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a b s t r a c t 

We present a simple and practical adaptive finite difference method for the conservative Allen–Cahn–

Navier–Stokes system. For the conservative Allen–Cahn equation, we use a temporally adaptive narrow 

band domain embedded in the uniform discrete rectangular domain. The narrow band domain is defined 

as a neighboring region of the interface. The Navier–Stokes equation is solved in a fully discrete domain 

with the coarse grid than that for the CAC equation. Various benchmark numerical experiments, such as 

the pressure jump, droplet deformation in shear flow, falling droplet, and rising bubble, are performed to 

show that the proposed method is efficient and practical for the simulations of two-phase incompressible 

flow. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Numerical simulation of two-phase flow is interesting and im- 

ortant because it can be applied to various natural and technolog- 

cal fields. In the natural world, the droplet evaporation ( Karami 

t al., 2017; Aguilar et al., 2014 ), the droplet impacting thin film 

 Chen et al., 2017; Burzynski and Bansmer, 2018 ), and the antibub- 

le formation ( Scheid et al., 2012 ), etc., are the classical phenom- 

na related to the two-phase flow. In industries, some typical ap- 

lications of two-phase flow are the double emulsion formation 

n a capillary device ( Vian et al., 2018 ), droplet deformation in 

hear flow ( Vu et al., 2019 ), pinch-off of liquid jet ( Webster and

ongmire, 2001 ), and buoyancy-driven mixing in a tilted channel 

 Sahu and Vanka, 2011 ), etc. 

In the numerical study of two-phase flow, the most important 

ssue is to accurately capture the interface between two fluid com- 

onents. The volume of fluid (VOF) method is an extensively used 

ethod and it is popular in engineering field. A color function is 

sed to distinguish various two-phase variables, such as the den- 

ity ad viscosity. The change of interface is captured by the evolu- 

ion of color function and mass conservation can be well guaran- 

eed. However, the VOF method has sharp discontinuity between 
∗ Corresponding author. 

E-mail address: cfdkim@korea.ac.kr (J. Kim). 

URL: http://math.korea.ac.kr/~cfdkim (J. Kim) 

d

a

b

B

2

a

a

ttps://doi.org/10.1016/j.ijmultiphaseflow.2021.103561 

301-9322/© 2021 Elsevier Ltd. All rights reserved. 
wo fluids which usually needs an artificial reconstruction to ac- 

urately calculate the continuous surface tension. Some typical ap- 

lications of the VOF method can be found in ( Theodorakakos and 

ergeles, 2004; Hong et al., 2013; Yan and Chen, 2020 ). Another 

seful method focusing on the interface capturing is the level-set 

ethod. The signed distance function is used to distinguish the in- 

erface and calculate the curvature. Because of the practicability of 

he level-set method, it has also been widely used in engineer- 

ng community ( Rodríguez, 2017; Tanguy and Berlemont, 2005; 

alcazar et al., 2015 ). However, a reinitialization step is needed 

n each iteration and this method suffers an obvious problem of 

ass loss. Recently, some researchers have studied the conserva- 

ive level-set method to satisfy the mass conservation ( Luo et al., 

015 ). Different from the VOF and the level-set methods men- 

ioned above, the immersed boundary method (IBM) is an efficient 

nterface tracking method, which uses a series of Lagrangian points 

o track the position of interface and solves the flow field on the 

xed Eulerian grid. The IBM method is a popular method to treat 

arious solid-fluid interaction problems, see ( Gronskis and Artana, 

016; Horng et al., 2018 ). In the liquid-liquid or gas-liquid two- 

hase flow simulations, the classical IBM method can not guaran- 

ee the mass conservation due to the violated divergence-free con- 

ition at the Lagrangian grid of the immersed boundary point. To 

chieve the mass conservation, some numerical corrections have 

een proposed, see ( Li et al., 2012; 2013 ). Moreover, the lattice 

oltzmann method (LBM) ( Chen and Müller, 2020; Mitchell et al., 

018; Majidi et al., 2020 ) and front tracking method (FTM) ( Hua 

nd Mortensen, 2019; Pivello et al., 2014 ) have been extensively 

pplied in two-phase fluid simulations. 

https://doi.org/10.1016/j.ijmultiphaseflow.2021.103561
http://www.ScienceDirect.com
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Fig. 1. Schematic illustration of the MAC mesh. 
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In this study, we focus on the phase-field method. The change 

f interface is captured by the evolution of the phase-field equa- 

ion. Besides that, a small and finite interface width is used as 

he transition layer between two fluid components. The most pop- 

lar phase-field model for two-phase flow is the Cahn–Hilliard–

avier–Stokes (CHNS) system, which guarantees the basic property 

f mass conservation and has the physical property of energy dissi- 

ation. The surface tension can be easily imposed using the phase- 

eld variable. For some practical applications of CHNS system in 

ulti-phase flow simulations, please refer to ( Kim, 2012; Yang and 

im, 2018; Shen et al., 2019; Bai et al., 2017 ). However, the classical

H equation is a fourth-order nonlinear partial differential equa- 

ion which is hard to solve in an explicit manner. Another effective 

nd conservative phase-field model is the conservative Allen–Cahn 

CAC) equation which is a second-order partial differential equa- 

ion and easy to solve even if the explicit scheme is used. Although 

he CAC equation does not possess the property of energy dissipa- 

ion in theory, it still works well in capturing two-phase interface. 

s some typical applications, Jeong and Kim (2017) proposed the 

onservative Allen–Cahn–Navier–Stokes (CACNS) model for two- 

hase incompressible fluid flow. Joshi and Jaiman (2018) developed 
ig. 2. Schematic illustration of (a) φ and (b) narrow band domain �a (open circles) and

eferences to color in this figure legend, the reader is referred to the web version of this 

2 
n adaptive procedure with unstructured meshes for capturing 

he CAC fluid interfaces. Aihara et al. (2019) extended the CACNS 

odel to simulate various multi-component fluid flows. Khan and 

hah (2019) used the CAC model to numerically investigated the 

ynamics of Rayleigh–Taylor instability. 

Since the accurate interfacial capturing is an important issue in 

imulation, a natural and time-saving practice is to use finer mesh 

ize in the neighborhood of interface and use coarser mesh size 

n the bulk phase region. However, most existing adaptive mesh 

echniques are complex and not easy to implement unless one 

s familiar with each specific methodology. Although the classic 

daptive mesh size method can be well applied to simulate the 

H equation ( Li et al., 2016 ), thin film equation ( Li et al., 2014 ),

nd dendritic growth equation ( Li and Kim, 2012 ), etc., it is still 

omplex to apply to the two-phase fluid flows. The main advan- 

age of the proposed method compared with the classic adaptive 

esh refinement (AMR) ( Li et al., 2016; 2014; Li and Kim, 2012 )

s its simplicity in programming because the classic AMR is very 

eavy in a sense that the data structure is complex and code it- 

elf is very lengthy; in particular, implementation of the phase- 

eld model with the Navier–Stokes equation is only available to 

ew researchers who are experts in the AMR. 

