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Adaptive Mesh Refinement for Thin-Film Equations
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An adaptive finite difference method is developed for a class of fully nonlinear time-dependent
thin liquid film equations. Equations of the type ht+fy(h) = −ε3∇·(M(h)∇∆h) arise in the context
of thin liquid films driven by a thermal gradient with a counteracting gravitational force, where
h = h(x, y, t) is the fluid film height. Enhanced accuracy for the method is attained by covering
the front with a sequence of nested, progressively finer, rectangular grid patches that dynamically
follow the front motion. Results of numerical experiments illustrate the accuracy, the efficiency,
and the robustness of the method.
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I. INTRODUCTION

Thin coating flows are of great technical and scientific
interest [1]. Practical examples include manufacturing
processes, such as the production of videotapes, photo-
graphic films, and microchips [2]. Flows created by gra-
dients in surface tension, whether induced by temper-
ature or concentration variations, are commonly called
thermocapillary or Marangoni-driven flows. For very
thin capillary driven films, an experiment shows that the
Marangoni stress causes a capillary ridge to form and the
film to finger (see Fig. 1(a)).

Most previous numerical studies of lubrication-type
flows have focused on overcoming the stability require-
ment for explicit schemes that the time step ∆t should be
O(∆x4) - a prohibitive restriction. Alternating-direction
implicit (ADI) algorithms enable time steps several or-
ders of magnitude larger than O(∆x4) to be used suc-
cessfully [3].

The objective of this paper is to describe the extension
of our single grid algorithm for the thin film equations
[4] to an adaptive mesh refinement algorithm so that we
can simulate realistic physical phenomena. This paper
is organized as follows. In Section II we briefly review
the governing equations. In Section III, we derive the
numerical solution with a nonlinear multigrid method.
In Section IV, we present numerical results. Conclusions
are made in Section V.

II. GOVERNING EQUATIONS

We consider the dynamics of a thin layer of liquid of
thickness h on an inclined surface driven by thermally
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created surface tension gradients and influenced by grav-
ity (see Fig. 1(b)). The spatial variables x and y denote
the direction normal to the flow and the direction of the
flow, respectively. Let α, ρ, g, η, γ, and τ = dγ/dy de-
note the angle from a horizontal inclination of the plane,
the density, the gravitational constant, the dynamic vis-
cosity, the surface tension, and the surface tension gradi-

Fig. 1. (a) A thin film flow climbs up an inclined plate,
which is driven by Marangoni stresses, against gravity. (b) A
schematic diagram of the physical problem.
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ent of the liquid, respectively. We model the dynamics of
the draining film by using the lubrication approximation
with a “depth averaged” velocity [5],

~V =
(
τh

2η
− ρgh2 sinα

3η

)
~ey +

γh2∇∆h
3η

. (1)

The coefficient of ~ey = (0, 1) in Eq. (1) represents con-
vection due to the surface tension gradient and the com-
ponent of gravity tangent to the surface. We couple Eq.
(1) with mass conservation, ht+∇·(h~V ) = 0. We rescale
to dimensionless units as in Ref. [5]: h = Hĥ, (x, y) =
l(x̂, ŷ), and t = T t̂, where H = 3τ

2ρg sin α , l = ( 2γH2

3τ )1/3,

and T = (16γη3

3τ4H )1/3. Dropping theˆgives the dimension-
less equation

ht + (h2 − h3)y = −∇ · (h3∇∆h). (2)

In the model, we take y = 0 to be the position of the
edge of the meniscus. For the boundary condition at
y = 0, we assume the meniscus has just pinched off a film
of thickness h(x, 0, t) = h∞ with zero third derivative
hyyy(x, 0, t) = 0, i.e., that the meniscus enforces a zero
net curvature gradient on the bulk-film region [6]. We
choose the simplest boundary condition consistent with
complete wetting, that of a precursor model in which
h→ b > 0 as y →∞ [7,8].

We can think of the traveling wave as a viscous regu-
larization of a shock wave if we rescale the space and the
time variables by (x′, y′) = ε(x, y) and t′ = εt; then, Eq.
(2) becomes, after dropping the ′ notation,

ht + (h2 − h3)y = −ε3∇ · (h3∇∆h). (3)

This equation is a fourth order nonlinear singular per-
turbation of the conservative law ht + (h2 − h3)y = 0,
which has a nonconvex flux function f(h) = h2 − h3 [9].

III. NUMERICAL METHOD

We split Eq. (3) into a system of the following form:

ht + fy(h) = ∇ · (M(h)∇µ), (4)

µ = −ε3∆h, (5)

where M(h) = h3. Let hn
ij be an approximation of

h(xi, yj , tn), where xi = (i − 0.5)∆x, yj = (j − 0.5)∆x,
and tn = n∆t. Now, we present a semi-implicit time and
centered difference space discretization of Eqs. (4) and
(5):

hn+1
ij − hn

ij

∆t
= ∇d ·

[
M(h)n+1

ij

2
∇dµ

n+1
ij

]

+∇d ·
[
M(h)n

ij

2
∇dµ

n
ij

]
− fy(hn

ij). (6)

µn+1
ij = −ε3∆dh

n+1
ij . (7)

Fig. 2. Block-structured local refinement. In this example,
there are three levels.

fy(hn
ij) is treated by using a second-order essentially non-

oscillatory (ENO) scheme [10], i.e.,

fy(hn
ij) = f ′(hn

ij)

(
h̄n

i,j+ 1
2
− h̄n

i,j− 1
2

∆x

)
.

