that to conserve mass,

there is a classical model such as the Cahn–Hilliard equation [1, 17, 41, 66]. Also, see

-15-



2.2. CONSERVATIVE ALLEN–CAHN EQUATION

[42] on the development and generalizations of Allen–Cahn and Stefan equations within a

thermodynamic framework.

2.2.2. Discretization. In this section, we propose a hybrid numerical algorithm for

solving the conservative AC equation. For simplify to explain, we explain in a two-dimensional

space. The three-dimensional case is treated analogously. Computational domain Ω =

[a, b]× [c, d], spatial step size h = (b − a)/Nx = (d− c)/Ny which Nx and Ny are the num-

bers of cells in x- and y- directions, respectively. The center of each cell, Ωij , is located at

xij = (xi, yj) = (a+ (i− 0.5)h, c+ (j − 0.5)h) for i = 1, . . . , Nx and j = 1, . . . , Ny. Let φ
n
ij

be approximations of φ(xi, yj , n∆t), where ∆t = T/Nt is the temporal step size, T is the

final time, and Nt is the total number of time steps.

We use zero Neumann boundary condition,∇dφ
n
1/2,j = ∇dφ

n
Nx+1/2,j =∇dφ

n
i,1/2 =∇dφ

n
i,Ny+1/2

= 0, where ∇dφ
n
i+1/2,j = (φni+1,j − φnij)/h. We define a discrete Laplacian operator by

∆dφ
n
ij = (∇dφ

n
i+1/2,j −∇dφ

n
i−1/2,j)/h and the discrete l2 inner product by

(φ, ψ)h = h2
Nx
∑

i=1

Ny
∑

j=1

φijψij .

We also define the discrete norm as ||φ||2 = (φ, φ)h. We use an operator splitting method

which is numerically solve the original Eq. (2.13) by solving successively a sequence of

simpler problems:

φt = ∆φ, (2.14)

φt = −F
′(φ)

ǫ2
, (2.15)

φt = β
√

2F (φ). (2.16)
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2.2. CONSERVATIVE ALLEN–CAHN EQUATION

First, we solve Eq. (2.14) by applying the implicit Euler’s method:

φn+1,1
ij − φnij

∆t
= ∆dφ

n+1,1
ij . (2.17)

To solve the implicit discrete Eq. (2.17), we use the multigrid method [4, 14, 101].

Next, Eq. (2.15) is solved analytically using the method of separation of variables [95]

that more detailed explain in section 2.1.1. We obtain the solution:

φn+1,2
ij =

1

2
−

1− 2φn+1,1
ij

2

√

(

1− 2φn+1,1
ij

)2

+ 4φn+1,1
ij

(

1− φn+1,1
ij

)

e−
∆t

ǫ2

. (2.18)

Finally, we discretize Eq. (2.16) as

φn+1
ij − φn+1,2

ij

∆t
= βn+1,2

√

2F (φn+1,2
ij ). (2.19)

By Eq. (2.19), we get

φn+1
ij = φn+1,2

ij +∆tβn+1,2
√

2F (φn+1,2
ij ),

then by the property of mass conservation

Nx
∑

i=1

Ny
∑

j=1

φ0ij =

Nx
∑

i=1

Ny
∑

j=1

φn+1
ij

=

Nx
∑

i=1

Ny
∑

j=1

(

φn+1,2
ij +∆tβn+1,2

√

2F (φn+1,2
ij )

)

. (2.20)

Therefore,

βn+1,2 =
1

∆t

Nx
∑

i=1

Ny
∑

j=1

(

φ0ij − φn+1,2
ij

)

Nx
∑

i=1

Ny
∑

j=1

√

2F (φn+1,2
ij )

. (2.21)
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Our proposed scheme [49] can be summarized as

φn+1,1
ij − φnij

∆t
= ∆dφ

n+1,1
ij , (2.22)

φn+1,2
ij =

1

2
−

1− 2φn+1,1
ij

2

√

(

1− 2φn+1,1
ij

)2

+ 4φn+1,1
ij

(

1− φn+1,1
ij

)

e−
∆t

ǫ2

, (2.23)

φn+1
ij = φn+1,2

ij +∆tβn+1,2
√

2F (φn+1,2
ij ). (2.24)

2.2.3. Numerical experiments. We simulate various numerical experiments: the

basic mechanism of the CAC equaion, a comparison with previous model, and the evolution

of drops in the two- and three-dimensional spaces. The equilibrium order parameter φ =

0.5(1+tanh[x/(2ǫ)]) varies from 0.05 to 0.95 over a distance of approximately 4ǫ tanh−1(0.9)

across the interfacial regions. Therefore, if we want this value to be approximately m grid

points, then ǫ value is given as [48], ǫm = hm/4 tanh−1(0.9). We shall use ǫ8 if not otherwise

specified.

2.2.3.1. Basic mechanism of the model. The basic mechanism of the algorithm Eqs.

(2.22)–(2.24) is illustrated in Fig. 2.9. Let us consider an elliptical initial condition (dotted

line in Fig. 2.9). If we take only Eqs. (2.22) and (2.23), then the initial shape shrinks

(dashed line) [43]. The higher curvature moves faster than lower curvatures on the curve.

However, with the mass correction step Eq. (2.24), the curve uniformly moves to the outward

normal direction (solid line). The initial ellipse shape goes to the circular shape with the

same mass.
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Initial shape
Allen−Cahn step
Mass correction step

Figure 2.9. Basic mechanism of the proposed numerical scheme.

2.2.3.2. Comparison of two models. To see the difference between two models original

AC Eqs. (2.11) and CAC Eqs. (2.13), we consider the following numerical experiments.

Mesh grid of 128 × 128, the initial conditions are given as (i) φij = 1 if 40 ≤ i, j ≤ 88,

(ii) φij = 1 if 56 ≤ i, j ≤ 72, and φij = 0 otherwise (see Fig. 2.10(a)) on a computational

domain Ω = [0, 1]× [0, 1]. The time step size ∆t = 1.0e-5.

Figures 2.10(b) and (c) show the numerical results of original AC Eqs. (2.11) and CAC

Eqs. (2.13) at a steady state with two different initial conditions, respectively. The numerical

steady state is defined as the state when the discrete l2 norm of the difference between φn+1

and φn becomes less than tol = 1.0e-6. Observing the numerical results in the top row of

Fig. 2.10, we can see that both models work well when the initial feature is large enough.

It should be noted that the order parameter in the outside phase is 0.009 for Eq. (2.11), on

the other hand, the value is 0.0 for Eq. (2.13) with our proposed numerical scheme. The

reason why the order parameters have different values is that our scheme corrects mass loss

in the interfacial region. If the geometry is small, then the geometry disappears with Eq.
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Figure 2.10. (a) Initial conditions with two different shapes. (b) and (c)
are numerical results from Eqs. (2.11) and (2.13), respectively.

(2.11) (see the second row of Fig. 2.10(b)). On the other hand, with our scheme, the drop

stays as shown in the second row of Fig. 2.10(c).

Next, we simulate numerical tests of three-dimensional cubes in Fig. 2.11. The initial

conditions are given on Ω = [0, 1] × [0, 1] × [0, 1] with h = 1/128 as (i) φijk = 1 if 40 ≤

i, j, k ≤ 88, (ii) φijk = 1, if 56 ≤ i, j, k ≤ 72, and φijk = 0 otherwise (see Fig. 2.11(a) for

the isosurfaces φ = 0.5). The temporal step size ∆t = 1.0e-5 is used. Figures 2.11(b) and

(c) show the steady states with Eqs. (2.11) and (2.13), respectively. The three-dimensional

results are almost similar to the two-dimensional ones.
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Figure 2.11. (a) Two different-sized cubes for initial conditions. (b) and
(c) are numerical results from Eqs. (2.11) and (2.13), respectively.

2.2.3.3. Evolution of disks. In [15], the authors gave the evolution law for radii of spheres

in n-dimensional geometric flows. For the m interfaces of radii ri for i = 1, 2, . . . ,m with

rj < rj+1 for j = 1, 2, . . . ,m− 1 , the equations of evolution in n-dimensional case are given

by

dri
dt

= (n− 1)

(∑m
k=1 r

n−2
k

∑m
k=1 r

n−1
k

− 1

ri

)

, i = 1, 2, . . . ,m.

We consider two disjoint circular interfaces in two-dimensional space. Assume that the two

interfaces have radii r and R with r < R, then the equations of evolution become

dr

dt
=

2

r +R
− 1

r
, (2.25)

dR

dt
=

2

r +R
− 1

R
. (2.26)
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From the above equations, we can get the time tf at which smaller circle disappears by

solving a system of ordinary differential equations [11]:

tf = −1

2
r0R0 +

1

4

(

r20 +R2
0

)

ln

(

1 +
2r0R0

(R0 − r0)
2

)

, (2.27)

where r0 and R0 are the initial radii. We present results for r0 = 0.1 and R0 = 0.15 using a

temporal step size ∆t = 1.1264×10−4 on Ω = [0, 1]× [0, 1] with a mesh grid 128×128. Then

tf = 0.0133 by Eq. (2.27). For the reference solutions of r and R, we numerically solve the

ordinary differential equations by using the fourth order Runge–Kutta method [10, 16, 113].

In Fig. 2.12, the solid lines represent the result from the Runge–Kutta method, dot and

star represent the radius evolutions of R and r with Eq. (2.13), respectively, and circle and

diamond also represent the radius evolutions of Rp and rp with Eq. (2.11), respectively.

0 0.005 0.01
0

0.05

0.1

0.15

 

 

R
r

Rp

rp

Figure 2.12. Evolution of the radii of two distinct circles against time. R
and r are radii from Eq. (2.13) and Rp and rp are radii from Eq. (2.11).
The solid lines are the corresponding reference solutions.

As shown in Fig. 2.12, R grows monotonically with our numerical scheme and r dis-

appears at the similar time as predicted from the analytic calculation. Compared to Eq.
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(2.13), the results from Eq. (2.11) do not predict the theoretical prediction because most

mass diffuse into the bulk phase from a global mass conservative Lagrange multiplier.

2.2.3.4. Practically unconditional stability test. We test a numerical simulation to demon-

strate the practically unconditional stability of the proposed scheme. The initial condition

use random perturbation around 0.5 as follows:

φ(x, y, 0) =
1

2
+ 0.02rand(x, y),

where rand(x, y) is a random number between −1 and 1. We use a mesh grid size 128× 128

on the computational domain Ω = [0, 1]× [0, 1] with three different time steps, ∆t = 0.1h2,

h2, and 10h2. Figures 2.13(a), (b), and (c) are snapshots at the same time T = 50h2 with

three different time steps.
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(c) ∆t = 10h2

Figure 2.13. The time steps are shown below each figure and results are
at the same time T = 50h2.

From the results, proposed scheme is demonstrated the practically unconditionally stable.

We should note that the value of ∆t is typically smaller than 0.1h2 to get accurate nu-

merical approximations. Otherwise, the numerical scheme may unnecessarily result in large

discretization errors. Therefore, the fact that we can use two orders of magnitudes larger

time step than ∆t = 0.1h2 suggests the proposed scheme is practically unconditionally

stable.
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2.2.4. Summary. In this section, we proposed a new numerical scheme for solving the

conservative Allen–Cahn equation with a space-time dependent Lagrange multiplier. Ru-

binstein and Sternberg’s nonlocal Allen–Cahn equation conserves mass. However, with their

model it is difficult to keep small features since they dissolve into the bulk region because

mass conservation is realized by a global correction using the time-dependent Lagrange mul-

tiplier. To resolve the problem, we used a space-time dependent Lagrange multiplier to

preserve the volume of the system and proposed a practically unconditionally stable hybrid

scheme to solve the model. We performed numerical experiments such as the basic mech-

anism of the model, a comparison with previous model, the temporal evolution of drops

in two- and three-dimensional spaces, and a practically unconditional stability test of the

proposed numerical scheme. The numerical results indicate a potential usefulness of our

proposed numerical scheme for accurately calculating geometric features of interfaces. In

particular, it is applicable to various problems with a mass conservation constraint.
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2.3. Lengyel–Epstein equation

2.3.1. Governing equations. We consider the following Lengyel–Epstein equation

[54]:

∂u

∂t
= Du∆Su+ f(u, v)

= Du∆Su+ k1

(

v − uv

1 + v2

)

, (2.28)

∂v

∂t
= Dv∆Sv + g(u, v)

= Dv∆Sv + k2 − v − 4uv

1 + v2
, (2.29)

where u(x, t) and v(x, t) are concentrations of an inhibitor and an activator at position

x ∈ S and time t, respectively. Here, ∆S denotes the Laplace–Beltrami operator, Du and

Dv are the diffusion coefficients, and k1 and k2 are positive constants related to the feed

concentrations. In this section, we test on the two-dimensional problem, so we use the

surface Laplacian operator ∆S by the standard Laplacian operator ∆. Then we can rewrite

the Eqs. (2.28) and (2.29) as follows:

∂u

∂t
= Du∆u+ k1

(

v − uv

1 + v2

)

, (2.30)

∂v

∂t
= Dv∆v + k2 − v − 4uv

1 + v2
. (2.31)

2.3.2. Discretization. We present a numerical algorithm for the Lengyel–Epstein

model. We discretize the reaction-diffusion equation in a two-dimensional domain Ω =

(a, b) × (c, d). Let Nx and Ny be positive integers, h = (b − a)/Nx = (d − c)/Ny be the

uniform mesh size, and

Ωh = {xij = (xi, yj) = (a+ hi, c+ hj)
∣

∣0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny}
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be the discrete domain. Let unij and v
n
ij be approximations of u(xi, yj, n∆t) and v(xi, yj, n∆t),

where ∆t = T/Nt is the time step, T is the final time, and Nt is the total number of time

steps. We consider the discretization of the reaction-diffusion system (2.30) and (2.31) using

explicit scheme,

un+1
ij − unij

∆t
= Du∆hu

n
ij + k1

(

vnij −
unijv

n
ij

1 + (vnij)
2

)

, (2.32)

vn+1
ij − vnij

∆t
= Dv∆hv

n
ij + k2 − vnij −

4unijv
n
ij

1 + (vnij)
2
, (2.33)

Here, the descretization of Laplacian is given by

∆huij =
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4uij

h2
.

and

∆hvij =
vi+1,j + vi−1,j + vi,j+1 + vi,j−1 − 4vij

h2
.

