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a b s t r a c t

In this paper, we propose the phase-field simulation of dendritic crystal growth in both two- and three-
dimensional spaces with adaptive mesh refinement, which was designed to solve nonlinear parabolic
partial differential equations. The proposed numerical method, based on operator splitting techniques,
can use large time step sizes and exhibits excellent stability. In addition, the resulting discrete system
of equations is solved by a fast numerical method such as an adaptive multigrid method. Comparisons
to uniform mesh method, explicit adaptive method, and previous numerical experiments for crystal
growth simulations are presented to demonstrate the accuracy and robustness of the proposed method.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Crystal growth is a phase transformation from the liquid phase
to the solid phase via heat transfer [1]. Predicting the shape of
growing crystals is important for industrial crystallization pro-
cesses [2]. Various numerical methods such as boundary integral
[3–6], cellular automata [7–10], front-tracking [11–15], level-set
[16–19], Monte-Carlo [20,21], and phase-field [22–42] have been
developed to simulate crystal growth. Among these methods, the
phase-field approach is widely used for modeling solidification
problems since it avoids the explicit tracking of macroscopically
sharp phase boundaries [29].

A great challenge in the simulation of crystal growth with var-
ious supercoolings is the large difference in time and length scales.
The adaptive mesh refinement is faster and more efficient than a
uniform mesh in simulating crystal growth because it allows con-
centration of effort and multi-resolution in space and time [27–
41]. However most previous adaptive phase-field computations
of dendrite crystal growth suffer from severe time step restrictions
since they use explicit schemes [34–38]. Since the discrete Lapla-
cian is used in the explicit scheme, its stability criterion becomes
Dt � O(h2), where Dt is the time step and h is the mesh size. Thus
the crystal growth simulation with various supercoolings is still
very difficult.

To use large time steps, Rosam et al. [39,40] proposed a fully im-
plicit, fully adaptive time and space discretization method for the
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crystal growth simulation. Its stability is almost unconditionally
stable although it is computationally more expensive than explicit
ones per time step. To have better stability properties, a multiple
time-step algorithm was presented in [41]. A larger time step is
used for the flow-field calculations while reserving a finer time
step for the phase-field evolution.

In our previous work [42], we introduced a fast, robust, and
accurate operator splitting method for phase-field simulations of
crystal growth with uniform mesh size, which allows large time
steps, e.g., Dt � O(h). The main purpose of the present paper is to
extend our previous work by incorporating adaptive mesh refine-
ment. We will demonstrate stability, robustness, and accuracy of
the proposed method by a set of representative numerical
experiments.

This paper is organized as follows. In Section 2, we give the gov-
erning equations for crystal growth based on the phase-field mod-
el. In Section 3, computationally efficient operator splitting
algorithm and adaptive mesh refinement are described. In Sec-
tion 4, we present numerical results for solving the crystal growth
simulation both in two and three dimensions. Finally, conclusions
are given in Section 5.
2. The phase-field model

The basic equations of the phase-field model can be derived
from a single Lyapounov functional [43]. We model the solidifica-
tion in two and three dimensions using a standard form of phase-
field equations. The model is given by
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where / 2 [�1,1] is the order parameter with / = 1 in the solid
phase and / = �1 in the liquid phase. / = 0 is defined as the inter-
face of two phases. �(/) is the anisotropic function, k is the dimen-
sionless coupling parameter, and U = cp(T � TM)/L is the
dimensionless temperature field. Here cp is the specific heat at con-
stant pressure, TM is the melting temperature, L is the latent heat of
fusion, D ¼ as0=�2

0; a is the thermal diffusivity, s0 is the character-
istic time, �0 is the characteristic length. k is given as k = D/a2 with
a2 = 0.6267 [28,29]. For the fourfold symmetry, anisotropic function
�(/) with anisotropy strength �4, is defined as:
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Fig. 1. Block-structured local refinement with four levels.
3. Numerical solution

In this section, we propose a robust hybrid numerical method
for the crystal growth simulation. For simplicity of exposition, we
shall discretize Eqs. (1) and (2) in two-dimensional space, i.e.,
X = (a,b) � (c,d). Three-dimensional discretization is analogously
defined. Let Nx and Ny be positive even integers, h = (b � a)/Nx be
the uniform mesh size, and Xh = {(xi,yj): xi = (i � 0.5)h, yj =
(j � 0.5)h, 1 6 i 6 Nx, 1 6 j 6 Ny} be the set of cell-centers. Let /n

ij

be approximations of /(xi,yj,nDt), where Dt = T/Nt is the time step,
T is the final time, and Nt is the total number of time steps. Eqs. (1)
and (2) are discretized in a similar manner as in [42]:
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where the discrete differentiation operator is rd/ij = (/i+1,j � /i�1,j,
/i,j+1 � /i,j�1)/(2h) and the discrete Laplacian operator is Dd/ij =
(/i+1,j + /i�1,j � 4/ij + /i,j+1 + /i,j�1)/h2. With nine local points, we
describe the following term
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The other terms can be described in a similar manner. Note that we
added a small value d = 1e � 10 in the denominator jrd/j4 to avoid
singularities.