In this work, we propose a simple, efficient and accurate adap- 

ive finite difference method for the following incompressible 

ACNS system ( Jeong and Kim, 2017 ) in the domain �: 

 · u = 0 , (1) 

(φ) ( u t + u · ∇u ) = −∇p + 

1 

Re 
∇ ·

[
η(φ)(∇u + ∇u 

T ) 
]

+ SF (φ) 

+ 

ρ(φ) 

F r 2 
g , (2) 

t + ∇ · (φu ) = 

1 

P e 

(
−F ′ (φ) + ε2 �φ

)
+ γ (t) 

√ 

F (φ) , (3) 

here u is the velocity filed, p is the pressure, φ is the phase field, 

 (φ) = 0 . 25(φ2 − 1) 2 , γ (t) = 

∫ 
� F ′ (φ) dx / [ Pe 

∫ 
�

√ 

F (φ) dx ] is the

ime-dependent Lagrange multiplier, ρ(φ) and η(φ) are the den- 

ity and viscosity, respectively, and g represents the gravitational 
 the contour line by a given zero-level set of φ (red line). (For interpretation of the 

article.) 
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Fig. 3. Schematic illustration for the computation of φ∗
i j 

in Step 1. 
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cceleration. To close the system (1) –(3) , the periodic boundary 

ondition or the following boundary conditions are used 

φ · n = ∇p · n = u · n = 0 on ∂�, (4) 

here n is the outward unit normal vector on the boundary ∂�. 

e find that Eq. (3) becomes to the classical AC equation if we 

rop the last term and it is well-known that the AC equation does 

ot satisfy the mass conservation. The continuous surface tension 

s expressed as: 

F (φ) = − 1 

2 We 
∇ ·

( ∇φ

|∇φ| 
)

∇φ = 

1 

We 
∇ ·

(
− ∇φ

|∇φ| 
) |∇φ| 

2 

∇φ

|∇φ| , (5) 

here ∇ · ( −∇ φ/ |∇ φ| ) is the curvature, |∇φ| / 2 is the smoothed 

irac delta function ( Lee and Kim, 2012 ), ∇ φ/ |∇ φ| is the unit nor-

al vector to the interface. Various dimensionless parameters are 

he Reynolds number: Re = ρc U c L c /ηc , the Weber number: W e =
c L c U 

2 
c /σ, the Froude number F r = U c / 

√ 

gL c , and the Peclet num-

er: Pe = U c L c / (Mμc ) . Here, L c , U c , ρc , ηc , σ, M, and μc are

he characteristic length, velocity, density, viscosity, surface tension 

oefficient, constant mobility, and chemical potential, respectively 

 Kim, 2012 ). 

The main purpose of this work is to develop a temporally adap- 

ive narrow band domain around the interface to calculate the bi- 

ary CAC equation. The discrete CAC equation is solved by using a 

ast explicit operator splitting method. The NS equation is solved in 

 discrete domain with coarser grid than that for the CAC equation. 

herefore, the proposed method is fast. Different from the classic 

daptive mesh grid methods, the proposed method is easy to im- 

lement without complex techniques. Another primary advantage 

f the proposed method is that it can be easily extended to ef- 

ciently solve an arbitrary multi-component incompressible fluid 

ystem. 

The contents of this article are as follows. In Section 2 , we 

resent the proposed numerical scheme and its solution algorithm 

or the CACNS system. We present numerical results using the pro- 

osed method in Section 3 . Conclusions are drawn in Section 4 . 

. Numerical method 

We now describe the proposed adaptive finite difference 

ethod for Eqs. (1) –(3) on the two-dimensional computational do- 

ain � = (a, b) × (c, d) . The extension to three-dimensional space 

s straightforward. First, the discrete global domain for the CAC 

quation is defined as: �h = { (x i , y j ) | x i = a + (i − 0 . 5) h, y j = c +
j − 0 . 5) h for 1 ≤ i ≤ N x , 1 ≤ j ≤ N y } with respect to an uniform

patial mesh size h = (b − a ) /N x = (d − c) /N y , where N x and N y 

re even positive integers. We let φn 
i j 

indicate the approximation 

f the solution φ(x i , y j , n �t) of Eq. (3) , where �t is the time

tep. Next, we define the discrete global domain for the NS equa- 

ion: �˜ h 
= { ( ̃  x i , ̃  y j ) | ˜ x i = a + (i − 0 . 5) ̃ h , ˜ y j = c + ( j − 0 . 5) ̃ h for 1 ≤
3 
 ≤ N x / 2 , 1 ≤ j ≤ N y / 2 } according to a uniform spatial mesh size
˜ 
 = 2 h = 2(b − a ) /N x = 2(d − c) /N y , which means a coarser grid is

sed for the NS equation. Then, we let p n 
i j 

be the approximation 

f the solution p( ̃  x i , ̃  y j , n �t) . The velocities u 
i + 1 

2 
, j 

and v 
i, j+ 1 

2 
are

tored at the cell edges ( ̃  x 
i + 1 

2 
, j 
, ̃  y j ) = (a + i ̃ h , c + ( j − 0 . 5) ̃ h ) and

 ̃  x i , ̃  y 
j+ 1 

2 
) = (a + (i − 0 . 5) ̃ h , c + j ̃ h ) , respectively. We use the stag-

ered marker-and-cell (MAC) mesh ( Harlow and Welch, 1966 ) (see, 

ig. 1 ), where the pressure is stored at the cell centers and the ve-

ocities are stored at cell edges. 

Now, we briefly describe the numerical solution of the NS equa- 

ion in one time step on the discrete global domain �˜ h 
. For the 

iven values of u 

n = (u n , v n ) and φn , we want to find u 

n +1 and

p n +1 . 