2.3.3. Numerical experiments.

2.3.3.1. Linear stability analysis. In this section, we study the linear stability analysis

for Eqs. (2.30) and (2.31). We seek a solution of the form,

u(x, y, t) = ū+ αm1,m2(t) cos

(

2πm1x

Lx

)

cos

(

2πm2y

Ly

)

, (2.34)

v(x, y, t) = v̄ + βm1,m2(t) cos

(

2πm1x

Lx

)

cos

(

2πm2y

Ly

)

, (2.35)

where Ω = (0, Lx) × (0, Ly) and f(ū, v̄) = g(ū, v̄) = 0. Substituting Eqs. (2.34) and (2.35)

into the linearized equations of Eqs. (2.30) and (2.31) yields

d

dt

(

αm1,m2(t)
βm1,m2(t)

)

= A

(

αm1,m2(t)
βm1,m2(t)

)

=

(

a b
c d

)(

αm1,m2(t)
βm1,m2(t)

)

, (2.36)
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where A is a 2× 2 matrix whose components are given as

a = −Du

[

(

2πm1

Lx

)2

+

(

2πm2

Ly

)2
]

− k1v̄

1 + v̄2
, (2.37)

b = k1

[

1− ū(1− v̄2)

(1 + v̄2)2

]

,

c = − 4v̄

1 + v̄2
, (2.38)

d = −Dv

[

(

2πm1

Lx

)2

+

(

2πm2

Ly

)2
]

− 1− 4ū(1− v̄2)

(1 + v̄2)2
.
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Figure 2.14. (a) Mesh plot and (b) filled contour plot of max(Re(λ1),
Re(λ2)). Shaded area is the positive value of max(Re(λ1), Re(λ2)).

-27-



2.3. LENGYEL–EPSTEIN EQUATION

Figures 2.14(a) and (b) show the mesh plot and the contour plot of max(Re(λ1), Re(λ2)),

respectively, where λ1 and λ2 are the eigenvalues of the matrix A. For a better visualization,

we put the zero plane together. Here, we used the parameters: Du = 1, Dv = 0.02, k1 = 9,

k2 = 11, ū = 1 + 0.04k22, v̄ = 0.2k2, Lx = 10, and Ly = 10.

2.3.3.2. Pattern on two-dimensional rectangular domain. We first numerically solve Eqs.

(2.32) and (2.33) on a two-dimensional rectangular domain Ω = [0, 10]×[0, 10] using Du = 1,

k2 = 11, a mesh grid 101×101, h = 0.1, and ∆t = 0.1h2. Here, periodic boundary conditions

in each direction are used. Initial conditions for u and v are

u(x, y, 0) = ū+ 0.1rand(x, y),

v(x, y, 0) = v̄ + 0.1rand(x, y),

where ū = 1 + 0.04k22, v̄ = 0.2k2, and rand(x, y) is a random number between −1 and 1.

Figures 2.15(a) and (b) show the temporal evolutions of the activator concentration

(v) when we use Dv = 0.04, k1 = 7 and Dv = 0.02, k1 = 9, respectively. The times are

shown below each column. We can observe spots and stripes depending on the parameters

as shown in [79]. Note that Othmer et al. [79] showed more patterns observed in animal

skin, including spots, stripes, reticulated stripes, and inverted spots.
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(a)

(b)

t = 10 t = 70 t = 1000

Figure 2.15. Temporal evolution of activator concentration v with Du = 1
and k2 = 11 on two-dimensional domain Ω = [0, 10] × [0, 10]. Here, (a)
Dv = 0.04, k1 = 7 and (b) Dv = 0.02, k1 = 9 are used.

2.3.4. Summary. We numerically simple studied the Lengyel–Epstein equation which

with a two-component activator-inhibitor system of reaction-diffusion equations. We dis-

cretized the governing equations using a finite difference method and show the linear sta-

bility analysis. Also we represent the pattern on two-dimensional rectangular domain. In

that simulation, we obtain the hexagonal and lamella pattern. This results be applied on

the surface in the Chapter 5.3.
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Chapter 3

Surface reconstruction algorithm

3.1. Introduction

Developing reconstruction algorithms have been attracted and considered important

research area. Three-dimensional (3D) volume reconstruction from a sequence of medical

images (CT, MRI, X-ray) has various applications such as medical diagnostic, plastic and

artificial limb surgery, virtual surgery system, anatomy teaching, and treatment planning

[23, 27]. Various algorithms have been proposed to reconstruct a surface or volume from a

set of planar cross-sections. A method which combines the elastic interpolation algorithm,

spline theory, and surface consistency theorem was proposed for reconstructing a smooth 3D

object from serial cross sections [65]. Guo et al. presented a morphology-based mathemat-

ical method to implement the interpolation by means of a combined operation of weighted

dilation and erosion [37]. Jones and Chen constructed surfaces from cross sections using a

field function in each slice and the marching cubes algorithm to generate a surface consist-

ing of polygonal facets [45]. In shape-based interpolation method, the signed distance value

of a voxel to the edges of a cross section is calculated. After each slice has been assigned

the distance values, distances for other slices are defined using an interpolation. Then, the

volume is obtained by the zero isosurface [85]. For other approaches to 3D reconstruction,

refer to [33, 38, 56, 110].
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3.2. Image segmentation with modified Allen–Cahn equation

Because of the original image usually has noises as in Figs. 3.1(a) and (b). Therefor, to

prepare the numerical slice data ψ in Fig. 3.1(c), we need to applying the proposed method

for volume reconstruction by using image segmentation technique [19, 21, 60, 61, 62, 63, 83].
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Figure 3.1. Image segmentation process: (a) given original medical image,
(b) mesh plot of the original image, and (c) results of after image segmen-
tation.

The image segmentation is based on the Allen–Cahn equation which detailed descrip-

tions in Chapter 2.1 and it enforces the diffuse interface to be the hyperbolic tangent profile.

The geometric active contour model based on the mean curvature motion is given by the

following evolution equation [60]:

∂ψ(x, t)

∂t
= g(f0(x))

(

−F
′(ψ(x, t))

ǫ2
+∆ψ(x, t)

)

+ βg(f0(x))F (ψ(x, t)), (3.1)

where x = (x, y) and

f0(x) =
f(x)− fmin

fmax − fmin
,

here, fmax and fmin are the maximum and minimum values of the given slice image f(x),

respectively. Here, ψ(x, t) is a phase-field function which is close to 1 or −1 and F (ψ) =
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0.25(ψ2 − 1)2. The function

g(f0(x)) =
1

1 + |∇(Gσ ∗ f0)(x)|2

is the edge-stopping function, which stops the evolution when the contour reaches the edge.

(Gσ ∗ f0)(x) =
∫

Ω

Gσ(x− y)f0(y)dy

is the convolution of the given image f0 with the Gaussian function

Gσ(x) =
1

2πσ2
e−

x2+y2

2σ2 .

ǫ is a constant that is related to the phase transition width, and β is a parameter. And we

use σ = 1.5 and β = 50000.

We apply a hybrid method [60] to solve Eq. (3.1) and we outline the numerical solution

algorithm for the sake of completeness. We discretize Eq. (3.1) in Ω = (a, b) × (c, d). Let

Nx and Ny be positive even integers, h = (b − a)/Nx = (d − c)/Ny be the uniform mesh

size. Let ψn
ij be approximations of ψ(xi, yj, n∆t), where xi = a+(i− 0.5)h, yj = (j− 0.5)h,

and ∆t is the time step. The discrete edge function is defined by

g(f0)ij =
1

1 + (Gσ ∗ f0)2x,ij + (Gσ ∗ f0)2y,ij
,

where

(Gσ ∗ f0)x,ij =
(Gσ ∗ f0)i+1,j − (Gσ ∗ f0)i−1,j

2h

and

(Gσ ∗ f0)y,ij =
(Gσ ∗ f0)i,j+1 − (Gσ ∗ f0)i,j−1

2h
.

The discrete convolution is defined as

(Gσ ∗ f0)ij =
i+1
∑

p=i−1

j+1
∑

q=j−1

f0pq
2πσ2

e−
[(i−p)2+(j−q)2 ]h2

2σ2 .
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3.2. IMAGE SEGMENTATION WITH MODIFIED ALLEN–CAHN EQUATION

The zero Neumann boundary condition is used. Then the following operator splitting nu-

merical algorithm for Eq. (3.1) is as follows:

ψ∗
ij − ψn

ij

∆t
= gij∆dψ

∗
ij + βgijF (ψ

n
ij), (3.2)

which is solved by a multigrid method [101]. Here ∆d is the standard five point discrete

Laplacian operator. Next, using the method of separation of variables we analytically solve

the equation

ψt = g
ψ − ψ3

ǫ2
(3.3)

with the condition ψn = ψ∗. Then the solution of Eq. (3.3) at t = (n+ 1)∆t is given as

ψn+1
ij =

ψ∗
ij

√

e−
2gij∆t

ǫ2 + (ψ∗
ij)

2

(

1− e−
2gij∆t

ǫ2

)

.

Figures 3.1 and 3.2 illustrate the process of image segmentation using Eq. (3.1). For the

given medical image in Fig. 3.1(a), we define the scaled image f0(x) and initialize ψ(x, 0)

as ψ(x, 0) = 1 if x is inside the square contour, ψ(x, 0) = −1 otherwise (see Fig. 3.2(a)). In

Figs. 3.2(b) and (c), the initial contour evolves until it reaches the boundary of the image

through the motion created by the mean curvature (the first term) and the second term on

the right-hand side of Eq. (3.1). The term βg(f0(x))F (ψ(x, t)) evolves the contour beyond

the non-convex and disconnected regions.
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3.3. USING CLOUD POINTS

(a) (b) (c)

Figure 3.2. Image segmentation process of the given slice data: (a)–(c)
evolutions of image segmentation, in which the curves are the zero contours
of ψ(x, y, t).

3.3. Using cloud points

Using cloud points, we can make the surface. First, we obtain a 3ds file format for a

three-dimensional zebra model which is available in [99]. Next, we extract the geometry

information such as vertices and triangles by using Autodesk r 3DS MAX r. Figure 3.3(a)

shows the vertices of the zebra. However, some regions do not contain sufficient points for

constructing a smooth surface. We add more points as shown in Fig. 3.3(b).

(a) (b)

Figure 3.3. (a) Given unorganized data set of zebra and (b) enriched data set.
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3.3. USING CLOUD POINTS

The procedure of adding points is as follows: Let tol be a tolerance which is a maximum

size of the sides of the triangles. Loop over the triangles recursively until all the sides of the

triangles are less than the given tolerance. For example, take a triangle consisting of three

vertices P1, P2, P3 and divide the triangle and add mid points until the maximum size of

the sides is less than the given tolerance, see Figs. 3.4(a)–(d).

P1

P2

P3

(a)

P1

P2

P3

P4

(b)

P1

P2

P3

P4

P5

P6

(c)

P1

P2

P3

P4

P5

P6

P7

P8

P9

(d)

Figure 3.4. Recursively supplement points into polygon: (a) initial poly-
gon, (b) first iteration, (c) second iteration, and (d) third iteration.

Now, we need to get the surface of zebra as the zero level set of a scalar function from

the scattered data points. In this step, we apply an image segmentation technique which

detailed description is in Chapter 3.2. For the segmentation, the governing equation is given
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3.3. USING CLOUD POINTS

as

∂φ(x, t)

∂t
= g(x)

(

−F
′(φ(x, t))

ǫ2
+∆φ(x, t) + βF (φ(x, t)

)

, (3.4)

where g(x) is the unsigned distance function constructed from the unorganized data set of

zebra, φ is a phase-field function, which is close to 1 and −1 in the inside and outside domain

of the reconstructed zebra.

Figure 3.5(a) represents the zero isosurface of the segmented image using Eq. (3.4)

with ǫ = 0.0225 and λ = 500. Here, a 64 × 256 × 192 mesh grid on the domain Ω =

(0, 1)× (0, 4)× (0, 3) and ∆t = 0.001 are used.

(a) (b)

Figure 3.5. Surface reconstruction process of the given unorganized data
set of zebra: (a) after image segmentation step, and (b) after reinitialization
shape on the zero isosurface.

Finally, we construct the signed distance function from the unsigned distance function

which is obtained in the previous step, since |∇φ| is not one in the neighborhood of S,

i.e., φ = 0. To obtain the signed distance function (Fig. 3.5 (b)), we apply the following

equation:

φt = Sδ(φ
0)
(

1−
√

φ2x + φ2y + φ2z

)

, (3.5)
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3.4. USING SLICE DATA

where φ0 = φ(x, 0) and

Sδ(φ
0) =

φ0
√

(φ0)2 + δ2

is a smoothed sign function [97].