To solve the resulting system of discrete Eqs. (3)–(6) at the im-
plicit time level, we use an adaptive mesh refinement [44,45],
whose schematic diagram is shown in Fig. 1. In the adaptive ap-
proach, we introduce a hierarchy of increasingly finer grids,
Xlþ1; . . . ;Xlþl� , restricted to smaller and smaller subdomains, while
the last hierarchy of global grids are X0,X1, . . . ,Xl. That is, we con-
sider a hierarchy of grids, X0;X1; . . . ;Xlþ0;Xlþ1; . . . ;Xlþl� . Here we
denote Xl+0 as level zero, Xl+1 as level one, and so on. For example,
in Fig. 1, l⁄ = 3.

The grid is adapted dynamically based on the undivided gradi-
ent. First, we tag cells that contain the front, i.e., those in which the
undivided gradient of the phase-field is greater than a critical va-
lue. Then, the tagged cells are grouped into rectangular patches
by using a clustering algorithm as in Ref. [47]. These rectangular
patches are refined to form the grids at the next level. The process
is repeated until a specified maximum level is reached.

Next, we describe the adaptive full approximation storage cycle
to solve the discrete system on the hierarchy of increasingly finer
grids. First, let us rewrite Eqs. (5) and (6) as
Nð/nþ1;Unþ1Þ ¼ ðun;wnÞ;
where Nð/nþ1;Unþ1Þ ¼ /nþ1

Dt � Dd/
nþ1; Unþ1

Dt � DDdUnþ1 � /nþ1

2Dt
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2Dt
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Using the above notations on all levels k = 0,1, . . . , l, l +
1, . . . , l + l⁄, an adaptive multigrid cycle is formally written as fol-
lows [46]:
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3.1. Adaptive cycle

We calculate un
k ; wn

k on all levels and set the previous time solu-
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where one SMOOTH relaxation operator step consists of solving Eqs.
(9) and (10) given below by a 2 � 2 matrix inversion for each i and j.
Rewriting Eqs. (5) and (6), we get
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Fig. 3. A sample adaptive mesh in different views in two d
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- Compute an approximate solution ð/̂m
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k�1Þ of the coarse
grid equation on Xk�1, i.e.,
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If k = 1, we explicitly invert a 2 � 2 matrix to obtain the solution. If
k > 1, we solve Eq. (11) by using ð�/m
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m
k�1Þ as an initial approxima-

tion to perform an adaptive multigrid k-grid cycle:
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This completes the description of an adaptive multigrid cycle.
For additional details about the adaptive multigrid cycle, please re-
fer to [46].
ns. (a) whole view, (b) and (c) closeup views.

(c)
), (b) Dt = 1.17 (512 � 512 mesh), and (c) Dt = 0.59 (1024 � 1024 mesh).



Fig. 4. The evolution for crystal growth in two dimensions.
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4. Numerical results

In this section, we perform numerical experiments for two- and
three-dimensional solidification to validate that our proposed
scheme is accurate, efficient, and robust. For two-dimensional
tests, unless otherwise specified, we take the initial state as

/ðx; y;0Þ ¼ tanh
R0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

pffiffiffi
2
p

 !
;

Uðx; y;0Þ ¼ Dð1� /ðx; y;0ÞÞ
2

�
0 if / > 0
D else:

�

Fig. 5. Snapshots of three-dimensional evolution of crystal growth. (a) crystal shape at tim
t = 0,240, and 480.
The zero level set (/ = 0) represents a circle of radius R0. From the
dimensionless variable definition, the value U = 0 corresponds to
the melting temperature of the pure material, while U = D is the ini-
tial undercooling. The capillary length d0 is defined as d0 = a1/k
[39,43], where a1 = 0.8839 and k = 3.1913 [39]. And the other
parameters are chosen as �4 = 0.05 and D = 2.

4.1. Stability of our proposed algorithm

As mentioned in Section 1, explicit schemes [34–38] suffer from
time step restrictions Dt 6 O(h2) for the stability. In order to over-
come the restriction of time step, Li et al. [42] proposed a fast, ro-
bust, and accurate operator splitting method for phase-field
simulations of crystal growth. The authors showed that their meth-
od can use large time step sizes Dt � O(h). Here, we consider a set
of increasingly finer grids to show the stability of our proposed
method. The computational domain is X = (�100,100)2 with
2n � 2n mesh grids for n = 8, 9, and 10. The numerical solutions
are computed up to T = 128.91, with time steps Dt = 3h. Other
parameters are R0 = 14d0 and D = �0.55. Fig. 2 shows crystal shape
at time T = 128.91 with different time steps. Form these results, we
can observe that our proposed method also allows large time step
sizes.