Step 1. Compute the intermediate velocity field ˆ u : 

( ˜ φn ) 

(
ˆ u − u 

n 

�t 

)
= 

1 

Re 
∇ ·

[
η( ˜ φn )(∇ d u + ∇ d u 

T ) n 
]

+ SF ( ˜ φn ) + 

ρ( ˜ φn ) 

F r 2 
g − ρ( ˜ φn )(u 

n · ∇ d u 

n ) , (6) 

here the subscript d represents the discrete operator. ρ( ̃  φ) = 

1 (1 + 

˜ φ) / 2 + ρ2 (1 − ˜ φ) / 2 , η( ̃  φ) = η1 (1 + 

˜ φ) / 2 + η2 (1 − ˜ φ) / 2 .

ere, ρ1 and ρ2 are the densities of fluid 1 and fluid 

, respectively. η1 and η2 are the viscosities of fluid 

 and fluid 2, respectively. The gravitational acceleration 

 = (0 , −1) . The phase-field in a coarser grid is defined 

s ˜ φi j = 0 . 25(φ2 i −1 , 2 j−1 + φ2 i, 2 j−1 + φ2 i −1 , 2 j + φ2 i, 2 j ) , where 

 ≤ i ≤ N x / 2 , 1 ≤ j ≤ N y / 2 . The discretizations of Eq. (6) take

he following forms: 

ˆ  
i + 1 

2 
, j 

= u n 
i + 1 

2 
, j 

− �t ( uu x + v u y ) n 
i + 1 

2 
, j 

+ 

�t SF x ( ˜ φn ) 
i + 1 

2 
, j 

0 . 5 
(
ρ( ̃  φn 

i +1 , j 
) + ρ( ̃  φn 

i, j 
) 
)

+ 

�t 

[
2 

(
η( ̃  φn 

i +1 , j 
)(u n 

i + 3 
2 

, j 
− u n 

i + 1 
2 

, j 
) − η( ̃  φn 

i, j 
)(u n 

i + 1 
2 

, j 
− u n 

i − 1 
2 

, j 
) 

)]
0 . 5 ̃ h 2 Re 

(
ρ( ̃  φn 

i +1 , j 
) + ρ( ̃  φn 

i, j 
) 
)

+ 

�t 

[
ηa (u n 

i + 1 
2 

, j+1 
− u n 

i + 1 
2 

, j 
) − ηb (u n 

i + 1 
2 

, j 
− u n 

i + 1 
2 

, j−1 
) 

]
0 . 5 ̃ h 2 Re 

(
ρ( ̃  φn 

i +1 , j 
) + ρ( ̃  φn 

i, j 
) 
)

+ 

�t 

[
ηa (v n 

i +1 , j+ 1 
2 

− v n 
i, j+ 1 

2 

) − ηb (v n 
i +1 , j− 1 

2 

− v n 
i, j− 1 

2 

) 

]
0 . 5 ̃ h 2 Re 

(
ρ( ̃  φn 

i +1 , j 
) + ρ( ̃  φn 

i, j 
) 
) , (7) 

ˆ 
 

i, j+ 1 
2 

= v n 
i, j+ 1 

2 

− �t ( u v x + vv y ) n 
i, j+ 1 

2 

+ 

�t SF y ( ˜ φn ) 
i, j+ 1 

2 

0 . 5 
(
ρ( ̃  φn 

i, j+1 
) + ρ( ̃  φn 

i, j 
) 
) − �t 

F r 2 

+ 

�t 

[
2 

(
η( ̃  φn 

i, j+1 
)(v n 

i, j+ 3 
2 

− v n 
i, j+ 1 

2 

) − η( ̃  φn 
i, j 

)(v n 
i, j+ 1 

2 

− v n 
i, j− 1 

2 

) 

)]
0 . 5 ̃ h 2 Re 

(
ρ( ̃  φn 

i, j+1 
) + ρ( ̃  φn 

i, j 
) 
)

+ 

�t 

[
ηc (v n 

i +1 , j+ 1 
2 

− v n 
i, j+ 1 

2 

) − ηd (v n 
i, j+ 1 

2 

− v n 
i −1 , j+ 1 

2 

) 

]
0 . 5 ̃ h 2 Re 

(
ρ( ̃  φn 

i, j+1 
) + ρ( ̃  φn 

i, j 
) 
)

+ 

�t 

[
ηc (u n 

i + 1 
2 

, j+1 
− u n 

i + 1 
2 

, j 
) − ηd (u n 

i − 1 
2 

, j+1 
− u n 

i − 1 
2 

, j 
) 

]
0 . 5 ̃ h 2 Re 

(
ρ( ̃  φn 

i, j+1 
) + ρ( ̃  φn 

i, j 
) 
) , (8) 

here SF x and SF x are the components of SF along x - and y - 

irections, respectively. The definitions of ηa , ηb , ηc , and ηd are 

s follows: 

a = ηc = 0 . 25 

(
η( ̃  φn 

i, j ) + η( ̃  φn 
i +1 , j ) + η( ̃  φn 

i, j+1 ) + η( ̃  φn 
i +1 , j+1 ) 

)
, 

b = 0 . 25 

(
η( ̃  φn 

i, j ) + η( ̃  φn 
i +1 , j ) + η( ̃  φn 

i, j−1 ) + η( ̃  φn 
i +1 , j−1 ) 

)
, 
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Fig. 4. Schematic illustration of refinement of narrow band domain: (a) before refinement, (b) after refinement. 

Fig. 5. Schematic illustration of a two-phase flow system, where the interface is 

represented by the zero level set of phase-field function, i.e., φ = 0 . 
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∇
S

a

∇
H

v

t
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H

∇

d = 0 . 25 

(
η( ̃  φn 

i, j ) + η( ̃  φn 
i −1 , j ) + η( ̃  φn 

i, j+1 ) + η( ̃  φn 
i −1 , j+1 ) 

)
. 

he following upwind scheme is used to treat the advection terms 

n Eqs. (7) and (8) 

uu x + v u y ) n 
i + 1 

2 
, j 

= u n 
i + 1 

2 
, j 

ū n x 
i + 1 

2 
, j 

+ 

v n 
i, j− 1 

2 

+ v n 
i +1 , j− 1 

2 

+ v n 
i, j+ 1 

2 

+ v n 
i +1 , j+ 1 

2 

4 
ū n y 

i + 1 
2 

, j 

(u v x + vv y ) n 
i, j+ 1 

2 

= 

u n 
i − 1 

2 
, j 

+ u n 
i − 1 

2 
, j+1 

+ u n 
i + 1 

2 
, j 

+ u n 
i + 1 

2 
, j+1 

4 
v̄ n x 

i, j+ 1 
2 

+ v n 
i, j+ 1 

2 

v̄ n y 
i, j+ 1 

2 

here ū n x 
i + 1 

2 
, j 

and ū n y 
i + 1 

2 
, j 

are computed as follows 

¯
 

n 
x 

i + 1 
2 

, j 
= 

⎧ ⎨ 

⎩ 

u n 
i + 1 

2 
, j 
−u n 

i − 1 
2 

, j 

˜ h 
if u 

n 
i + 1 2 , j 

> 0 , 

u n 
i + 3 

2 
, j 
−u n 

i + 1 
2 

, j 

˜ h 
otherwise . 