3.4. Using slice data

We propose a numerical algorithm for 3D volume reconstruction from slice data. We

start with an illustration of the process of the proposed algorithm when we have a set of

cross-sectional slice data (Fig. 3.6(a)).

(a) (b) (c)

Figure 3.6. Volume reconstruction from slice data: (a) given slice data,
(b) filled contour plots of segmented slice data, and (c) isosurface of the
reconstructed volume.
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First, by using a modified Allen–Cahn equation, the image segmentation algorithm is

applied for the given slice data f to obtain the phase-field function ψ (segmented image)

that detailed description in Chapter 3.2. Figure 3.6(b) shows the filled contour plots of

segmented slice data ψ. For the second, by using a modified Cahn–Hilliard equation and

the segmented slice data, we reconstruct the volume (Fig. 3.6(c)).

In order to reconstruct a 3D volume from a set of segmented slice data, we consider the

modified Cahn–Hilliard equation which contains a fidelity term:

∂φ(x, t)

∂t
= ∆µ(x, t) + λ(x)(ψ(x) − φ(x, t)), x ∈ Ω, 0 < t ≤ T, (3.6)

µ(x, t) = F ′(φ(x, t)) − ǫ2∆φ(x, t), (3.7)

where x = (x, y, z), Ω = (0, Lx)× (0, Ly)× (0, Lz) is a domain, and

λ(x) =

{

λ0, if x is in the given slice data,
0, otherwise.

Here, φ(x, t) is a phase-field function which is close to 1 or −1 for the reconstructed volume’s

respective interior and exterior. The surface of the volume is represented by the zero-level

set of φ. Let ψ(x, y, zi) for i = 1, . . . , Ns be the segmented slice data obtained by performing

the image segmentation algorithm on Si := Ω∩{z = zi}, where z1 = 0 and zNs
= Lz. Here,

Ns is the number of slice data. Figure 3.7 shows the slice data’s schematics.

SNs

Si

S1

...

...

Figure 3.7. Schematic of slice data S1 to SNs
.
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To define the initial condition φ(x, 0), we use a linear interpolation between two consec-

utive slices: We have

φ(x, y, θzi+1 + (1− θ)zi) = θψ(x, y, zi+1) + (1− θ)ψ(x, y, zi), (3.8)

for 0 ≤ θ ≤ 1 and i = 1, . . . , Ns − 1. Homogeneous Neumann boundary conditions for both

φ and µ are applied: n · ∇φ = n · ∇µ = 0 on ∂Ω except z = z1 and z = zNs
, where Dirichlet

boundary condition for φ is applied.

Equations (3.6) and (3.7) have also been used in image inpainting problem, which is

the process of filling in missing parts of damaged images based on information from the

surrounding areas [8]. The basic mechanism of the inpainting model is illustrated in Fig.

3.8.

(a) (b) (c)

Figure 3.8. Process of the image inpainting: (a) Initial data, (b) inter-
mediate state, and (c) steady state. Image domain is 128 × 128 and gap
distance of the inpainting region is 30 grid points. Reprinted from A.L.
Bertozzi, S. Esedoglu, and A. Gillette [9] with permission from Society for
Industrial and Applied Mathematics.

The inpainting region is denoted as gray in Fig. 3.8(a). Let ψ(x) be the image data

from Fig. 3.8(a). In the figure, black, gray, and white colors represent ψ(x) ≈ −1, 0,

and 1, respectively. Take the initial condition as φ(x, 0) = ψ(x) and solve Eqs. (3.6) and
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(3.7). Then outside the inpainting region, due to the fidelity term λ(x)(ψ(x) − φ(x, t)), the

temporal evolution of φ(x, t) does not deviate much from the original image data ψ(x). On

the other hand, inside the inpainting region where λ(x) = 0, the Cahn–Hilliard dynamics

takes place. The gray value will evolve to either −1 or 1 depending on the boundary values

of the inpainting region. Figures 3.8(b) and (c) show the intermediate and steady states,

respectively. More details can be found in [8].

We use a nearly identical governing equation to those used for image inpainting, which

is two-dimensional. However, we use the equation in a different context, meaning we recon-

struct a 3D volume from a set of slice data. Our approach involves the salient application

of the partial differential equation used in image inpainting.

3.4.1. Discretization. For the stable temporal discretization, we use the efficient nu-

merical scheme based on the unconditionally gradient stable scheme [59, 109], which allows

large time steps. We discretize the governing equations, Eqs. (3.6) and (3.7), in our 3D

space, Ω = (0, Lx)× (0, Ly)× (0, Lz). Let xi = (i− 0.5)h, yj = (j − 0.5)h, zk = (k − 0.5)h,

1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, and 1 ≤ k ≤ Nz, where Nx, Ny, and Nz are positive even integers

and h = Lx/Nx = Ly/Ny = Lz/Nz is the uniform mesh size. Let xijk = (xi, yj, zk) and

let φnijk be an approximation of φ(xijk , n∆t), where ∆t = T/Nt is the time-step, T is the

final time, and Nt is the total number of time-steps. Then the discrete domain is defined

by Ωh = {xijk | 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz}. In addition, we denote the grid

function as φh = {φijk | xijk ∈ Ωh} and discrete l2-norm of φh as

‖φh‖2 =

√

√

√

√

∑

xijk∈Ωh

h3
(

φnijk

)2

. (3.9)
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We then have the following discretization.

φn+1
ijk − φnijk

∆t
= λijk(ψijk − φnijk) +

µn+1
i+1,jk + µn+1

i−1,jk

h2

+
µn+1
i,j+1,k + µn+1

i,j−1,k + µn+1
ij,k+1 + µn+1

ij,k−1 − 6µn+1
ijk

h2
, (3.10)

µn+1
ijk = (φn+1

ijk )3 − φnijk − ǫ2
φn+1
i+1,jk + φn+1

i−1,jk

h2

−ǫ2
φn+1
i,j+1,k + φn+1

i,j−1,k + φn+1
ij,k+1 + φn+1

ij,k−1 − 6φn+1
ijk

h2
. (3.11)

The resulting discrete equations, Eqs. (3.10) and (3.11), are solved using a multigrid method.

In order to condense the discussion, we describe only the relaxation step of this method for

more detailed description in Appendix. Let φn+1,m
ijk and φn+1,m+1

ijk be the respective current

and updated approximations of φn+1
ijk . We set the initial guess to be the previous time-step

solution as φn+1,0
ijk = φnijk. We linearize (φn+1

ijk )3 as

(φn+1
ijk )3 ≈ (φn+1,m

ijk )3 + 3(φn+1,m
ijk )2(φn+1

ijk − φn+1,m
ijk ).

Then we apply the Gauss–Seidel relaxation to the multigrid method:

φn+1,m+1
ijk

∆t
+

6µn+1,m+1
ijk

h2
=
φnijk
∆t

+ λijk(ψijk − φnijk)

+
µn+1,m
i+1,jk + µn+1,m+1

i−1,jk + µn+1,m
i,j+1,k + µn+1,m+1

i,j−1,k + µn+1,m
ij,k+1 + µn+1,m+1

ij,k−1

h2
,

−
(

6ǫ2

h2
+ 3(φn+1,m

ijk )2
)

φn+1,m+1
ijk + µn+1,m+1

ijk = −2(φn+1,m
ijk )3 − φnijk

−ǫ2
φn+1,m
i+1,jk + φn+1,m+1

i−1,jk + φn+1,m
i,j+1,k + φn+1,m+1

i,j−1,k + φn+1,m
ij,k+1 + φn+1,m+1

ij,k−1

h2
.

For more details about the multigrid algorithm of a 3D Cahn–Hilliard equation, please refer

to [109]. It should be noted that without the fitting term (Eq. (3.6) with λ0 = 0), the

proposed scheme is an unconditionally gradient stable scheme [30].
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3.4.2. Numerical experiments. In this section, we perform several numerical exper-

iments in order to demonstrate the performance of our proposed scheme. We regard the

numerical result as the steady state solution if the relative error ‖φn+1 − φn‖22/‖φn‖22 is

less than a tolerance tol. Unless otherwise specified, we use ǫ = ǫ4, time step ∆t = 0.5h,

λ0 = 1000, and tol = 0.002. Throughout the paper, we use isotropic grids and we apply

the image segmentation step for the slice data unless we use the analytic hyperbolic tangent

function.

3.4.2.1. Basic mechanism of the algorithm. We start with an example in the two-dimensional

(2D) space Ω = (0, 1)× (0, 0.5) with a 64×32 mesh grid to show the algorithm’s basic mech-

anism in Eqs. (3.6) and (3.7).

ψ(x, y0) = −1 + tanh

[

x− 0.15√
2ǫ4

]

− tanh

[

x− 0.4√
2ǫ4

]

+ tanh

[

x− 0.6√
2ǫ4

]

− tanh

[

x− 0.9√
2ǫ4

]

,

ψ(x, y11) = −1 + tanh

[

x− 0.3√
2ǫ4

]

− tanh

[

x− 0.45√
2ǫ4

]

+ tanh

[

x− 0.55√
2ǫ4

]

− tanh

[

x− 0.7√
2ǫ4

]

,

ψ(x, y21) = −1 + tanh

[

x− 0.4√
2ǫ4

]

− tanh

[

x− 0.65√
2ǫ4

]

,

ψ(x, y33) = −1 + tanh

[

x− 0.25√
2ǫ4

]

− tanh

[

x− 0.65√
2ǫ4

]

.

In Fig. 3.9(a), thick line segments are the given slices and has following hyperbolic

tangent profiles, which are shown in Fig. 3.9(b). Because this is an example in 2D, we

assume that the given slice data has the hyperbolic tangent profile. However, in the 3D case,

we need an image segmentation algorithm as a preprocess before the volume reconstruction.

We guess the initial state using the liner interpolation (see Fig. 3.9(c)), and the filled contour

at level zero is shown in Fig. 3.9(d). Figure 3.9(e) displays the reconstructed image obtained

by our proposed method.
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(e)

Figure 3.9. (a) mesh grid with initial data, (b) processed slice data, (c)
initial guess obtained using a linear interpolation, (d) zero-filled contour of
φ at t = 0, and (e) zero-filled contour at a steady state after 36 iterations.

3.4.2.2. Effect of image pixel and interslice dimension. We perform simulations to show

the effect of pixel dimension on 3D volume reconstruction with increasing pixel number,

16 × 16 × 8, 32 × 32 × 16, and 64 × 64 × 32. We set numerical parameters as ǫ = ǫ4,

∆t = 0.1h, and tol = 0.0001 on a domain Ω = (0, 1)× (0, 1)× (0, 0.5). The given slice data

is a set of two circles whose radii are same as r = 0.2 and centers are apart by d = 0.4.

Figure 3.10 shows the steady solutions with different pixel numbers. We can see that, with a

few grid points, the reconstructed surface could not be connected, however, with increasing

pixel number, it is getting smooth and connected.

We consider the effect of interslice dimension between two consecutive slices. A 64 ×

64 × 16 mesh grid is used and numerical parameters are set as ǫ = ǫ4, ∆t = 0.5h, and

tol = 0.0001 on a domain Ω = (0, 1) × (0, 1) × (0, 0.25). The given slice data is a set of

two circles which radii are same as r = 0.15 and centers are apart by d = 0.32, see Fig.
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(a) 16× 16× 8 (b) 32× 32× 16 (c) 64× 64× 32

Figure 3.10. Steady solutions for different pixel numbers. Here, only the
bottom and top slices are used.

3.11(a). The reconstructed surface is not connected because the circles are not close enough

comparing with the given interslice. However, if we add a slice at z = z8, which has same

radius and is located in middle in two circles, then we have smoothly connected surface as

shown in Fig. 3.11(b).

(a) (b)

Figure 3.11. Steady solution for different interface dimension.

3.4.2.3. Volume reconstructions using synthetic slice data. We reconstruct the 3D vol-

ume using the three set of more complicated synthetic slice data, consisting a spiral, two

linked tori, and three branching. In this section, we use tol = 0.001. We consider twelve

slice data are used (Fig. 3.12(a)) and there are two slices between any two consecutive

slice data sets. This simulation is performed on the domain (0, 1) × (0, 1.125)× (0, 0.531)
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with a 64 × 72 × 34 mesh grid. Figures 3.12(b) and 3.12(c) are the initial shape by linear

interpolation and final result obtained after 44 iterations.

(a)

(b) (c)

Figure 3.12. (a) Synthetic slice data of three branching (ordered left to
right and top to bottom), (b) initial shape, and (c) reconstructed volume.

3.4.2.4. Volume reconstructions using real slice data. In this section, we simulate several

volume reconstructions by using real slice data. We consider a human vertebra with a twenty-

six slice data from [28] (Fig. 3.13(a)). There are two slices between any two given successive

slice data sets, except for the first and last sets, between which we use only one slice. This

simulation is performed on the domain (0, 1)× (0, 1)× (0, 0.45) with a 160× 160× 72 mesh

grid. Figures 3.13(b) and (c) represent the initial state by the linear interpolation and final
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result obtained after 14 iterations. As can be seen, our proposed method produces visually

clear results, even though the contours are not convex and multiple links between contours

are exist.

(a)

(b)

Figure 3.13. Volume reconstruction of human vertebra: (a) slice data
(ordered left to right and top to bottom) and (b) reconstructed volume of
the human vertebra from different angles.

Our last test examines the volume reconstruction from medical images of a human bone

(tibia and fibula). We have a set of bone slice images with an image size of 216× 216 (Fig

3.14(a)). The number of slices is 128 and there are seven slices between any two consecutive

slices. Note that, because our method can reconstruct the volume with fewer slice data, we
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remove some similar slices (the empty boxes) and use 63 slices. We perform the resolution

on the domain (0, 1)× (0, 1)× (0, 4.120) with a 216× 216× 890 mesh grid. Figures 3.14(b)

and (c) show results of volume reconstruction with different angles after only 23 iterations.