4.2. Evolution for crystal growth in two- and three-dimensional spaces

In this experiment, we will show the evolution of crystal growth
in two and three dimensions with adaptive mesh method. A sam-
ple two dimensional adaptive meshes with different views are
shown in Fig. 3.

The computational domains are set as X = (�800,800)2 with
l⁄ = 4 levels in two dimensions and X = (�200,200)3 with l⁄ = 4 lev-
els in three dimensional case. And other parameters are chosen as
Dt = 0.4, R0 = 14d0, and D = �0.55. The calculations are run up to
time T = 8000 in two dimensions and T = 480 in three dimensions.
es t = 0,20,40,160,240, and 480 (from left to right). (b) The bounding boxes at times



Table 1
Comparison of CPU time and tip positions calculated by the explicit scheme and our
proposed scheme.

Method Time step Tip position CPU time (h)

Explicit method 0.01 45.94 0.10
Proposed method 0.01 45.91 0.60
Proposed method 0.20 44.48 0.02
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Fig. 4 shows the temporal evolution of crystal interface. Fig. 5(a)
shows three-dimensional structures at times t = 0,20,40,160,240,
and 480 (from left to right). And in Fig 5(b), we show the bounding
boxes at times t = 0,240, and 480 to show the structured local
refinement.

4.3. Comparison between our proposed method and explicit adaptive
method

In general, an explicit scheme is fast, however, the overall CPU
time for long time integration larger than an implicit scheme,
which can use larger time steps. This is true for the adaptive
method used here. In order to show our proposed method is more
efficient than explicit adaptive methods, we consider CPU time
comparison test in two dimensions. The computational domain
is set as X = (�200,200)2 with l⁄ = 3 levels. The minimum element
size hmin = 0.39, R0 = 15d0, and D = �0.55 are used. Since the expli-
cit adaptive method surfers the time step size limitation, here we
use a time step Dt = 0.01. For our proposed method, we use time
step Dt = 0.01 and Dt = 0.2. The calculations are run up to time
(a)

(c)

Fig. 6. The comparison between uniform meshes and adaptive meshes in two and three d
(a) crystal shape at t = 1800. (c) y-z plane of crystal shape at t = 240. (b) and (d) are clo
T = 200. We list the tip position of crystal and CPU time in Table 1.
Form these results, we can observe that our proposed method
with Dt = 0.01 needs more CPU time than the explicit method.
However, with Dt = 0.2 our proposed method is about 5 times fas-
ter than the explicit method. Tip positions with different methods
are similar.
4.4. Comparison with uniform mesh simulation

In this experiment, we will compare the results obtained on
uniform meshes and on adaptively refined meshes for two and
three dimensions to show the efficiency and accuracy of our pro-
posed method. For two dimensions, the computational domain is
set as X = (�400,400)2 with 1024 � 1024 mesh grids for uniform
mesh calculation and l⁄ = 3 levels for the adaptive mesh method.
And in three dimensions, we use X = (�100,100)3,
256 � 256 � 256, and l⁄ = 3. With time step Dt = 0.3, the calcula-
tions are run up to time T = 1800 and T = 240 in two and three
dimensions, respectively. The comparisons with uniform meshes
and adaptively refined meshes in two and three dimensions are
drawn in the first row and in the second row of Fig. 6, respectively.
As can be observed, the agreement between the results computed
by uniform meshes and adaptive meshes is good. In the two-
dimensional calculation, the taken CPU times are 16.15 h and
0.82 h for uniform and adaptive meshes, respectively. In the
three-dimensional calculation, the taken CPU times are 29.15 h
and 2.71 h for uniform and adaptive meshes, respectively.
(b)

(d)

imensions. First and second rows are two and three dimensional cases, respectively.
seup views of (a) and (b), respectively.



Table 2
Comparison of dimensionless steady-state tip velocities calculated by the proposed
scheme (Vtip = Vd0/D), the results in [42] V LLK

tip

� �
, results in [29] VKR

tip

� �
, and Green’s

function calculations VGF
tip

� �
.

D �4 D d0/W0 Vtip
LLK Vtip

KR Vtip
GF Vtip

�0.55 0.05 2 0.277 0.01710 0.01680 0.01700 0.01700
�0.55 0.05 3 0.185 0.01740 0.01750 0.01700 0.01720
�0.55 0.05 4 0.139 0.01720 0.01740 0.01700 0.01710
�0.50 0.05 3 0.185 0.01030 0.01005 0.00985 0.00997
�0.45 0.05 3 0.185 0.00599 0.00557 0.00545 0.00537

100 101 102 103 104 10510−6

10−5

10−4

10−3

10−2

Time t

V tip

Δ =−0.25[32]
Δ =−0.1[32]
Present study
Solvability theory

Fig. 7. Evolution of tip velocity at D = �0.25 and D = �0.1. In order to compare the
results in [32] and the results computed by solvability theory, we put them
together.