nd 

¯
 

n 
y 

i + 1 
2 

, j 
= 

⎧ ⎨ 

⎩ 

u n 
i + 1 

2 
, j 
−u n 

i + 1 
2 

, j−1 

˜ h 
if v n 

i, j− 1 
2 

+ v n 
i +1 , j− 1 

2 

+ v n 
i, j+ 1 2 

+ v n 
i +1 , j+ 1 2 

> 0 , 

u n 
i + 1 

2 
, j+1 

−u n 
i + 1 

2 
, j 

˜ h 
otherwise . 

ther terms are similarly computed. From the definition of upwind 

cheme, we can observe that it has first-order spatial accuracy. The 

patial discretization of surface tension force ( Kim, 2012 ) is defined 
4 
o be 

F ( ̃  φi j ) = − 1 

2 W e 
∇ d ·

(
n 

| n | 
)

i j 

∇ d 
˜ φi j . (9) 

ere, the normal vector at the top right vertex ( ̃  x 
i + 1 

2 
, ̃  y 

j+ 1 
2 
) = 

i ̃ h , j ̃ h ) is given by 

 

i + 1 
2 

, j+ 1 
2 

= 

(
n x 

i + 1 
2 

, j+ 1 
2 

, n y 
i + 1 

2 
, j+ 1 

2 

)

= 

(
˜ φi +1 , j+1 + 

˜ φi +1 , j − ˜ φi, j+1 − ˜ φi j 

2 ̃ h 
, 

˜ φi +1 , j+1 + 

˜ φi, j+1 − ˜ φi +1 , j − ˜ φi j 

2 ̃ h 

)
. 

he other normal vectors can be defined in a same manner. Then, 

he curvature term at cell centers can be defined to be 

 d ·
(

n 

| n | 
)

i j 

= 

1 

2 ̃

 h 

( 

n 

x 
i + 1 2 , j+ 1 2 

+ n 

y 

i + 1 2 , j+ 1 2 

| n i + 1 2 , j+ 1 2 
| + 

n 

x 
i + 1 2 , j− 1 

2 

− n 

y 

i + 1 2 , j− 1 
2 

| n i + 1 2 , j− 1 
2 
| 

−
n 

x 
i − 1 

2 , j+ 1 2 

− n 

y 

i − 1 
2 , j+ 1 2 

| n i − 1 
2 , j+ 1 2 

| −
n 

x 
i − 1 

2 , j− 1 
2 

+ n 

y 

i − 1 
2 , j− 1 

2 

| n i − 1 
2 , j− 1 

2 
| 

) 

. 

he discrete gradient at cell centers is given by 

 d 
˜ φi j = 

(
n i + 1 2 , j+ 1 2 

+ n i + 1 2 , j− 1 
2 

+ n i − 1 
2 , j+ 1 2 

+ n i − 1 
2 , j− 1 

2 

)
/ 4 . 

tep 2. We solve the following Eqs. (10) and (11) for the pressure 

t (n + 1) time level. 

u 

n +1 − ˆ u 

�t 
= − 1 

ρn 
∇ d p 

n +1 , (10) 

 d · u 

n +1 = 0 . (11) 

ere, we use ρn = ρ( ̃  φn ) for convenience. Taking the discrete di- 

ergence operator to Eq. (10) and using Eq. (11) , we can update 

he pressure field by solving the following Poisson equation. Here, 

 multigrid algorithm is used ( Kim, 2012 ). 

 d ·
(

1 

ρn 
∇ d p 

n +1 
)

= 

1 

�t 
∇ d · ˆ u 

n . (12) 

ere, the discretizations of terms are defined as follows: 

 d ·
(

1 

ρn 
∇ d p 

n +1 
i j 

)
= 

1 
ρn 

i + 1 
2 

, j 

p n +1 
i +1 , j 

+ 

1 
ρn 

i − 1 
2 

, j 

p n +1 
i −1 , j 

+ 

1 
ρn 

i, j+ 1 
2 

p n +1 
i, j+1 

+ 

1 
ρn 

i, j− 1 
2 

p n +1 
i, j−1 

˜ h 2 

−

1 
ρn 

i + 1 
2 

, j 

+ 

1 
ρn 

i − 1 
2 

, j 

+ 

1 
ρn 

i, j+ 1 
2 

+ 

1 
ρn 

i, j− 1 
2 

˜ 2 
p n +1 

i j 
, (13) 
h 
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Fig. 6. Temporal evolutions of the interface and its adaptive domain �a in a background flow. 
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Fig. 7. Comparison of the deformation parameter D of a droplet with respect to 

different values of β and m p . 

fi

e

w

b

 d · ˆ u 

n 
i j = 

ˆ u 

n 
i + 1 2 , j 

− ˆ u 

n 
i − 1 

2 , j 

˜ h 

+ 

ˆ v n 
i, j+ 1 2 

− ˆ v n 
i, j− 1 

2 

˜ h 

, (14) 

here ρn 

i + 1 
2 

, j 
= 0 . 5(ρn 

i j 
+ ρn 

i +1 , j 
) and other terms are similarly de- 

ned. 

Step 3. Update the velocity field which satisfies the divergence- 

ree condition. 

 

n +1 = ˆ u − �t 

ρ( ˜ φn ) 
∇ d p 

n +1 . (15) 

he steps 1 − 3 complete the solution of the NS equation in 

ne time step. Next, we describe the numerical solution of the 

AC equation in an adaptive narrow band domain. More details 

bout the numerical solution of the NS equation can be found in 

 Kim, 2012 ). As have been mentioned, φ is the order parameter 

aving the value between −1 and 1 as shown in Fig. 2 (a). We de-

ne the interface of two phases as the zero-level set of φ. Using 

hese properties of φ, we define new computational domain. 

For given β > 0 and integer m p > 0 , we introduce the following

ime-dependent adaptive narrow band domain �a as 

a = 

{
(x i + k , y j+ l ) 

∣∣ | φn 
i j | ≤ β for ∀ i, j and − m p ≤ k, l ≤ m p 

}
. 

ere, the narrow band domain �a is embedded in the discrete 

omputational domain � . From the definition above, we can 
h 

5 
nd that the narrow band domain adaptively updates with the 

volution of φ. Fig. 2 (b) illustrates the narrow band domain �a 

hich is marked by the open circles. Note this adaptive narrow 

and approach has been successfully applied to two-phase physical 
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Fig. 8. Pressure jump test. (a) Initial condition. (b) Cross section of the pressure at y = 1 . 

Fig. 9. Local views of two-phase flow in a sloshing tank. (a) schematic diagram, (b) initial state, (c) initial narrow band domain. 
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roblem with interface, such as the dendritic growth ( Jeong and 

im, 2019 ). 