As can be seen, our algorithm represents the bone image well and produces good quality.

(a)

(b)

(c)

Figure 3.14. Volume reconstruction from medical images of a human bone
(tibia and fibula): (a) slice data (ordered left to right and top to bottom),
in which empty boxes represent skipped data, and (b) and (c) reconstructed
volumes obtained from two different angels.
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3.5. Summary

We presented a fast, robust, and accurate numerical method for creating a mathematical

model that produces 3D volume reconstruction using cloud points and slice data. The

governing equations are based on the Allen–Cahn and Cahn–Hilliard equations with a fidelity

term. The proposed algorithm has two steps: image segmentation for the raw given slice data

or cloud points and 3D volume reconstruction using the segmented images. We applied a

hybrid method and an unconditionally stable nonlinear splitting scheme, and then we solved

the resulting system of discrete equations using a multigrid method. We demonstrated the

accuracy, efficiency, and robustness of the method on both synthetic and real medical images,

such as a zebra, three branching, vertebra, tibia, and fibula.
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Chapter 4

Construction of computational domain and boundary

condition

4.1. Narrow band domain

For simplicity of exposition, we shall illustrate schematics in two-dimensional space even

though the actual algorithm is three-dimensional. Figure 4.1 shows the schematic illustration

of surface S, the narrow band domain Ωδ with thickness 2δ, and its boundary ∂Ωδ.

Ωδ 2δ

S

∂Ωδ

Figure 4.1. Schematic illustration of surface S, the narrow band domain
Ωδ with thickness 2δ, and its boundary ∂Ωδ.

Let ψ : R3 → R be the signed distance function to S. Its zero level set is given by

S = {x ∈ R
3
∣

∣ψ(x) = 0}

with ψ < 0 inside S and ψ > 0 outside S.
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Let us define the discrete narrow band domain as

Ωh
δ = {(xi, yj, zk)

∣

∣|ψ(xi, yj , zk)| < δ}

(see Fig. 4.2). In other word,

Ωδ = {y|x ∈ S,y = x+ θn(x) for |θ| < δ}

where n is unit normal vector on the surface S and δ is a positive constant.

Figure 4.2. Schematic illustration of the discrete narrow band domain Ωh
δ

(indicated by •) and its ghost points ∂Ωh
δ (indicated by ◦). Here, the curve

S represents as a solid curve.

Note that we should choose δ ≥
√
3h since the computational narrow band domain must

contain the interpolation stencil for the closest points of the ghost points.

We also define an indicator function I as

Iijk =

{

0 if (xi, yj , zk) ∈ Ωh
δ ,

1 otherwise.
(4.1)

Then, we define the ghost points as

∂Ωh
δ = {(xi, yj , zk)

∣

∣Iijk |∇hIijk | 6= 0}
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(see Fig. 4.3), where

∇hIijk =
Ii+1,jk − Ii−1,jk, Ii,j+1,k − Ii,j−1,k , Iij,k+1 − Iij,k−1

2h
.

∆hφ
n
ijk

Figure 4.3. Expanded illustration of the boxed section in Fig. 4.2. The
shaded region indicates the stencil for the discrete Laplacian operator.

4.2. Closest points method

A boundary condition is needed to calculate Laplacian operator in a given band domain.

That boundary condition can be defined by using the closest point method.

Figure 4.4. Closest points cp(x1) and cp(x2) for points x1 and x2.
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Given a surface S, let cp(x) be a (possibly non-unique) point belonging to S which is

closest to x [69]. Figure 4.4 shows the closest points cp(x1) and cp(x2) for points x1 and

x2. The boundary condition is

φ(x, t) = φ(cp(x), t) on ∂Ωδ. (4.2)

If δ is small enough, then this boundary condition allows us to use the standard Laplacian

operator in the narrow band domain because the condition results in φ which is constant in

the normal direction to the surface.

The numerical closest point of xijk to the surface S is given as

cp(xijk) = xijk − ∇h|ψijk |
|∇h|ψijk ||

|ψijk|. (4.3)

Since cp(xijk) is generally not on a grid point, φn(cp(xijk)) is obtained using the trilinearly

interpolated value (see Fig. 4.5).

xijk

cp(xijk)

Figure 4.5. Schematic illustration of the interpolation of cp(xijk). The
shaded region indicates the interpolation stencil.
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To compute the interpolation efficiently, we tabulated the interpolation stencil (we only save

the smallest index in lexicographical order) and three fractions for each ghost point before

starting time iterations.

4.3. Summary

The overall process is summarized as follows. Figure 4.6-4.9 show the surface taken from

the numerical simulation results in Chapter 5.2.

Figure 4.6 shows the surface of the bunny and we define the surface S.

Figure 4.6. Bunny surface.

The boundary ∂Ωδ, band width 2δ, and band domain Ωδ which is denoted by the shaded

region in Fig. 4.7.
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Figure 4.7. Slice data of the band domain.

When we calculate ∆hφ
n
ijk, the boundary values at the empty circles as shown in Fig.

4.8 are needed.

S

∆hφ
n
ijk

Figure 4.8. The part of the bunny’s ear in Fig. 4.7, definition of the
Laplacian using the points on the shaded region.

For each point x ∈ ∂Ωδ, using the trilinear interpolation we define the closest point

function cp : ∂Ωδ → S which assigns the value of closest point cp(x, t) as shown in Fig. 4.9.
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∂Ωδ

∂Ωδ

cp(x1)

cp(x2)

S

x1

x2

Figure 4.9. Closest points cp(x1) and cp(x2) for boundary points x1 and x2.

Therefore, we define the boundary condition as

φ(x, t) = φ(cp(x), t) on ∂Ωδ. (4.4)

We solve the various partial differential equations on the band domain and boundary

conditions by using closest point method in the next Chapter 5.
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Chapter 5

Partial differential equations on non-flat surfaces

5.1. Allen–Cahn equation

5.1.1. Introduction. The previous studies that have been carried out are as follows.

In the nature and applied sciences need solving the PDEs on surfaces. For instance, fluid flow

and solidification of a thin film [77], brain imaging [74], diblock copolymers [98], computer

graphics for texture synthesis [103], and surfactant distribution on a moving interface [107].

Analytic solutions to the problems on general surfaces are not always feasible, therefore it

is important to be able to numerically approximate them accurately and efficiently.

In [88], the authors presented the closest point method, which is an embedding method

for solving PDEs on surfaces. In [75], the diffusion generated motion algorithm has been

extended to the moving curves on surfaces. Key aspects to their approach are the use of

standard diffusion in one dimension higher than the underlying surface and the use of the

closest point representation of the surface. The authors of [12] introduced a framework for

solving variational problems and partial differential equations on surfaces. The main idea

is to represent the surface as the level set of a higher dimensional function and to solve the

surface equations in a fixed Cartesian coordinate system.

In this chapter, we propose a fast and accurate numerical method on a narrow band

domain for motion by mean curvature on a surface in three-dimensional space using the

-56-



5.1. ALLEN–CAHN EQUATION

Allen–Cahn equation. The proposed hybrid explicit numerical method is based on an oper-

ator splitting method. First, we solve the heat equation by using an explicit finite difference

scheme. For the domain boundary cells, we use an interpolation using the closest point

method. Then, we update the solution by using a closed-form solution. The proposing

numerical algorithm is simple and computationally efficient since we use a hybrid explicit

numerical scheme and solve the governing equation only on the narrow domain. The imple-

mentation of the algorithm is straightforward. We perform a series of numerical experiments.

The computational results are consistent with known analytic solutions.

5.1.2. Governing equations. In this section, we consider motion by mean curvature

of curves on a surface in three-dimensional space. Let S be a smooth surface in R
3 and then

we define a δ-neighborhood band of S as Ωδ = {y|x ∈ S,y = x+ θn(x) for |θ| < δ}, where

n(x) is a unit normal vector at x ∈ S. We use the following Allen–Cahn (AC) equation:

∂φ(x, t)

∂t
= −F

′(φ(x, t))

ǫ2
+∆φ(x, t), x ∈ Ωδ, 0 < t ≤ T, (5.1)

where φ(x, t) is the difference between the concentrations of the two mixtures’ components

and F (φ) = 0.25(φ2 − 1)2. The parameter ǫ is the gradient energy coefficient related to

the interfacial energy. The AC equation (5.1) was originally introduced as a mathematical

model for antiphase domain coarsening in a binary alloy [2].

5.1.3. Discretization. We present a numerical scheme for the AC equation on the

narrow band domain, Ωδ. We discretize the AC equation in a three-dimensional domain

Ω = (a, b) × (c, d) × (e, f) which includes Ωδ. Let Nx, Ny, and Nz be positive integers,

h = (b − a)/Nx = (d − c)/Ny = (f − e)/Nz be the uniform mesh size, and Ωh = {(xi =

a + hi, yj = c + hj, zk = e + hk)|0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, 0 ≤ k ≤ Nz} be the discrete
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domain. Let φnijk be approximations of φ(xi, yj , zk, n∆t), where ∆t = T/Nt is the time step,

T is the final time, and Nt is the total number of time steps. We use the standard seven

point discrete Laplacian:

∆hφijk =
φi+1,jk + φi−1,jk + φi,j+1,k + φi,j−1,k + φij,k+1 + φij,k−1 − 6φijk

h2
(5.2)

We solve the AC equation (5.1) by using splitting method. First we solve the diffusion

equation in the discrete narrow band domain Ωh
δ using the explicit Euler’s method:

φ∗ijk − φnijk
∆t

= ∆hφ
n
ijk (5.3)

with the boundary condition on ∂Ωh
δ ;

φnijk = φn(cp(xijk)). (5.4)

The definition of closest point is in Chapter 4. We have a stability condition, ∆t ≤ h2/6,

which is not that severe constraint if we are concerned with the numerical accuracy.

Next, with φ∗ijk as the solution at t = n∆t, we solve the following equation up to

t = (n+ 1)∆t:

φt =
φ− φ3

ǫ2
. (5.5)

We have the following closed-form solution in the discrete narrow band domain Ωh
δ for

Eq. (5.5):

φn+1
ijk =

φ∗ijk
√

e−
2∆t

ǫ2 + (φ∗ijk)
2
(

1− e−2∆t

ǫ2

)

. (5.6)

This scheme is explicit and we only solve the AC equation (5.1) on a narrow band

domain, therefore it is very fast.
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5.1.4. Numerical experiments. We perform a series of numerical experiments to

demonstrate the accuracy and efficiency of the proposed numerical algorithm. We define

the width of the transition layer by using the ǫ value. From an equilibrium profile

φ(x) = tanh

(

x√
2ǫ

)

,

the concentration field φ varies from −0.9 to 0.9 over a distance of about 2
√
2ǫ tanh−1(0.9).

Therefore, if we want this value to be about mh [26], then we should take ǫ as

ǫm =
mh

2
√
2 tanh−1(0.9)

≈ 0.24mh.

Unless otherwise stated, we use ǫ = ǫ4.

5.1.4.1. Algorithm and code. In this section, we explain the algorithm and represent the

MATLAB code. Algorithm is follows:

Algorithm 1 Determine the values of boundary and solve AC equation

1: for all domain do

2: calculate the difference, ∂Ωh
δ = {(xi, yj , zk)|Iijk|∇hIijk|}

3: if value of ∂Ωh
δ is positive then

4: new numbering the indices which are boundary points’s indices
5: end if

6: end for

7: for all boundary do

8: find the indices and points (cp(xijk)) on the surface S

9: from boundary points (xijk) to normal direction
10: end for

11: for maximum iteration do

12: for all boundary do

13: find the value φn(cp(xijk)) by using trilinear interpolation
14: end for

15: for On the band do

16: Solve the diffusion equation
17: end for

18: for On the band do

19: Solve the closed-form
20: end for

21: end for

The main code of Fig. 5.3 is as follows:
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iterm=0;

for i=1:nx

for j=1:ny

for k=1:nz

d(i,j,k)=sqrt(x(i)^2+y(j)^2+z(k)^2)-R0;

if (abs(d(i,j,k))<delta)

u(i,j,k)=0; iterm=iterm+1;

do(iterm,1)=i; do(iterm,2)=j; do(iterm,3)=k;

else

u(i,j,k)=1;

end

end

end

end

for i=1:nx

for j=1:ny

for k=1:nz

r=sqrt(x(i)^2+y(j)^2);

p(i,j,k) = tanh((r-z(k))/(sqrt(2.0)*eps)); tmpp1(i,j,k)=p(i,j,k);

end

end

end

clear bx by bz

count=0;

for i=2:nx-1

for j=2:ny-1

for k=2:nz-1

a=(abs(u(i+1,j,k)-u(i-1,j,k))+abs(u(i,j+1,k)-u(i,j-1,k)) ...

+abs(u(i,j,k+1)-u(i,j,k-1)))*u(i,j,k);

if (a>0.5)

count=count+1; bx(count)=i; by(count)=j; bz(count)=k;

end

end

end

end

for tm=1:count

i=bx(tm); j=by(tm); k=bz(tm);

v= -[d(i+1,j,k)-d(i-1,j,k) d(i,j+1,k)-d(i,j-1,k) d(i,j,k+1)-d(i,j,k-1)];

v=v/sqrt(v*v’); w=[x(i),y(j),z(k)]+d(i,j,k)*v;

ijk(tm,1) = floor((w(1)-x(1))/h)+1;

ijk(tm,2) = floor((w(2)-y(1))/h)+1;

ijk(tm,3) = floor((w(3)-z(1))/h)+1;
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xr(tm)=(w(1)-x(ijk(tm,1)))/h;

yr(tm)=(w(2)-y(ijk(tm,2)))/h;

zr(tm)=(w(3)-z(ijk(tm,3)))/h;

end

for iter=1:maxit

for tm=1:count

i=bx(tm); j=by(tm); k=bz(tm);

p(i,j,k)= ...