Table 3
Comparison of dimensionless steady-state tip velocities calculated by our proposed
method and the analytic solution.

Case D = �0.25 D = �0.1

Analytic solution 0.00251 0.000139
Numerical solution 0.00252 0.000148
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4.5. Comparison of the dimensionless steady-state tip velocities

To demonstrate the accuracy of our proposed method, we com-
pare the dimensionless steady-state tip velocities obtained by our
proposed adaptive method with the results in [29,42] and Green’s
function calculations [29]. This test is performed on the domain
X = (�200,200)2 with l⁄ = 3, the minimum element size hmin = 0.39,
Dt = 0.15, R0 = 3.462, W0 = 1, and k = D/a2.

To calculate the steady-state velocity, we use a quadratic poly-
nomial approximation. We only describe the procedure along the
y-axis since the crystal is symmetric. Given three points, (xk�1,
yk�1), (xk,yk), and (xk+1,yk+1) on the interface, where yk is a maxi-
mum value. Let the quadratic polynomial approximation passing
these three points be y = ax2 + bx + c. Then we can find the tip po-
sition y⁄ which satisfies the following conditions: y0(x⁄) = 0 and
y� ¼ ax2

� þ bx� þ c.
The crystal tip velocity is defined as the finite difference of tip

positions from consecutive time steps. From a set of numerical re-
sults in Table 2, we can observe that values obtained by our pro-
posed scheme are in good agreement with results of previous
methods over the whole range of D, �4, D, and d0/W0 investigated
here.

4.6. Dendritic growth at low undercooling

For low undercoolings, it requires much longer time to reach a
steady-state tip velocity due to the lower growth rate. Furthermore
an extremely large domain should be used to avoid the far field
boundary effect. In this case, the adaptive mesh refinement meth-
od is a better choice to overcome it. Here, we consider low under-
coolings such as D = �0.25 and D = �0.1. The computational
domain is X = (�6400,6400)2 with the base mesh grids, 32 � 32.
l⁄ = 9 is used and the minimum grid spacing hmin is 0.78. With time
step Dt = 0.4, the numerical solutions for D = �0.25 and D = �0.1
are computed up to T = 4000 and T = 40000, respectively. Other
parameters are d0 = 0.403, R0 = 100d0, D = 13, and k = 20.744.
Fig. 7 shows the evolution of tip velocity (Vtip) for D = �0.25 and
D = �0.1 with our proposed method, the results in [32], and solv-
ability theory [49,50]. The numerical results show good agreement
with previous results.

Next, we consider steady-state tip velocities in three dimen-
sions. There is the simple relationship which was obtained by
Ivantsov [50]:

D ¼ �Pe expðPeÞ
Z 1

Pe

expð�sÞ
s

ds;

where Pe = RtipVtip/(2D) is the Peclet number and Rtip is the tip
radius. The stability constant r ¼ 2Dd0= R2

tipVtip

� �
was used in

[49,50]. Here we choose r = 0.02. Thus for given D, D, and d0, we
can compute Vtip. In numerical experiment, we perform the simula-
tion on the domain X = (�100,100) � (�100,100) � (0,800) with
the base mesh grids, 8 � 8 � 32. Here l⁄ = 5 and the minimum grid
spacing hmin = 0.78 are used. The other parameters are same as
those used in two-dimensional space except for R0 = 50d0.
Comparisons with theoretical solutions are drawn in Table 3. From
these results, we can observe that dimensionless steady-state tip
velocities obtained by our proposed scheme are in good agreement
with the analytic solutions at low undercoolings.
5. Conclusion

In this paper, we have proposed the phase-field simulation of
dendritic crystal growth in both two- and three-dimensional
spaces with adaptive mesh refinement, which was designed to
solve nonlinear parabolic partial differential equations. The pro-
posed operator splitting numerical method can use large time step
sizes and exhibits excellent stability. The resulting discrete system
of equations is solved by an adaptive multigrid method. Compari-
sons to uniform mesh method, explicit adaptive method, and pre-
vious numerical experiments for crystal growth simulations were
presented to demonstrate the accuracy and robustness of the pro-
posed method. In numerical experiments, the stability of the meth-
od was found as Dt 6 3h. Compared to uniform mesh method and
explicit adaptive method, our method achieved the equivalent
accuracy with less computational cost. A set of computations for
the dimensionless steady-state tip velocity showed a good agree-
ment with results published in [29,42]. In particular, for low
undercoolings, a good agreement with previous study [32] and
analytic solution [48–50] was found as well. These simulations
confirm that our proposed method is efficient and accurate.
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