Now, we solve the governing Eq. (3) on the narrow band do- 

ain �a . First, we initialize φ0 on the computational domain �h . 

hen, we define the narrow band domain �a with the given φn . By 

aking the operator splitting method ( Kim et al., 2014 ), Eq. (3) is

plit into three parts: 

φ∗ − φn 

�t 
= ∇ d · ( φu ) n , (16) 

φ∗∗ − φ∗

�t 
= 

1 

P e 

(
−F ′ (φ∗) + ε2 �d φ

∗), (17) 

φn +1 − φ∗∗

�t 
= γ (t) 

√ 

F (φ∗∗) . (18) 

o solve Eq. (16) , we first find the velocity of φi j at the position

x i , y j ) by using the bilinear interpolation on the coarse grid �˜ h 
.

he schematic illustration of this process is shown in Fig. 3 . The 

onvection Eq. (16) is solved by using a similar idea in “stable flu- 

ds” method of Stam (1999) . To compute the convective value φ∗
i j 

f φn at (x i , y j ) , a new position x ∗
i j 

= x i j − �tu 

n 
i j 

is first calculated,

hen the φ∗
i j 

is obtained by the bilinear interpolation on the fine 

rid � , see Fig. 3 . 
h 

6 
Next, we solve Eq. (17) by using the following explicit 

cheme: 

φ∗∗
i j 

− φ∗
i j 

�t 
= 

1 

P e 

(
−F ′ (φ∗

i j ) + ε2 �d φ
∗
i j 

)
, (19) 

here the discrete Laplacian operator takes the standard five-point 

iscretization �d φi j = (φi +1 , j + φi −1 , j + φi, j+1 + φi, j−1 − 4 φi j ) /h 2 . 

Finally, Eq. (18) is discretized as: 

φn +1 
i j 

− φ∗∗
i j 

�t 
= γ ∗∗

√ 

F (φ∗∗
i j 

) . (20) 

sing Eq. (20) and the mass conservation, we have ∑ 

 i j ∈ �a 

φ0 
i j = 

∑ 

x i j ∈ �a 

φn +1 
i j 

= 

∑ 

x i j ∈ �a 

(
φ∗∗

i j + �tγ ∗∗
√ 

F (φ∗∗
i j 

) 
)
. (21) 

hus, 

∗∗ = 

1 

�t 

∑ 

x i j ∈ �a 

(
φ0 

i j − φ∗∗
i j 

)
/ 

∑ 

x i j ∈ �a 

√ 

F (φ∗∗
i j 

) . (22) 

e finally get φn +1 by φn +1 
i j 

= φ∗∗
i j 

+ �tγ ∗∗
√ 

F (φ∗∗
i j 

) . 

Remarks . In this work, we only focus on developing a simple, 

ast, and practical adaptive finite difference method for the simu- 

ation of two-phase incompressible fluid flow. The temporally first- 

rder scheme is used for the purpose of convenience and smaller 

ime steps (less than O (h 2 ) ) are used in all simulations for the pur-

ose of accuracy. Note that the temporally second-order scheme 
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Fig. 10. The snapshots of two-phase flow in a sloshing tank. The left column shows the previous results. Adapted form Joshi and Jaiman (2018) with the permission of 

Elsevier Science. The middle and right columns show the present results and the corresponding narrow band domains. 

Fig. 11. Temporal evolution of the deformation parameter D = (L − B ) / (L + B ) of a 

droplet for Re = 1 , Ca = 0 . 2 , 0.4, and 0.9. 
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an be straightforwardly extended in a same manner, we will leave 

his for the interested readers. Different from the classic adaptive 

esh technique, our proposed method only calculates phase-field 

n an adaptive narrow band region containing the interface so that 

he computation is very fast. We can easily refine the grid in the 
7 
arrow band domain to achieve a finer resolution, schematic illus- 

rations are shown in Fig. 4 (a) and (b). To achieve multilevel grids, 

 similar approach of classical adaptive mesh technique must be 

sed, it is out of the scope of this study. 

. Numerical experiments 

In the following parts, we perform several numerical experi- 

ents, such as the droplet deformation in background flow, pres- 

ure jump, droplet deformation in shear flow, heavier droplet 

alling, and lighter bubble raising, etc, to investigate the efficiency 

nd the practicability of the proposed method. In 2D cases, the pe- 

iodic boundary condition along x -direction is used, the no-slip and 

omogeneous-Neumann boundary conditions along y -direction are 

sed for the shear flow and the buoyancy flow, respectively. In 

D cases, the periodic boundary condition is used along x - and y - 

irections, the no-slip and homogeneous-Neumann boundary con- 

itions along z-direction are used for the shear flow and the buoy- 

ncy flow, respectively. Here, we define the interfacial parameter 

o be ( Yang and Kim, 2018 ): 

= εm 

= 

mh 

2 

√ 

2 tanh 

−1 
(0 . 9) 

, (23) 

hich indicates the transition layer approximately occupies m 

rids. Although the transition layer appears in the phase-field 

odel, the interface is usually represented by the zero level set 
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Fig. 12. Profiles of the droplet for (a) Ca = 0 . 2 , (c) Ca = 0 . 4 , and (e) Ca = 0 . 9 . The corresponding times are t = 1 , 1.9, and 3, respectively. Their corresponding adaptive 

domains are shown in (b), (d), and (f), respectively. 
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β  
f phase-field function, i.e., φ = 0 in many studies ( Sui et al., 2014;

u et al., 2018; Aland and Voigt, 2012 ). A schematic illustration is 

hown in Fig. 5 . In the following simulations, we will plot the zero 

evel set of phase-field function instead of the transition layer and 

ifferent colors indicate that the regions are approximately occu- 

ied by two different fluids. 

.1. Droplet deformation in a background flow 

We first consider the droplet deformation in a background ve- 

ocity field with the absence of the NS equation. The initial condi- 

ion is defined as: 

(x, y, 0) = tanh 

( 

0 . 5 −
√ 

(x − 1) 2 + (y − 1) 2 √ 

2 ε

) 

(24) 

n the domain � = (0 , 2) 2 . The background velocity field is set to

e: u = y − 1 , v = 0 , i.e., a shear flow. The numerical parameters:

 = 1 / 64 , �t = 0 . 2 h 2 , ε5 , Pe = 0 . 002 /ε5 are used. Note that the

xact solution exists in this kind of background flow, which has the 

ollowing form at time t: x = x + ut, y = y , where x and y are the
0 0 

8 
ositions of points at the interface which is defined by the zero 

evel-set ( φ = 0 ), x 0 and y 0 are the initial positions. Fig. 6 (a) and

b) show the initial profile and its adaptive domain �a , respec- 

ively. The evolutions of profile and adaptive domain at t = 0 . 9766 

re shown in Fig. 6 (c) and (d), respectively. We can observe that 

he exact solutions and numerical results are in good agreement. 

he convection term works well to transfer the interface to a de- 

ired position. 