(1-xr(tm))*(1-yr(tm))*(1-zr(tm))*p(ijk(tm,1),ijk(tm,2),ijk(tm,3)) ...

+(1-xr(tm))*(1-yr(tm))*zr(tm)*p(ijk(tm,1),ijk(tm,2),ijk(tm,3)+1) ...

+(1-xr(tm))*yr(tm)*(1-zr(tm))*p(ijk(tm,1),ijk(tm,2)+1,ijk(tm,3)) ...

+(1-xr(tm))*yr(tm)*zr(tm)*p(ijk(tm,1),ijk(tm,2)+1,ijk(tm,3)+1) ...

+xr(tm)*(1-yr(tm))*(1-zr(tm))*p(ijk(tm,1)+1,ijk(tm,2),ijk(tm,3)) ...

+xr(tm)*(1-yr(tm))*zr(tm)*p(ijk(tm,1)+1,ijk(tm,2),ijk(tm,3)+1) ...

+xr(tm)*yr(tm)*(1-zr(tm))*p(ijk(tm,1)+1,ijk(tm,2)+1,ijk(tm,3)) ...

+xr(tm)*yr(tm)*zr(tm)*p(ijk(tm,1)+1,ijk(tm,2)+1,ijk(tm,3)+1);

end

for ii=1:iterm

i=do(ii,1); j=do(ii,2); k=do(ii,3);

np(i,j,k)=p(i,j,k)+dt*(p(i-1,j,k)+p(i+1,j,k)+p(i,j-1,k)+p(i,j+1,k) ...

+p(i,j,k-1)+p(i,j,k+1)-6*p(i,j,k))/h^2;

end

for ii=1:iterm

i=do(ii,1); j=do(ii,2); k=do(ii,3);

p(i,j,k)= ...

np(i,j,k)/sqrt(exp(-2*dt/eps^2)+np(i,j,k)^2*(1-exp(-2*dt/eps^2)));

end

tmpp2 = p;

ns = 1;

if mod(iter,ns)==0

clf; T = find(tmpp1-tmpp2==0); tmpp2(T) = NaN;

Y = p(:); it = abs(d) < delta;

[xx,yy,zz]=meshgrid(y,x,z);

xt=xx(:); yt=yy(:); zt=zz(:);

xt = xt(it(:)); yt = yt(it(:)); zt = zt(it(:)); Y = Y(it(:));

ppS=isosurface(xx,yy,zz,d,0); hold on; ppC=isosurface(xx,yy,zz,p,0);

paS = patch(ppS); paC = patch(ppC);

isonormals(xx,yy,zz,d,paS); isonormals(xx,yy,zz,d,paC);

ptS = ppS.vertices; ptC = ppC.vertices;

X = [xt,yt,zt];

XIS = [ptS(:,1),ptS(:,2),ptS(:,3)]; XIC = [ptC(:,1),ptC(:,2),ptC(:,3)];
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cdataS = griddatan(X,Y,XIS); cdataC = griddatan(X,Y,XIC);

set(gca,’CLim’,[-1.1 1.1]);

set(paS,’FaceColor’,’interp’,’FaceVertexCData’,cdataS,’EdgeColor’,’none’);

set(paC,’FaceColor’,’none’,’FaceVertexCData’,cdataC,’EdgeColor’,’none’);

axis image; axis([x(1) x(end) y(1) y(end) z(1) z(end)])

daspect([1 1 1]); view(-34,20); axis off camlight; lighting phong;

colormap jet; drawnow;

end

end

5.1.4.2. Motion by mean curvature on a sphere. We consider the motion of a circular

interface on a sphere evolving according to in-surface curvature motion [88]. In Fig. 5.1(a),

R and r are radii of the sphere and the circle, respectively.

V = −1

r

be the curvature of the circle, x be the tangential component of V , and u be the component

of x toward the center of the circle. Then, we can find that

u = −1

r
cos2 θ

from Fig. 5.1(b). Now, the governing equation for the motion of a circular interface on a

sphere is given as:

dr

dt
= u = −1

r
cos2 θ =

r2 −R2

rR2
. (5.7)

By solving Eq. (5.7), we have the analytic solution for r(t),

r(t) =

√

R2 − (R2 − r20)e
2t
R2 . (5.8)
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(a)
Rθ

r

O

(b)

R
θ

θr

x

O

V u

Figure 5.1. Schematic of (a) parameters are on the sphere and (b) detailed
description for some part of (a).

To show the convergence test, we adopt difference mesh size n = 21, 61, and 101. Other

conditions are same as spatial step size h = 2/(n − 1), sphere radius R = 1, circle radius

r = 1/
√
2, total simulation time T = 0.2 on the computational domain Ω = (−1, 1) ×

(−1, 1)× (−1, 1).
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analytic

mesh 213
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Figure 5.2. Convergence test for different mesh size.

Figure 5.2 shows the convergence result with respect to grid size. Each of the mesh sizes

(213, 613, and 1013) has the radius value as 0.4809, 0.4859, and 0.4869, respectively. The

errors from the analytic radius (0.5041) at t = 0.2 are 0.0232, 0.0182, and 0.0171 on the

mesh 213, 613, and 1013, respectively. Therefore, as we refine the mesh, the numerical result

is getting closer to the analytic radius. Since we have a stability condition, ∆t ≤ h2/6, we

choose the proper ∆t as 0.1h2 for the simulation.

In this simulation, the initial condition surface is defined using signed distance function:

d(x, y, z) =
√

x2 + y2 + z2 −R, (5.9)

where R is sphere radius 1. And phase-fields function:

φ(x, y, z) = tanh

√

x2 + y2 − z√
2ǫ

, (5.10)

where ǫ = 0.1 is transition layer. We also use other parameters are: circle radius r = 1/
√
2,

mesh size n = 513, spatial step size h = 2/(n − 1), time step ∆t = 0.1h2 on the compu-

tational domain Ω = (−1, 1)3. Figures 5.3(a)–(c) represent the evolution for each time (a)

t = 0, (b) t = 800∆t, and (c) t = 1600∆t. The first column shows the surface view and

second column represents grid view for calculating region only on the sphere.
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(a)

(b)

(c)

Figure 5.3. First column represents the surface view and second column
shows grid view at the (a) t = 0, (b) t = 800∆t, and (c) t = 1600∆t.
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5.1.4.3. Motion by mean curvature on a torus. In this section, we investigate motion

by mean curvature on a torus. For all numerical simulation of torus, we use the following

signed distance function as

d(x, y, z) =

√

(
√

x2 + y2 −R)2 + z2 − r, (5.11)

where R represents the circumferential radius which is the size of the circle that constitutes

the center of the torus tube and r is the tube radius. We take the two radii to be R = 0.7 and

r = 0.3. We also use the following parameters as ǫ = ǫ4, h = 2/50, ∆t = 0.1h2, δ = 1.1
√
3h,

and 51× 51 grids on the computational domain Ω = (−1, 1)× (−1, 1)× (−0.3, 0.3).

For the first example, we set the initial condition to be

φ(x, y, z) =







1, if z > 0 and
√

x2 + y2 < 0.9

−1, otherwise.
(5.12)

The initial curve is taken to be the intersection of the torus with the condition (5.12) as

displayed in Fig. 5.4.

t = ∆t t = 1500∆t t = 2100∆t t = 5700∆t t = 6000∆t

Figure 5.4. Numerical solutions on the torus with the initial condition
(5.12) at each time t. Red and blue regions denote φ = 1 and φ = −1.

Figure 5.4 illustrates the temporal behavior of the interfaces on the surface. In this

figure, computational times are written below each one. The interfaces shrink by mean
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curvature as time evolves. In the last frame of Fig. 5.4, the interface reaches to the the

steady state.

In the second example, we use the following initial condition as

φ(x, y, z) =







1, if
√
x2 + z2 < 1.2 and y + z > 0.1

−1, otherwise.
(5.13)

t = 2∆t t = 300∆t t = 600∆t t = 1500∆t t = 1800∆t

Figure 5.5. Numerical solutions on the torus with the initial condition
(5.13) at each time t. Red and blue regions denote φ = 1 and φ = −1.

Figure 5.5 displays the rendered surface of the numerical solution φ at t = 2∆t, 300∆t,

600∆t, 1500∆t, and 1800∆t, respectively. As time goes on, the interfaces evolve according

to curvature motion. In final frame which represents a steady state, the two interfaces with

ring-shape have zero curvature on the torus.

As third example, we consider the following initial condition as

φ(x, y, z) =







1, if
√

(x− 0.7)2 + 0.25z2 < 0.25 and z > 0.0

−1, otherwise.
(5.14)

Figure 5.6 shows the motion by mean curvature on torus at time t. When approaching

steady state, the interface approaches a circle before disappearing.
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t = ∆t t = 120∆t t = 280∆t t = 360∆t t = 400∆t

Figure 5.6. Numerical solutions on the torus with the initial condition
(5.14) at each time t. Red and blue regions denote φ = 1 and φ = −1.

5.1.4.4. Phase ordering on surfaces. Although our primary goal is to simulate motion

by mean curvature on surfaces, we present phase ordering on curved surfaces. Phase separa-

tion on curved membranes are intriguing physical phenomena, ranging from nonequilibrium

statistical physics and hydrodynamic theories to cell biology (see [72] and references therein).

One example is lipid bilayers [89].

First, we consider the process of phase separation on the surface of a sphere of radius

R. The signed distance function is given as

d(x, y, z) =
√

x2 + y2 + z2 −R,

where R = 1. Then, the spherical surface is defined as the zero level set, i.e.,

S = {(x, y, z)
∣

∣d(x, y, z) = 0}.

The narrow band domain is defined as

Ωδ = {(x, y, z)
∣

∣|d(x, y, z)| < δ},

where δ = 1.1
√
3h. The space step h = 2R/50 and the time step ∆t = 0.1h2 are used. The

domain is Ω = (−1− 4h, 1 + 4h)× (−1− 4h, 1 + 4h)× (−1− 4h, 1 + 4h).
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The initial condition is

φ(x, y, z) = 0.5rand(x, y, z),

where rand(x, y, z) is a uniformly distributed random number between −1 and 1. Figure 5.7

shows the time evolution of morphologies.

t = 30∆t t = 40∆t

t = 80∆t t = 500∆t

Figure 5.7. Temporal evolution of numerical solutions on a sphere. The
computational times are shown below each figure.

Next, we consider the process of phase separation on the surface of a torus with the

signed distance function (5.11). And we choose the same value for numerical parameter as

in the previous tests in Section 5.1.4.3). The initial condition is φ(x, y, z) = 0.5rand(x, y, z),

where rand(x, y, z) is a uniformly distributed random number between −1 and 1.
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t = 30∆t t = 50∆t t = 300∆t

Figure 5.8. Temporal evolution of numerical solutions on a torus. The
computational times are shown below each figure.

Figure 5.8 shows the time evolution of morphologies of torus. As shown in this fig-

ure, spinodal decomposition proceeds to completion without arresting when approaching to

steady state.

5.1.5. Summary. By using the Allen–Cahn equation, we developed a fast and accu-

rate numerical method for motion by mean curvature of curves on a surface in the three-

dimensional space. We use operator splitting method and solved the Allen–Cahn equation

on a narrow band domain. The domain boundary are defined by an trilinear interpolation

algorithm with the closest point method. To solve efficiently, we first solve the heat equation

by using an explicit scheme, and then update the solution by using a closed-form solution.

Through various numerical experiments such as motion by mean curvature or phase ordering

on sphere and torus, we showed that the proposed numerical algorithm is computationally

efficient and accurate.
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5.2. Conservative Allen–Cahn equation

5.2.1. Introduction. The Allen–Cahn (AC) equation is a second-order nonlinear par-

abolic partial differential equation, originally proposed by Allen and Cahn [2] to describe

the phase separation in binary alloys. The classical AC equation is

∂φ

∂t
(x, t) = −M

(

F ′(φ(x, t))

ǫ2
−∆φ(x, t)

)

. (5.15)

Detailed description of the AC equations, please refer to Chapter 2.1 and 5.1. The

AC equation has been used to model many phenomena such as crystal growth [24], image

inpainting [31, 58], image segmentation [13, 46], and tumor growth [105] on flat surfaces.

Also, the AC equation has been studied on non-flat surfaces [25]. Although the conservative

Allen–Cahn (CAC) equation was solved and studied on flat surfaces [49, 50, 90, 104], there is

no research work to solve the CAC equation on non-flat surfaces to the authors’ knowledge.

Therefore, the main purpose of this article is to develop a fast and computationally effi-

cient finite difference method for the CAC equation on non-flat surfaces in three-dimensional

space. The problem for partial differential equations on the surfaces has been studied in

various fields such as image processing [40, 78] and biological modeling [3, 78, 96]. Therefore,

solving the CAC equation on the surfaces is geometrically and numerically an important is-

sue. We employ a hybrid explicit numerical method, which is based on an operator splitting

method and we solve the resulting discrete equations on a narrow band domain. We use

an idea of the closest point method [88] to define the boundary condition. The numerical

results demonstrate that the proposed algorithm is accurate and efficient.
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5.2.2. Governing equations. In this section, we describe the CAC equation [49]

∂φ

∂t
(x, t) = −F

′(φ(x, t))

ǫ2
+∆φ(x, t) + β

√

F (φ(x, t)), (5.16)

where φ(x, t) is the order parameter,
√

F (φ) = 0.5|φ2 − 1|, ǫ is thickness of transition layer,

and β is Lagrange multiplier to conserve the total mass. Let S be a smooth surface in R
3

and Ωδ be a neighborhood of S which is defined as

Ωδ = {y|x ∈ S,y = x+ θn(x) for |θ| < δ}

where n is unit normal vector on the surface S and δ is a positive constant.