.2. Verification of the adaptive domain �a 

In this work, the temporally adaptive narrow band domain is 

elated to the parameters β and m p . To investigate the effect of 

and m p on the computational results, we calculate the defor- 

ation parameter D = (L − B ) / (L + B ) of a droplet in shear flow,

here L and B are the maximum and minimum distances from 

he interface to the central point, respectively. Here, the initial 

ondition, background flow, and numerical parameters are un- 

hanged like those in Section 3.1 . We consider different values of 

: 0 . 99 , 0 . 8 , 0 . 7 , and 0.6 for the adaptive domain �a and per-
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Fig. 13. (a) Contour line φ = 0 at t = 0 . 2441 and (b) evolution of CPU time with respect to different domain. 

Fig. 14. Temporal evolutions of the droplet falling with respect to different Weber numbers, (a) We = 20 and (b) We = 200 . The computational time from the left to right in 

each row are t = 0 , 1.4648, and 2.4414. 
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orm the same simulation in the full domain � as a comparison. 

ig. 7 illustrates the change of D versus different values of m p at 

 = 0 . 9766 . As we can see, extremely small values of both β and

 p can not guarantee the good results. However, the good results 

an be obtained when we use a large enough value of β or m p .

herefore, β = 0 . 99 and m p = 2 is an appropriate choice to obtain

fficient and accurate results. 

.3. Pressure jump test 

We now investigate the test of pressure jump, which is impor- 

ant to verify the numerical treatment of the surface tension term. 

he pressure jump around a circular droplet after one time step is 

onsidered. The initial conditions are defined as: 

(x, y, 0) = tanh 

( 

0 . 5 −
√ 

(x − 1) 2 + (y − 1) 2 √ 

2 ε

) 

, (25) 
9 
 (x, y, 0) = v (x, y, 0) = 0 (26) 

n the domain � = (0 , 2) 2 , which means the radius R of the

roplet is 0.5. The numerical parameters are: h = 1 / 64 , �t =
 . 1 h 2 , ε8 , Pe = 1 . 0 /ε8 , Re = 10 , W e = 10 . In this simulation, the

ensity- and viscosity-matched conditions (i.e., ρ1 = ρ2 , η1 = η2 ) 

re considered and the gravity effect is omitted (i.e., F r = ∞ ). 

ig. 8 (a) is the initial condition of a droplet, (b) illustrates the 

ross section of the pressure along y = 1 . Theoretically, the pres- 

ure jump across the circular disk is ( Kim, 2012 ): 

 p] t = 

1 

RW e 
, (27) 

here R is the radius of the circle and W e is the Weber num-

er. In this test, the theoretical pressure jump [ p] t is 0.2 be- 

ause we set R = 0 . 5 and W e = 10 . The numerical pressure jump is

 p] n = p max − p min 

= 0 . 1964 . Therefore, the numerical result and

he theoretical value are in good agreement. 
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Fig. 15. Temporal evolutions of (a) rising bubble and (b) its corresponding adaptive domain. The computational time from the left to right in each row are t = 0 , 1, 2, 3, and 

4. 

Fig. 16. Temporal evolutions of (a) falling droplets of various sizes and (b) its cor- 

responding adaptive domain. The computational time from the left to right in each 

row are t = 0 , 0.2441, 0.4883, 0.8545, and 1.0986. 

3

a

c

v

a

fl

c

t  

t

t

φ

u

F  

0  

a

F  

d

n

b  

r

u

3

s

w

t

t

.4. Comparison with the previous results ( Joshi and Jaiman, 2018 ) in 

 sloshing tank 

In a previous work, Joshi and Jaiman (2018) developed an ac- 

urate adaptive finite element method for the CACNS system. They 

erified their method by performing various numerical tests, such 
10 
s the the phase separation, evolutions of two circles without fluid 

ow, and binary fluid flow in a sloshing tank, etc. In this part, we 

onsider a same simulation in a sloshing tank. Fig. 9 (a)–(c) illus- 

rate the local views in (0 , 1) × (0 , 1 . 5) of schematic diagram, ini-

ial state, and initial narrow band domain, respectively. We take 

he following definitions of initial condition: 

(x, y, 0) = − tanh 

(
y − 1 . 01 − 0 . 1 sin (2 πx ) √ 

2 ε

)
, (28) 

 (x, y, 0) = v (x, y, 0) = 0 . (29) 

or the simulation in � = (0 , 1) × (0 , 2) , we take h = 1 / 128 , �t =
 . 2 h 2 , ε = ε4 , Pe = 0 . 01 , Re = 10 4 , and F r = 1 . The no-slip bound-

ry conditions are used for velocity field. The left column in 

ig. 10 illustrates the results in ( Joshi and Jaiman, 2018 ), the mid-

le column illustrates the present results, and the corresponding 

arrow band domains are shown in the right column. The top and 

ottom rows in Fig. 10 show the results at t = 1 . 98 and t = 12 . 96 ,

espectively. We observe that the similar results are obtained by 

sing the present method. 

.5. Comparison with the previous results ( Aland and Voigt, 2012 ) in 

hear flow 

In this work, the NS equation is solved in a discrete domain 

ith coarser mesh size for the purpose of efficiency. To verify 

he practicability of our approach for the CACNS system under 

he effect of surface tension, we compare the droplet deformation 
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Fig. 17. Temporal evolutions of the area of three droplets. 
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n shear flow with the previous results performed by Aland and 

oigt (2012) . The initial conditions are the circular droplet and the 

ouette flow velocity in the domain � = (0 , 4) × (0 , 2) : 

(x, y, 0) = tanh 

( 

0 . 5 −
√ 

(x − 1) 2 + (y − 1) 2 √ 

2 ε

) 

, (30) 

 (x, y, 0) = y − 1 , v (x, y, 0) = 0 . (31) 

he numerical parameters used are: h = 1 / 32 , �t = 

 . 2 h 2 , ε4 , Re = 1 , and F r = ∞ . The density- and viscosity-

atched conditions are considered. In Fig. 11 , the solid black 

ines represent the deformation parameter D = (L − B ) / (L + B ) in

he work from Aland and Voigt (2012) . The open circles are the 

esults obtained from the proposed method. We can find that 

hey are in good agreement. Here, we use Pe = 0 . 025 , Pe = 0 . 05 ,

nd Pe = 0 . 1125 for the cases Ca = W e/Re = 0 . 2 , Ca = 0 . 4 , and

a = 0 . 9 . We observe that the Peclet number Pe is proportional

o the Capillary number Ca . Fig. 12 (a), (c), and (e) illustrate the

rofiles of the droplet for Ca = 0 . 2 , 0 . 4 , and 0.9, respectively. The

orresponding adaptive domains are shown in Fig. 12 (b), (d), and 

f), respectively. 