We detailed describe how to find the boundary points by using closest point method in

Chapter 4. In that chapter, we explain how to define the Laplacian and boundary condition.

To help the reader understand the idea, we explain the algorithm in the two-dimensional

space. We define the surface S, boundary ∂Ωδ, band width 2δ, and band domain Ωδ. When

we calculate ∆hφ
n
ijk , the boundary values are needed. For each point x ∈ ∂Ωδ, using the

trilinear interpolation we define the closest point function cp : ∂Ωδ → S which assigns the

value of closest point cp(x). Therefore, we define the boundary condition as

φ(x, t) = φ(cp(x), t) on ∂Ωδ. (5.17)

In this chapter, we describe how to solve the CAC equation on the narrow band domain.

5.2.3. Discretization. In this section, we represent the numerical schemes for the

CAC equation on the narrow band domain, Ωδ. The CAC equation is descretized on the

three-dimensional domain Ω = (a, b) × (c, d) × (e, f). The uniform spatial step size is

h = (b− a)/Nx = (d− c)/Ny = (f − e)/Nz, where Nx, Ny, and Nz are the numbers of cells
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in x-, y-, and z-directions, respectively. Discrete domain Ωh is defined as

Ωh = {xijk = (xi, yj , zk) = (a+ hi, c+ hj, e + hk)
∣

∣0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, 0 ≤ k ≤ Nz}

and

Ωh
δ = {xijk

∣

∣|ψijk(xijk)| < δ}

is the discrete narrow band domain where ψ is a signed distance function. The narrow band

domain must contain the stencil, we should take δ ≥
√
3h. Let boundary points be defined

as

∂Ωh
δ = {xijk

∣

∣Iijk |∇hIijk | 6= 0},

where

∇hIijk =
Ii+1,jk − Ii−1,jk, Ii,j+1,k − Ii,j−1,k , Iij,k+1 − Iij,k−1

2h
.

Here, Iijk = 0 if xijk ∈ Ωh
δ ; otherwise Iijk = 1.

Let φnijk be approximations of φ(xijk , n∆t), where ∆t = T/Nt is the time step, T is the

final time, and Nt is the total number of time steps. On Ωh
δ , we define a discrete L2-norm

error as

‖φ‖L2 =

√

√

√

√

1

#Ωh
δ

∑

xijk∈Ωh
δ

φ2ijk ,

where #Ωh
δ is the number of points on the band. We consider the discretization of the CAC

Eq. (5.16). First we solve the AC equation which is obtained by using an operator splitting

method. We solve the diffusion term on the narrow band domain Ωh
δ by using the explicit

Euler’s method with the boundary condition φnijk = φn(cp(xijk)) on ∂Ω
h
δ :

φ∗ijk − φnijk
∆t

= ∆hφ
n
ijk. (5.18)
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Here, we use the standard Laplacian,

∆hφijk =
φi+1,jk + φi−1,jk + φi,j+1,k + φi,j−1,k + φij,k+1 + φij,k−1 − 6φijk

h2
.

Note that we can use fully implicit or Crank–Nicolson type semi-implicit numerical

schemes for the diffusion equation. In this work, we use the fully explicit scheme for sim-

plicity and accuracy. We define the closest point cp(xijk) as

cp(xijk) = xijk − ∇h|ψijk |
|∇h|ψijk ||

|ψijk|, (5.19)

where ψ is a signed distance function. The closet point cp(xijk) is generally not on a

grid point. Therefore, we use the trilinear interpolation algorithm to obtain the values

φn(cp(xijk)) in Chapter 4.

Next, we solve the reaction term from the following closed-form solution on the discrete

narrow band domain,

φn+1,∗∗
ijk =

φ∗ijk
√

e−2∆t/ǫ2 + (φ∗ijk)
2(1− e−2∆t/ǫ2)

. (5.20)

Finally, we conserve the total mass. Let

φn+1
ijk = φn+1,∗∗

ijk + β
√

F (φn+1,∗∗
ijk ), (5.21)

where

β =

∑

xijk∈Ωh
δ
(φ0ijk − φn+1,∗∗

ijk )

∑

xijk∈Ωh
δ

√

F (φn+1,∗∗
ijk )

. (5.22)

Here, we have used the total mass conserving constraint,

∑

xijk∈Ωh
δ

φ0ijk =
∑

xijk∈Ωh
δ

φn+1
ijk .

Since we want that the initial mass to be the same, β is defined as Eq. (5.22). Therefore,

we obtain the φn+1
ijk as follows. Our mass correction step is only corrected on the interfacial
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transition layer, however in the previous research, the mass is corrected by shifting the whole

phase-field values [52]. Since we solve the CAC equation only on the narrow band domain

and use the explicit scheme, computational cost is low.

As a similar method, there is a level set based Eulerian method for solving partial

differential equations on general geometries [35]. There are a couple of differences between

our algorithm and the one in [35]. Whenever, the stencil of the numerical schemes needs a

grid point outside the narrow band, ∇ψ · ∇φ = 0 is used to prescribe the value of φ at that

grid point. For the AC equation without the Lagrange multiplier, Eq. (5.15), the following

modified equation is used:

∂φ

∂t
= −F

′(φ)

ǫ2
+ (P̃∇) · (P̃∇φ) +∇ · (∇ψ ⊗∇ψ∇φ), (5.23)

where P̃ = (I −ψD2ψ)−1(I −∇ψ⊗∇ψ) and D2ψ is the Hessian of ψ. For more details, see

[35]. Compared to this level set based method, our proposed algorithm is simpler and can

naturally deal with mass conservation property by using the discrete Lagrange multiplier,

β
√

F (φn+1,∗∗
ijk ) in Eq. (5.21).

5.2.4. Numerical experiments. We show a number of numerical experiments to

demonstrate the accuracy and efficiency of the proposed numerical algorithm. In an equilib-

rium profile, φ varies from −0.9 to 0.9 over a distance of about 2
√
2ǫ tanh−1(0.9). If we take

ǫ as ǫm = mh/[2
√
2 tanh−1(0.9)] ≈ 0.24mh, then we have approximatelymh transition layer

[26]. Unless otherwise stated, we use the parameters as ǫ = ǫ4, mesh size 141× 141 × 141,

spatial step size h = 0.02, time step size ∆t = 0.1h2, and the half of narrow band width

δ = 1.1
√
3h on the computational domain Ω = (−1.4, 1.4)× (−1.4, 1.4)× (−1.4, 1.4) in all

numerical simulations.
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5.2.4.1. Quantitative comparison. In this section, we quantitatively compare the numer-

ical results of our algorithm with the analytic solutions to show the accuracy. We consider

two spherical caps on a sphere with radius R, see Fig. 5.9. Here, O is origin point.

Figure 5.9. Two spherical caps on a sphere with radius R.

Let R1(t) and R2(t) be the radii of two spherical caps at time t. Let l1(t) = Rθ1(t) and

l2(t) = Rθ2(t) be the arc lengths at time t, where

θ1(t) = sin−1

(

R1(t)

R

)

and

θ2(t) = sin−1

(

R2(t)

R

)

.

Let us assume R1(0) > R2(0), then we can expect that R1(t) increases until R2(t) becomes

zero by the dynamics of the CAC equation. Let

A(t) = 2πR2[1− cos θ1(t)] + 2πR2[1− cos θ2(t)]
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be the sum of the areas of the two spherical caps, which is constant by the conservative

property, that is, dA(t)/dt = 0. Therefore, we obtain

sin θ1(t)
dθ1(t)

dt
+ sin θ2(t)

dθ2(t)

dt
= 0. (5.24)

We extend the evolution equations [32, 87] for the case of a flat domain to the ones on

a spherical domain. The curvature of the circle with the radius R1 is 1/R1. The tangential

component of the curvature on the sphere is cot θ1/R. Therefore, we can write the evolution

equations of the arc lengths, l1(t) and l2(t) as

dl1
dt

= −cot θ1
R

+ β(θ1, θ2), (5.25)

dl2
dt

= −cot θ2
R

+ β(θ1, θ2), (5.26)

where β is the factor for mass conservation. By substituting Eqs. (5.25)–(5.26) into Eq.

(5.24), we obtain the mass conserving factor β as follows.

β(θ1, θ2) =
cos θ1 + cos θ2

R(sin θ1 + sin θ2)
.

We can rewrite Eqs. (5.25) and (5.26) in terms of the radian angles:

dθ1
dt

= −cot θ1
R2

+
cos θ1 + cos θ2

R2(sin θ1 + sin θ2)
, (5.27)

dθ2
dt

= −cot θ2
R2

+
cos θ1 + cos θ2

R2(sin θ1 + sin θ2)
. (5.28)

For quantitative comparison, we compute the radii R1(t) and R2(t) of numerical solution

with three different space and time step sizes.

-77-



5.2. CONSERVATIVE ALLEN–CAHN EQUATION

We set the initial condition as R1(0) = 0.8 and R2(0) = 0.5 on the unit sphere R = 1,

i.e.,

φ(x, y, z, 0) =























tanh

(

0.8−
√

x2 + y2√
2ǫ

)

, z ≥ 0

tanh

(

0.5−
√

x2 + y2√
2ǫ

)

, z < 0.

(5.29)

Note that Eq. (5.29) represents the two different spherical caps as shown in Fig. 5.10(a).

Figure 5.10 shows the temporal evolution of two spherical caps on surface. As we expect,

the larger one grows and the smaller one shrinks until it disappears, Fig. 5.10(d).

(a) t = 0 (b) t = 0.112

(c) t = 0.224 (d) t = 0.272

Figure 5.10. Temporal evolutions of two different spherical caps on the
surface of the sphere with the initial condition φ(x, y, z, 0) in Eq. (5.29).
The computational times are shown below each figure.

-78-



5.2. CONSERVATIVE ALLEN–CAHN EQUATION

Figure 5.11 shows the temporal evolutions of the radii R1 and R2 with different space

step size h.

0 0.05 0.1 0.15 0.2 0.25

0.2

0.4

0.6

0.8

1

t

R1

R2

exact
h = 0.08
h = 0.04
h = 0.02

Figure 5.11. Convergence of radii R1 and R2 with different space step
size h. Here, analytic radii are represented by the thick line.

Here, the analytic radii, which are obtained using a fourth-order Runge–Kutta method

[16] for Eqs. (5.27) and (5.28), are represented by the thick line. Table 5.1 represents the

errors and orders of the numerical solutions by the proposed scheme with different space

step size h and time step ∆t = 0.1h2 at T = 0.176.

Table 5.1. Error and order of the numerical solutions by the proposed
scheme with ∆t = 0.1h2 at T = 0.176. Note that the analytic radii are
R1(T ) = 0.84690 and R2(T ) = 0.35658.

h 0.08 0.04 0.02
Radius (R1) 0.79983 0.83522 0.84994

Error 0.04707 0.01168 0.00305
Order 2.01110 1.93827

Radius (R2) 0.49660 0.39890 0.34552
Error 0.14002 0.04232 0.01106
Order 1.72626 1.93601
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Table 5.1 indicates that the numerical solutions R1 and R2 by our scheme are almost

second-order accurate in space and first-order accurate in time.

5.2.4.2. Evolution on surfaces. Next, we show the evolution of three spherical caps with

different sizes on the unit sphere. In this test, the initial condition is set to

φ(x, y, z, 0) =



















tanh
(

R1−
√

y2+z2

√
2ǫ

)

, if x > 0.5,

tanh
(

R2−
√
x2+z2√
2ǫ

)

, if y > 0.5,

tanh
(

R3−
√

x2+y2

√
2ǫ

)

, if z > 0.5,

(5.30)

where R1 = 0.3162, R2 = 0.2236, and R3 = 0.2774. Figure 5.12 shows the temporal

evolutions. We can see that smaller spherical caps shrink and the largest spherical cap

survives in the long run in Fig. 5.12.

(a) t = 0 (b) t = 0.04

(c) t = 0.16 (d) t = 2

Figure 5.12. The evolutions on the surface of the sphere with initial con-
dition φ(x, y, z), three lens shapes in Eq. (5.30). The computational times
are shown below each figure.
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We also simulate the evolutions on the torus surface which is embedded in the compu-

tational domain Ω = (−1.4, 1.4)× (−1.4, 1.4)× (−0.5, 0.5). The major and the minor radii

of the torus are 0.7 and 0.3, respectively. The initial condition is defined as

φ(x, y, z, 0) =























tanh

(

0.2−
√

(x− 0.5)2 + (y − 0.5)2√
2ǫ

)

, x > 0, y > 0, z > 0,

tanh

(

0.15−
√

(x + 0.5)2 + (y + 0.5)2√
2ǫ

)

, x < 0, y < 0, z > 0.

(5.31)

In Fig. 5.13, the smaller one shrinks and the large one grows, and then eventually the

smaller one disappears.

(a) t = 0 (b) t = 0.012

(c) t = 0.02 (d) t = 2

Figure 5.13. The times are shown below each figure.
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Next, we consider a band on the torus surface. Figure 5.14(a) shows the initial condition

on Ω = (−1.4, 1.4)× (−1.4, 1.4)× (−0.5, 0.5):

φ(x, y, z, 0) =

{

1 if 0.1 < z < 0.25,

−1 otherwise.
(5.32)

Figures 5.14(b)–(d) are the temporal evolution of the initial band on the torus.

(a) t = 0 (b) t = 0.4 (c) t = 0.8 (d) t = 2

Figure 5.14. The initial condition is a band on the torus. The times are
shown below each figure.

To explain the evolution dynamics on the torus surface, let us consider a longitude curve

as shown in Fig. 5.15(a).

X

Y

Z

(a)

X
R + rR

(x, 0, z)

xR − r

(− z
r
, 0, x−R

r
)

(− 1
x
, 0, 0)

(b)

Figure 5.15. (a) shape of torus, (b) part of (a) for y = 0 plane.
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Figure 5.15(b) represents a meridian curve on xz-plane at y = 0. The curvature at a

point (x, 0, z) at the longitude curve is

(

− 1

x
, 0, 0

)

.

The unit tangent vector at (x, 0, z) is

(

−z
r
, 0,

x−R

r

)

.

Therefore, the tangential component of the curvature is

(

− 1

x
, 0, 0

)

·
(

−z
r
, 0,

x−R

r

)

=
z

rx
. (5.33)

Figure 5.16 shows the magnitude of z
rx at each point x for R − r ≤ x ≤ R + r with

R = 0.7 and r = 0.3. Here, z =
√

r2 − (R− x)2. Figure 5.16 explains the dynamic direction

of the band in Fig. 5.14.

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.4

0.8

1.2

1.6

x

z
rx

Figure 5.16. Magnitude of z/rx at each point x for R − r ≤ x ≤ R + r

with R = 0.7 and r = 0.3. Here, z =
√

r2 − (R − x)2.
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5.2.4.3. Effect of band width on the torus. In this section, we investigate the effect of

band width on the equilibrium state. For numerical test, we only change the band width

(2b) and fix other parameters: 251 × 251 × 251 mesh, spatial step size h = 0.0112 on the

computational domain (−1.4, 1.4)× (−1.4, 1.4)× (−1.4, 1.4). Initial condition is defined by

φ(x, y, z, 0) =

{

1 if − b < x < b and y < 0,

−1 otherwise.
(5.34)

When the band width is 0.2, the band is snapped and becomes a lens shape as shown

in Fig. 5.17(a). However, snapping does not occur in the case of band width 0.3 as shown

in Fig. 5.17(b).

(a)

(b)

t = 0 t = 0.2 t = 2

Figure 5.17. Comparison of the effect of band width: (a) b = 0.1 and (b)
b = 0.15.
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5.2.4.4. Phase separation on sphere. We perform the phase separation on the surface of

a unit sphere. Figure 5.18 shows the time evolution of phase on the sphere.

The initial conditions are

φ(x, y, z, 0) = −0.4 + 0.1rand(x, y, z)

and

φ(x, y, z, 0) = 0.1rand(x, y, z)

for Fig. 5.18(a) and Fig. 5.18(b), respectively, where rand(x, y, z) is a uniformly distributed

random number between −1 and 1.

(a)

t = 0.01 t = 0.02 t = 0.12 t = 6

(b)

t = 0.01 t = 0.06 t = 0.6 t = 6

Figure 5.18. The temporal evolutions on the surface of the sphere with
initial conditions (a) φ(x, y, z) = −0.4+0.1rand(x, y, z) and (b) φ(x, y, z) =
0.1rand(x, y, z). The computational times are shown below each figure.
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5.2.4.5. Phase separation on torus. We simulate the phase separation on the torus with

signed distance function as:

ψ(x, y, z) =
√

(C −R)2 + z2 − r, (5.35)

where C =
√

x2 + y2, R is the distance from the center of the tube to the center of the

torus and r is radius of the tube. We use R = 0.7 and r = 0.3. Figure 5.19 shows the phase

separation on the torus with the following initial conditions:

φ(x, y, z) = −0.4 + 0.1rand(x, y, z)

and

φ(x, y, z) = 0.1rand(x, y, z).

(a)

(b)

t = 0.01 t = 0.04 t = 0.2 t = 6

Figure 5.19. The evolutions on the surface of the torus with initial con-
ditions (a) φ(x, y, z) = −0.4 + 0.1rand(x, y, z) on the top row and (b)
φ(x, y, z) = 0.1rand(x, y, z) on the bottom row. The computational times
are shown below each figure.
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5.2.4.6. Phase separation on spindle. We simulate phase separation on the surface of a

spindle with different average concentrations. The spindle shape is defined by parametric

equations: r = cosx, x(r, θ) = x, y(r, θ) = r cos θ, z(r, θ) = r sin θ, where |x| ≤ π/2 and

θ ∈ [0, 2π). In this simulation, we use h = 0.0379 on Ω = (−200h, 100h)× (−32h, 32h)×

(−32h, 32h). Figure 5.20 shows the time evolution of spinodal decomposition on the surface

of a spindle with two different initial conditions: φ(x, y, z, 0) = −0.4 + 0.1rand(x, y, z) and

φ(x, y, z, 0) = 0.1rand(x, y, z).

(a)

(b)

t = 0.0072 t = 0.0144 t = 0.0718 t = 0.7178 t = 71.7771

Figure 5.20. Temporal evolution of the phase separation on the spindle
shape. The initial conditions are (a) φ(x, y, z) = −0.4+0.1rand(x, y, z) and
(b) φ(x, y, z) = 0.1rand(x, y, z).
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5.2.4.7. Phase separation on funnel. In this section, we simulate the phase separation on

the funnel shape which is defined by parametric equations: x(r, θ) = r cos θ, y(r, θ) = r sin θ,

z(r, θ) = ln r, where r > 0 and θ ∈ [0, 2π). We use h = 0.0121 on the computational domain

Ω = (−1.2, 1.2)× (−1.2, 1.2)× (−2.4, 1.2). Initial conditions are

φ(x, y, z, 0) = −0.4 + 0.1rand(x, y, z)

and

φ(x, y, z, 0) = 0.1rand(x, y, z).

Figures 5.21(a) and (b) show the results of the temporal evolutions on the funnel shape with

the average concentrations −0.4 and 0, respectively.

(a)

(b)

t = 0.0015 t = 0.0145 t = 0.3636 t = 7.2725

Figure 5.21. Temporal evolution of the phase separation on the funnel
shape. The initial conditions are (a) φ(x, y, z) = −0.4+0.1rand(x, y, z) and
(b) φ(x, y, z) = 0.1rand(x, y, z).
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5.2.4.8. Phase separation on bunny. In this section, we perform phase separation on

the surface of a bunny with different average concentrations. To perform the numerical

simulation, we use h = 0.5 on Ω = (0, 68.5)3.

Figure 5.22 shows the temporal evolution of spinodal decomposition on the surface of

the bunny with two different initial conditions:

φ(x, y, z, 0) = −0.4 + 0.1rand(x, y, z)

and

φ(x, y, z, 0) = 0.1rand(x, y, z).

(a)

(b)

t = 2.5 t = 20 t = 125 t = 2500

Figure 5.22. Morphological evolutions on the surface of the bunny
with initial conditions (a) φ(x, y, z, 0) = −0.4 + 0.1rand(x, y, z) and (b)
φ(x, y, z, 0) = 0.1rand(x, y, z). The computational times are shown below
each figure.
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5.2.4.9. Comparison study with an implicit scheme. In this section, we demonstrate

that our proposed algorithm is fast and efficient than an implicit algorithm by comparing

the computational costs. For comparison study, we consider a well-known nonlinear convex

splitting scheme [30], which is unconditionally gradient stable. We take the following two

steps to solve the CAC Eq. (5.16):

φn+1,∗
ijk − φnijk

∆t
=

φnijk − (φn+1,∗
ijk )3

ǫ2
+∆hφ

n+1,∗
ijk , (5.36)

φn+1
ijk = φn+1,∗

ijk + β
√

F (φn+1,∗
ijk ), (5.37)

where

β =

∑

xijk∈Ωh
δ
(φ0ijk − φn+1,∗

ijk )

∑

xijk∈Ωh
δ

√

F (φn+1,∗
ijk )

.

Here, we use the Gauss–Seidel iterative method to solve Eq. (5.36). Let φn+1,∗,s
ijk and

φn+1,∗,s+1
ijk be the approximation of φn+1,∗

ijk before and after one Gauss–Seidel iteration. Since

(φn+1,∗
ijk )3 in Eq. (5.36) is nonlinear, we linearize it as follows:

(φn+1,∗,s+1
ijk )3 = 3(φn+1,∗,s

ijk )2(φn+1,∗,s+1
ijk )− 2(φn+1,∗,s

ijk )3.

Then, we rearrange Eq. (5.36) as the Gauss–Seidel iterative form:

(

1

∆t
+

3(φn+1,∗,s
ijk )2

ǫ2
+

6

h2

)

φn+1,∗,s+1
ijk =

(

1

∆t
+

1

ǫ2

)

φnijk +
2(φn+1,∗,s

ijk )3

ǫ2

+
φn+1,∗,s+1
i−1,jk + φn+1,∗,s

i+1,jk + φn+1,∗,s+1
i,j−1,k + φn+1,∗,s

i,j+1,k + φn+1,∗,s+1
ij,k−1 + φn+1,∗,s

ij,k+1

h2
.

In this study, we update new solution φn+1
ijk when the l2-norm of the consecutive error,

‖φn+1,∗,s+1
ijk −φn+1,∗,s

ijk ‖2, is less than a tolerance, tol = 10−6. Now, we compare the analytic

solution with numerical results by the proposed scheme and the implicit convex splitting

scheme. We use the same initial condition used in Section 5.2.4.1.
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Figure 5.23 represents the time evolution of two radii with the explicit and implicit

schemes. The analytic solution is shown with the solid line. Also, we put the computational

times in the legend to show the efficiency of the explicit scheme.

0 0.05 0.1 0.15 0.2 0.25

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

R1
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Figure 5.23. Temporal evolutions of two radii by the explicit and implicit
schemes. The CPU times are shown in the parenthesis.

It is well known that one of the drawbacks of an explicit scheme is the severe time step

restriction for stability. For example, the fourth-order nonlinear equation such as the Cahn–

Hilliard equation [30] has ∆t = O(h4) time step constraint for the explicit scheme. However,

it turns out that ∆t ≤ h2/6 time step constraint in three-dimensional space for the CAC

equation is not severe constraint if we consider the accuracy of the numerical solutions. As

shown in Fig. 5.23, it only takes 320s of CPU time for the explicit scheme, while it takes

1085s of CPU time for the implicit scheme with ∆t = 0.1h2. If we compare the results from

the implicit (∆t = 0.8h2) and the explicit (∆t = 0.1h2), we can see that the result from the

explicit is more accurate than the implicit with a comparable CPU time.
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Figure 5.24. Stability of numerical solutions by the explicit scheme with
different time step sizes.

In our algorithm, we have the time step restriction as ∆t ≤ h2/6 ≈ 0.1667h2 when we

solve the diffusion Eq. (5.18). Figure 5.24 shows the stability of numerical solutions by the

proposed scheme with different time step sizes. To show the stability, we use four different

time step sizes ∆t = 0.1h2, 0.16h2, 0.17h2, and 0.18h2. As shown in Fig. 5.24, we can see

the stable solutions when ∆t ≤ 0.17h2. One of the reasons why ∆t = 0.17h2 gives a stable

solution is that the second step of the proposed algorithm damps an unstable solution and

stabilize the solution.
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5.2.5. Summary. We performed numerical simulations on the various three-dimensional

surface shapes with the CAC equation. For efficiency of the computational cost, we employed

a narrow band domain and solved the equation on that domain. On the narrow band do-

main boundary, we applied a quasi-Neumann boundary condition which is defined by using

a closest point method. To solve the CAC equation, we used the hybrid operator splitting

method which consist of three steps. First, we solved the diffusion term by using the explicit

Euler method and then updated the nonlinear term by using a closed-form solution. Lastly,

to conserve the total concentration, we applied the space-time dependent Lagrange multi-

plier. The overall scheme is fully explicit in time and does not need iterative steps, therefore

it is fast. A series of numerical experiments with various initial conditions on the sphere,

torus, spindle, funnel, and bunny shapes demonstrated the effectiveness and accuracy of the

proposed hybrid scheme. We used uniform meshes. As future work, we plan to consider

the body-fitted coordinate on non-uniform mesh and triangular surface mesh for possible

improvements.
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5.3. Lengyel–Epstein equation

5.3.1. Introduction. Although the pattern in living organisms is one of the classical

problems of morphogenesis which explains how animals such as mammals, seashells, and

marine fishes and vegetation evolve differently resulting in a consolidated and stable pattern

[34], it had been generally believed that how the skin pattern in living organisms, especially

mammals, is generated genetically is unclear. Nevertheless, pattern formation based on

the Turing model has been one of the notable exceptions since the middle part of the

20th century while acceptance in bioinformatics of mathematical biology has been slower

[71]. Most mathematical models of these patterns are based on a reaction-diffusion model,

which was first proposed by Turing [102]. The reaction-diffusion model, the system of two

distributed reacting and diffusing chemicals, could generate spatial patterns autonomously.