.6. Efficiency of the proposed method 

Next, we investigate the efficiency of the proposed method by 

onsidering the droplet deformation under shear flow in the do- 

ain � = (0 , 1) 2 . The mesh size 128 × 128 is used for the calcu-

ation in the adaptive domain. To do the comparison, the simula- 

ions in the full domain with mesh sizes: 32 × 32 , 64 × 64 , and
11 
28 × 128 are considered. The initial conditions are defined as: 

(x, y, 0) = tanh 

( 

0 . 2 −
√ 

(x − 0 . 5) 2 + (y − 0 . 5) 2 √ 

2 ε

) 

, (32) 

 (x, y, 0) = 2(y − 0 . 5) , v (x, y, 0) = 0 . (33) 

he numerical parameters: �t = 2 . 44 × 10 −5 , ε = 0 . 015 , Pe =
 . 03 , Re = 500 , W e = 250 , and F r = ∞ are used. The density- and

iscosity-matched conditions are also considered. Fig. 13 (a) shows 

he profiles at t = 0 . 2441 with respect to different mesh sizes and

b) shows the CPU time consumed with temporal evolution. As we 

an observe from Fig. 13 (a), the interfacial profile converges with 

he increase of mesh size in the full domain. By using the proposed 

ethod, a more accurate result can be obtained by using less mesh 

rids. Comparing with the full domain, the proposed adaptive do- 

ain significantly saves the computational time in the condition of 

sing same mesh size. 

.7. Effect of the Weber number: W e 

In the simulation with the combination of surface tension and 

ravity, we briefly consider the effect of the Weber number: W e 

n the dynamics of heavier droplet falling. The initial conditions 

re set to be: 

(x, y, 0) = tanh 

( 

0 . 3 −
√ 

(x − 1) 2 + (y − 1 . 5) 2 √ 

2 ε

) 

, (34) 

 (x, y, 0) = v (x, y, 0) = 0 (35) 
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Fig. 18. Evolutions at (a) t = 0 and (b) t = 0 . 9 . The corresponding adaptive domain (cross profile along y = 1 ) of (a) and (b) are illustrated in (c) and (d), respectively. 
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n the domain � = (0 , 2) 2 . We use the following numerical param-

ters: h = 1 / 64 , �t = 0 . 2 h 2 , ε = ε4 , Pe = 0 . 03 , Re = 10 0 0 , and

 r = 1 . The density ratio ρ1 : ρ2 = 3 : 1 and viscosity-matched con-

ition are considered. Fig. 14 (a) and (b) show the temporal evolu- 

ions of droplet falling with respect to different Weber numbers: 

 e = 20 and W e = 200 . The numerical results indicate that the

arger W e causes the decrease of surface tension effect, and then 

eads to the larger deformation of the droplet. 

.8. Rising bubble with large density and viscosity ratios 

In this part, we simulate the rising bubble in water with a den- 

ity ratio ρ1 : ρ2 = 1 : 10 0 0 , and a viscosity ratio η1 : η2 = 1 : 100

 Aland and Voigt, 2012 ) by the proposed method. The circle bub- 

le with radius R = 0 . 5 is set in the domain � = (0 , 2) × (0 , 4) . The

nitial conditions are defined as: 

(x, y, 0) = tanh 

( 

0 . 5 −
√ 

(x − 1) 2 + (y − 1) 2 √ 

2 ε

) 

, (36) 

 (x, y, 0) = v (x, y, 0) = 0 . (37) 

he numerical parameters: h = 1 / 64 , �t = 0 . 0 0 0 01 , ε4 , Pe =
 . 03 , Re = 35 , W e = 125 , and F r = 1 are used. Fig. 15 (a) shows
12 
he temporal evolution of bubble at t = 0 , 1 , 2 , 3 , and 4; and (b)

hows the temporal evolution of adaptive domain. We can see that 

he result is similar with the numerical results in Ref. ( Jeong and 

im, 2017 ). 

.9. Falling droplets of various sizes 

In this subsection, we consider the movement of several 

roplets of different sizes in the domain � = (0 , 2) × (0 , 4) . The

ollowing initial conditions are used: 

(x, y, 0) = tanh 

( 

0 . 5 −
√ 

(x − 1) 2 + (y − 0 . 9) 2 √ 

2 ε

) 

+ tanh 

( 

0 . 4 −
√ 

(x − 0 . 7) 2 + (y − 3 . 3) 2 √ 

2 ε

) 

+ tanh 

( 

0 . 35 −
√ 

(x − 1 . 3) 2 + (y − 2 . 2) 2 √ 

2 ε

) 

+ 2 , (38) 

 (x, y, 0) = v (x, y, 0) = 0 , (39) 

hich indicates the initial radii of three droplets are R = 0 . 5 , 0 . 4 ,

nd 0.35. The following parameters: h = 1 / 64 , �t = 0 . 2 h 2 , Re =



J. Yang, D. Jeong and J. Kim International Journal of Multiphase Flow 137 (2021) 103561 

Fig. 19. (a) Cross profile (along y = 1 ) of contour line φ = 0 at t = 0 . 5859 and (b) evolution of CPU time with respect to different domain. 
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0 0 0 , W e = 5 , ε4 , Pe = 0 . 06 , F r = 1 , ρ1 : ρ2 = 10 : 1 , and η1 :

2 = 1 : 1 are used. We plot the snapshots in Fig. 16 and the tem-

oral evolution of area of each droplet is shown in Fig. 17 . We can

nd that three droplets approximately retain their initial mass. Al- 

hough the slight increase or decrease of the mass of droplet ap- 

ears due to the effect of volume-preserving mean curvature dy- 

amics of the CAC model, we can use proper value of Pe to sup- 

ress this nonphysical phenomenon. To fix this problem in another 

ay, a recently developed CAC model with anti-curvature term and 

onstandard mobility ( Yang et al., 2020 ) will be a good choice, we

ill consider this in the future. 

.10. 3D droplet deformation in a background flow 

In the three-dimensional space, we first consider the droplet 

eformation in the absence of the NS equation. The initial condi- 

ion of a spherical droplet is defined as 

(x, y, z, 0) = tanh 

( 

0 . 5 −
√ 

(x − 1) 2 + (y − 1) 2 + (z − 1) 2 √ 

2 ε

) 

(40) 

n the domain � = (0 , 2) 3 . The background flow field is set to

e u (x, y, z) = z − 1 , and v (x, y, z) = w (x, y, z) = 0 . We use the fol-

owing numerical parameters: h = 1 / 64 , �t = 0 . 1 h 2 , ε4 , and Pe =
 . 03 . Fig. 18 (a) and (b) illustrate the evolutions at t = 0 and t =
 . 9 , respectively. Their corresponding adaptive domains are repre- 

ented in Fig. 18 (c) and (d), respectively. We can observe that the 

umerical result and exact solution are in good agreement. 