Murray [76] presented the reaction-diffusion mechanism for laying down of the pre-patterns

for animal marking. Young [111] performed the simulation that cells lay out on a grid

with an activator and an inhibitor. Barrio et al. [5] studied numerically the spatial pattern

formation with the Turing’s model on the two-dimensional domain. Also, activator-inhibitor

systems with non-local coupling are studied in two dimensions by Silva et al.[92]. Painter

et al. [81] proposed the robustly generated patterns without parameter control which is

overcome that the difficulty of applicability of classical Turing models to pattern formation

is limited by the sensitivity of patterns to model parameters. Based on Turing’s hypothesis,

evolving morphogenetic fields in the zebra skin pattern was researched by Grávan and Lahoz-

Beltra [34]. Guiu-Souto et al. [36] introduced a set of quantitative morphological measures

that describe the geometrical and topological properties of Turing patterns (area, boundary
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length, cluster numbering, connectivity, and so on) for easily distinguish among different

Turing structures.

The theoretically predicted patterns has been demonstrated under controlled experi-

mental conditions in a Chlorite-Iodide-Malonic Acid-Starch (CIMA) reaction [20, 47, 80].

Lengyel and Epstein [54, 55, 91] derived the mathematical model from the chemical reactions

and the predicted pattern by their model has a good agreement with those experimental

results. The main purpose of this article is to develop a fast and computationally efficient

finite difference method for the Turing pattern on curved surfaces in the three-dimensional

space. We solve the resulting discrete equations on a narrow band domain. We use an

interpolation using the closest point method [25, 44, 70] for the domain boundary cells. We

present numerical results of the zebra patterns generated by the proposed numerical method.

5.3.2. Governing equations. We consider the following reaction-diffusion equation

[54] on a smooth closed surface S in R
3:

∂u

∂t
= Du∆Su+ f(u, v) = Du∆Su+ k1

(

v − uv

1 + v2

)

, (5.38)

∂v

∂t
= Dv∆Sv + g(u, v) = Dv∆Sv + k2 − v − 4uv

1 + v2
, (5.39)

where u(x, t) and v(x, t) are concentrations of an inhibitor and an activator at position

x ∈ S and time t, respectively. Here, Du and Dv are the diffusion coefficients, and k1 and

k2 are positive constants related to the feed concentrations. Also, ∆S denotes the Laplace–

Beltrami operator [69, 84, 100]. In this study, we represent a given smooth surface S using

the signed distance function φ : R3 → R. In other words, S = {x ∈ R
3 : φ(x) = 0} with

φ < 0 inside of S and φ > 0 outside of S. The tangential gradient of u on S is defined as

∇Su(x, t) = P(x)∇u(x, t), where P = I − ∇φ∇φT is a projection operator on the tangent
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space. Here, I is the identity matrix [35]. Then, the Laplace–Beltrami operator is defined

as ∆Su = ∇S · ∇Su = (P∇) · (P∇u) = ∇ · (P∇u). Next, we define a δ-neighborhood band

of S as Ωδ = {y|x ∈ S,y = x + θn(x) for |θ| < δ}, where n(x) is a unit normal vector at

x ∈ S. Figure 5.25(a) shows the schematic illustration of the surface S, the narrow band

domain Ωδ, and the boundary ∂Ωδ of the narrow band domain Ωδ. Let cp(x) be a point in

the surface S which is closest to x [69]. Figure 5.25(b) shows the closest points cp(x1) and

cp(x2) for boundary points x1 and x2 on ∂Ωδ. Then, the boundary condition is defined as

u(x, t) = u(cp(x), t) and v(x, t) = v(cp(x), t) on ∂Ωδ. (5.40)

(a)

2δS

Ωδ

∂Ωδ

x2

x1

cp(x1) cp(x2)

(b)

Figure 5.25. (a) Schematic illustration of the surface S, the narrow band
domain Ωδ with thickness 2δ, and its boundary ∂Ωδ. (b) Closest points
cp(x1) and cp(x2) for points x1, x2 ∈ ∂Ωδ.

If δ is small enough, then the temporal evolution of Eqs. (5.38) and (5.39) with the

boundary condition (5.40) results in u and v which are constant in the direction normal to

the surface. Therefore, we can replace the surface Laplacian operator ∆S by the standard
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Laplacian operator ∆ in the narrow band domain Ωδ, i.e.,

∂u

∂t
= Du∆u+ k1

(

v − uv

1 + v2

)

, (5.41)

∂v

∂t
= Dv∆v + k2 − v − 4uv

1 + v2
. (5.42)

5.3.3. Discretization. We present a numerical algorithm for the Lengyel–Epstein

model on the narrow band domain, Ωδ. We discretize the reaction-diffusion equation in

a three-dimensional domain Ω = (a, b)× (c, d)× (e, f) embedding Ωδ. Let Nx, Ny, and Nz

be positive integers, h = (b − a)/Nx = (d − c)/Ny = (f − e)/Nz be the uniform mesh size,

and Ωh = {xijk = (xi, yj , zk) = (a+ hi, c+ hj, e+ hk)|0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, 0 ≤ k ≤ Nz}

be the discrete domain. Let unijk and vnijk be approximations of u(xi, yj , zk, n∆t) and

v(xi, yj , zk, n∆t), where ∆t = T/Nt is the time step, T is the final time, and Nt is the

total number of time steps.

We adopt the numerical scheme used in the fast and accurate numerical method for

motion by mean curvature of curves on a surface in three-dimensional space using the Allen–

Cahn equation [25]. For a given smooth surface S, we define φ : R3 → R as the signed

distance function to S so that S = {x ∈ R
3|φ(x) = 0} with φ < 0 inside S and φ > 0

outside S. Let Ωh
δ = {xijk||φijk | < δ} be the discrete narrow band domain. We take

δ ≥
√
3h since Ωh

δ must contain the interpolation stencil for the closest points of the domain

boundary points. We define a discrete L2-norm on Ωh
δ as

‖φ‖L2(Ωh
δ
) =

√

√

√

√

1

#Ωh
δ

∑

xijk∈Ωh
δ

φ2ijk ,

where #Ωh
δ is the cardinality of the set Ωh

δ . Let us define the domain boundary points as

∂Ωh
δ = {(xi, yj, zk)

∣

∣Iijk|∇hIijk| 6= 0},
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where

∇hIijk =
Ii+1,jk − Ii−1,jk, Ii,j+1,k − Ii,j−1,k , Iij,k+1 − Iij,k−1

2h
.

Here, Iijk = 0 if (xi, yj , zk) ∈ Ωh
δ ; otherwise Iijk = 1. We consider the discretization of the

reaction-diffusion system (5.41) and (5.42) using explicit scheme,

un+1
ijk − unijk

∆t
= Du∆hu

n
ijk + k1

(

vnijk −
unijkv

n
ijk

1 + (vnijk)
2

)

, (5.43)

vn+1
ijk − vnijk

∆t
= Dv∆hv

n
ijk + k2 − vnijk −

4unijkv
n
ijk

1 + (vnijk)
2
, (5.44)

with the boundary condition on ∂Ωh
δ : u

n
ijk = un(cp(xijk)) and v

n
ijk = vn(cp(xijk)). Here,

the descretization of second spatial derivative is given by

∆huijk =
1

h2
(ui+1,jk + ui−1,jk + ui,j+1,k + ui,j−1,k + uij,k+1 + uij,k−1 − 6uijk).

The other one ∆hvijk is similarly defined. We define the numerical closest point of the

boundary point xijk to the surface S as

cp(xijk) = xijk − ∇h|φijk |
|∇h|φijk ||

|φijk |. (5.45)

If the closest point cp(xijk) is not lying on a given computational grid, we obtain

un(cp(xijk)) and v
n(cp(xijk)) by using the trilinear interpolation. For the fast computation,

we tabulated the interpolation stencil and three fractions for each boundary point before

starting time iterations.
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5.3.4. Numerical experiments.

5.3.4.1. Parameter study on pattern formation on spherical surface. Next, we investi-

gate the effect of parameters Dv and k1 on the pattern dynamics on the surface of a sphere

with radius 4.5. The spherical surface is represented by the zero level set of the signed

distance function

φ(x, y, z) =
√

(x− 5)2 + (y − 5)2 + (z − 5)2 − 4.5.

For the numerical simulation, we use the same parameter values for k1, k2, Du, and Dv

as in [79]. The initial conditions are taken to be

u(x, y, z, 0) = 1 + 0.04k22 + 0.1rand(x, y, z), (5.46)

v(x, y, z, 0) = 0.2k2 + 0.1rand(x, y, z), (5.47)

where rand(x, y, z) is a random number between −1 and 1. The parameters used areDu = 1,

k2 = 11, h = 0.1, δ = 1.1
√
3h, ∆t = 0.1h2, and T = 1000 on the computational domain

Ω = [0, 10]3.

Figure 5.26 represents numerical solutions of activator v by Eqs. (5.43) and (5.44) with

respect to Dv and k1. Depending on the parameter sets (Dv, k1), we obtain the numerical

results such as spots, stripes, and mixtures of spots and stripes.
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Figure 5.26. Overview of pattern formation on surface of sphere corre-
sponding to concentration of activator at different values of Dv (horizontal
axis) and k1(vertical axis).
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5.3.4.2. Parameter study on pattern formation on torus surface. Similar to the previous

section, we study the pattern changes according to the parameters(Dv and k1) on the torus

with major radius 5.5 and minor radius 3.5. The torus surface is represented by the zero

level set of the signed distance function

φ(x, y, z) =

√

(
√

x2 + y2 − 5.5)2 + z2 − 3.5

For the numerical simulation, we use the same parameter values and initial conditions

in previous section. The parameters used are Du = 1, k2 = 11, h = 0.1, δ = 1.1
√
3h,

∆t = 0.1h2, and T = 1000 on the computational domain Ω = [0, 10]3.

9

5

1

0.01 0.03 0.05

Figure 5.27. Overview of pattern formation on surface of torus corre-
sponding to concentration of activator at different values of Dv (horizontal
axis) and k1(vertical axis).
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Figure 5.27 represents numerical solutions of activator v. We obtain the similar numer-

ical results in the previous section such as spots, stripes, and mixtures of spots and stripes

from each cases (Dv, k1). In the case of k1 = 9 and Dv = 0.05, Turing instability does not

occur.

5.3.4.3. Stripe patterns on zebra surface. Depending on varying parameters, different

kinds of stripe patterns on a given zebra surface are generated. To investigate this, we

take the initial conditions (5.46) and (5.47). The other parameters used are as follows:

Du = 1, k2 = 11, h = 10/64, δ = 1.1
√
3h, ∆t = 0.1h2, T = 2441.4, and Ω = [0, 84h] ×

[0, 276h]× [0, 212h]. For k1 and Dv, we use the three different values as (k1, Dv) = (11, 0.02),

(k1, Dv) = (5, 0.04), and (k1, Dv) = (3, 0.06). Here, for the chosen parameters, we may refer

to [36].

Figure 5.28 represents the temporal evolution of morphological patterns of activator v

on the zebra surface with different values of (k1, Dv). The computational times are listed

below each row. In this figure, we plot the pattern with a local grayscale corresponds to

white and black with maximum and minimum concentration of activator v. As k2 decreases

and Dv increases, the thickness of the stripes are larger.
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t = 1000∆t

t = 10000∆t

t = 1000000∆t
(a) (b) (c)

Figure 5.28. Pattern formation process of the Lengyel–Epstein model on a
zebra surface with k1 = 11 and Du = 1 at t = 1000∆t, 10000∆t, 100000∆t,
and 100000∆t. Here, the other parameters are used (a) k2 = 11, Dv = 0.02,
(b) k2 = 5, Dv = 0.04, and (c) k2 = 3, Dv = 0.06, respectively.
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5.3.5. Summary. We numerically studied the zebra skin pattern formation on the sur-

face of a zebra model in three-dimensional space using a two-component activator-inhibitor

system of reaction-diffusion equations. We discretized the governing equations using a finite

difference method and solved the resulting system on a discrete narrow band domain con-

taining the zebra skin. For the domain boundary cells, we used an interpolation using the

closest point method. We presented numerical results of the zebra patterns generated by

the model. Depending on parameter sets, we had different spatial pattern formations such

as spots, stripes, and mixture of spots and stripes. Also, we can see this results on zebra

surface, which is more complex than sphere, as well as sphere. From the numerical tests,

we knew that the condition that distinguish between stripe or spots is determined by Dv

in reaction-diffusion systems and k1 plays a role in decision of the wavelength of pattern.

Especially, we obtained the similar numerical pattern on given zebra surface to the real one.
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Chapter 6

Conclusions

We presented that solving a partial differential equations on the non-flat surfaces. Our

proposed detail strategies and implementations are followings: surface reconstruction algo-

rithm (using modified Allen–Cahn equation, cloud points, and slice data), construct compu-

tational domain and boundary condition (narrow band domain, and closest points method),

and then solving the Allen–Cahn equation, conservative Allen–Cahn equation, and Lengyel–

Epstein equations on the various surfaces.

From the surface reconstruction algorithm, we obtained the three-dimensional surface

data which original data are two-dimensional data such as CT, MRI, and cloud points.

And by using narrow band domain and quasi-Neumann boundary condition which applied

closest points method, we can use the standard Laplacian operator instead of Laplace–

Beltrami operator. Overall numerical simulations, we used operator splitting method. Some

tests were used multigrid method, and some simulations were applied an explicit method

for fast solution. Numerical results demonstrated that the proposed methods were fast and

accurate.

The future work will focus on solving the fluid-related equations and pattern formation

on the surfaces, such as Navier–Stokes equation, shallow water equations (Saint–Venant

equations), reaction-diffusion equations and so on. Through this, we expect that researches
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will be applicable on fine dust, convection current, and weather on the earth surface. Also

we can study pattern formation in nature such as animals skin, sand dunes and giant’s

causeway.
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