.11. Efficiency of the proposed method in the 3D space 

Without the loss of generality, we consider the droplet defor- 

ation in shear flow to investigate the efficiency of the proposed 

ethod. The initial conditions are set to be 

(x, y, z, 0) = tanh 

( 

0 . 5 −
√ 

(x − 1) 2 + (y − 1) 2 + (z − 1) 2 √ 

2 ε

) 

, 

(41) 

 (x, y, z, 0) = z − 1 , (42) 

 (x, y, z, 0) = w (x, y, z, 0) = 0 (43) 
13 
n the domain � = (0 , 2) 3 . The following numerical parameters are 

sed by �t = 9 . 766 × 10 −5 , ε = 0 . 03 , Pe = 0 . 03 , Re = 10 , W e =
0 , and F r = ∞ . The computation is performed until t = 0 . 5859 .

ig. 19 (a) shows the evolutions at t = 0 . 5859 with respect to the

ull domain with mesh size: 64 × 64 × 64 , adaptive domain with 

esh size: 64 × 64 × 64 , and the full domain with mesh size: 

2 × 32 × 32 . The temporal evolutions of the consumed CPU time 

re illustrated in Fig. 19 (b). Although the CPU time is less con- 

umed in the full domain with mesh size: 32 × 32 × 32 , the result 

an not guarantee the accuracy. For the same mesh size, the pro- 

osed method can obviously save the computational time. 

.12. Rising bubble in the 3D space 

Finally, we show that the proposed method can also be applied 

o simulate the rising bubble with large density and viscosity ra- 

ios. In this test, the initial conditions are defined as: 

φ(x, y, z, 0) 

= tanh 

( 

0 . 35 −
√ 

(x − 1) 2 + (y − 1) 2 + (z − 0 . 6) 2 √ 

2 ε

) 

, (44) 

 (x, y, z, 0) = v (x, y, z, 0) = w (x, y, z, 0) = 0 (45) 

n the domain � = (0 , 2) 3 . The numerical parameters: h = 

 / 32 , �t = 0 . 1 h 2 , ε4 , Pe = 0 . 03 , Re = 100 , W e = 250 , and F r = 1

re used. The density and viscosity ratios are sent to be: ρ1 : ρ2 = 

 : 10 0 0 , η1 : η2 = 1 : 100 , respectively. From the temporal evolu-

ion shown in Fig. 20 , we can see that the bubble raises and de-

orms due to the buoyancy-driven force. The mass conservation is 

n important property for the two-phase incompressible fluid sys- 

em, Fig. 21 illustrates the temporal evolution of discrete polyhe- 

ron volume ( Li et al., 2013 ) of the droplet, we can see that the

ass is conserved by using our method. 

.13. Two-phase fluid flows with topological change 

In this subsection, we investigate the two-phase fluid flows 

ith topological change of the interface, such as the coalescence 

f two droplets ( Shah et al., 2018 ), and the Rayleigh instability 

 Popinet, 2009 ). First of all, we consider two droplets in the two- 
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Fig. 20. Temporal evolution of rising bubble with large density and viscosity ratios. The second row illustrates the cross profiles at y = 1 . The computational time is illustrated 

below each figure. 

Fig. 21. Temporal evolution of discrete polyhedron volume of the droplet. The embedded figures are the evolutions at specific time. 

d

φ

u

T

(  

ε  

1  

a

imensional shear flow with the following initial conditions: 

(x, y, 0) = tanh 

( 

0 . 39 −
√ 

(x − 1 . 6) 2 + (y − 1 . 3) 2 √ 

2 ε

) 

+ tanh 

( 

0 . 39 −
√ 

(x − 2 . 4) 2 + (y − 0 . 7) 2 √ 

2 ε

) 

+ 1 , (46) 
14 
 (x, y, 0) = y − 1 , v (x, y, 0) = 0 . (47) 

he computation is performed in the domain � = (0 , 4) ×
0 , 2) with the following parameters: h = 1 / 64 , �t = 0 . 4 h 2 , ε =
4 , Pe = 0 . 03 , Re = 30 , W e = 1 , ρ1 : ρ2 = 1 : 1 , and η1 : η2 = 1 :

 . From Fig. 22 , we observe that two droplets deform and then co-

lesce with each other. 
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Fig. 22. Profiles of the two droplets in shear flow. The right column shows the corresponding adaptive domain. The figures from the top to bottom in each column are at 

t = 0 , 0 . 4883 , 0 . 5859 , 0 . 8789 , 1 . 4648 . 

15 
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Fig. 23. The breakup of liquid column driven by the Rayleigh instability. The computational time is illustrated below each figure. 
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Next, we consider the breakup of fluid column driven by the 

ayleigh instability in three-dimensional space � = (0 , 2 π) 2 . The 

nitial conditions are as follows: 

φ(x, y, z, 0) 

= tanh 

( 

0 . 35 −
√ 

(y − π) 2 + (z − π) 2 − 0 . 05 cos (x ) √ 

2 ε

) 

, (48) 

 (x, y, z, 0) = v (x, y, z, 0) = w (x, y, z, 0) = 0 . (49) 

he parameters used in this simulation are: h = π/ 32 , �t = 

 . 1 h 2 , ε = ε4 , Pe = 0 . 03 , Re = 0 . 16 , W e = 0 . 002 , ρ1 : ρ2 = 1 : 1 ,

nd η1 : η2 = 1 : 1 . Fig. 23 (a)–(f) show the snapshots of liquid col-

mn at different moments. Due to the effect of surface tension, the 

iquid column undergoes pinch-off and satellite droplets form. The 

esults in this subsection indicate that our method still works well 

or two-phase flows with topological change of the interface. 

Remarks . For comparison studies, we took proper values of ε
nd Pe to fit the theoretical or previous results. In a recent work 

 Jeong and Kim, 2017 ), authors investigated the effect of Pe on the

ACNS system and proper value of Pe was 0 . 01 ∼ 1 . 0 . Therefore, we

sed Pe in this range for the simulations of two-phase fluid flows. 

. Conclusions 

In this work, we presented an efficient and practical adaptive fi- 

ite difference method for the CACNS system to simulate the two- 
16 
hase fluid flow. For the CAC equation, we used a temporally adap- 

ive narrow band domain embedded in the uniform discrete rect- 

ngular domain. The narrow band domain was defined as a neigh- 

oring region of the interface. The NS equation was solved in a 

ull discrete domain with a coarser mesh than that for the CAC 

quation. In the simulation with a background flow, the numerical 

esults showed a good agreement with the exact solution. In the 

imulations of CACNS system, some comparison studies indicated 

hat the proposed method is practical and efficient. In particular, 

he proposed method could also be applied for the two-phase fluid 

ow with large density and viscosity ratios. As the future work, the 

roposed method can be extended to efficiently simulate various 

ulti-component (more than two) fluid flow phenomena. 
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