The edge values h̄n
i,j+ 1

2
are computed as follows:

k =
{

j f ′(hn
i,j+ 1

2
) ≥ 0

j + 1 otherwise

a =
hn

ik − hn
i,k−1

∆x
, b =

hn
i,k+1 − hn

ik

∆x
,

d =
{
a if |a| ≤ |b|
b otherwise

h̄n
i,j+ 1

2
= hn

ik +
∆x
2
d(1− 2(k − j)).

1. Dynamic Adaptive Mesh Refinement

In Fig. 2, we show an example of the grid structure
used in the adaptive mesh refinement (AMR) [11]. In
the non-adaptive multigrid on uniform grids, we have
used a hierarchy of global grids, Ω0,Ω1, . . . ,Ωl. In the
adaptive approach, we introduce a hierarchy of increas-
ingly finer grids, Ωl+1, . . . ,Ωl+l∗ , restricted to smaller
and smaller subdomains. That is, we consider a hier-
archy of grids, Ω0,Ω1, . . . ,Ωl+0,Ωl+1, . . . ,Ωl+l∗ . We de-
note Ωl+0 as level zero, Ωl+1 as level one, and so on. In
Fig. 2 we have l∗ = 2.

The grid is adapted dynamically based on the undi-
vided gradient. First, we tag cells that contain the front,
i.e., those in which the undivided gradient of the film
height is greater than a critical value. Then, the tagged
cells are grouped into rectangular patches by using a
clustering algorithm as in Ref. [12]. These rectangular
patches are refined to form the grids at the next level.
The process is repeated until a specified maximum level
is reached.
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2. Numerical solution - An Adaptive Nonlinear
Multigrid Method

In this section, we develop a nonlinear full approx-
imation storage (FAS) multigrid method to solve the
nonlinear discrete system, Eqs. (6) and (7), at an
implicit time level. See the Ref. [13] for additional
details and background. The algorithm of the nonlinear
multigrid method for solving the discrete system is as
follows:

First, let us rewrite Eqs. (6) and (7) as

N(hn+1, µn+1) = (φn, ψn),

where

N(hn+1, µn+1) =
(
hn+1

ij

∆t
−∇d ·

[
M(h)n+1

ij

2
∇dµ

n+1
ij

]
,

µn+1
ij + ε3∆dh

n+1
ij

)
and the source term is

(φn, ψn) =
(
hn

ij

∆t
+∇d ·

[
M(h)n

ij

2
∇dµ

n
ij

]

−fy(hn
ij), 0

)
.

Using the above notations on all levels k = 0, 1, . . . , l, l+
1, . . . , l+ l∗, an adaptive multigrid cycle is formally writ-
ten as follows [13]:

Adaptive cycle
First we calculate φn

k , ψ
n
k on all levels and set the pre-

vious time solution as the initial guess, i.e., (h0
k, µ

0
k) =

(hn
k , µ

n
k ).

(hm+1
k , µm+1

k ) = ADAPTIV Ecycle

(k, hm
k , h

m
k−1, µ

m
k , µ

m
k−1, Nk, φ

n
k , ψ

n
k , ν).

1) Presmoothing
- Compute (h̄m

k , µ̄
m
k ) by applying ν smoothing

steps to (hm
k , µ

m
k ) on Ωk.

(h̄m
k , µ̄

m
k ) = SMOOTHν(hm

k , µ
m
k , Nk, φ

n
k , ψ

n
k ),

where one SMOOTH relaxation operator step consists
of solving Eqs. (10) and (11) given below by 2 × 2
matrix inversion for each i and j. Rewriting Eqs. (6)
and (7), we get

hn+1
ij

∆t
+
Mn+1

i+ 1
2 ,j

+Mn+1
i− 1

2 ,j
+Mn+1

i,j+ 1
2

+Mn+1
i,j− 1

2

2∆x2
µn+1

ij = φn
ij (8)

+
Mn+1

i+ 1
2 ,j
µn+1

i+1,j +Mn+1
i− 1

2 ,j
µn+1

i−1,j +Mn+1
i,j+ 1

2
µn+1

i,j+1 +Mn+1
i,j− 1

2
µn+1

i,j−1

2∆x2
,

− 4ε3

∆x2
hn+1

ij + µn+1
ij = ψn

ij −
ε3

∆x2
(hn+1

i+1,j + hn+1
i−1,j + hn+1

i,j+1 + hn+1
i,j−1). (9)

Next, we replace hn+1
kl and µn+1

kl in Eqs. (8) and (9) with h̄m
kl and µ̄m

kl if k ≤ i and l ≤ j; otherwise we replace them
with hm

kl and µm
kl, i.e.,

h̄m
ij

∆t
+
Mm

i+ 1
2 ,j

+Mm
i− 1

2 ,j
+Mm

i,j+ 1
2

+Mm
i,j− 1

2

∆x2
µ̄m

ij = φn
ij (10)

+
Mm

i+ 1
2 ,j
µm

i+1,j +Mm
i− 1

2 ,j
µ̄m

i−1,j +Mm
i,j+ 1

2
µm

i,j+1 +Mm
i,j− 1

2
µ̄m

i,j−1

∆x2
,

−
4ε3h̄m

ij

∆x2
+ µ̄m

ij = ψn
ij −

ε3(hm
i+1,j + h̄m

i−1,j + hm
i,j+1 + h̄m

i,j−1)
∆x2

, (11)

where Mm
i+ 1

2 ,j
= M((hm

ij +hm
i+1,j)/2) and the other terms

are similarly defined.
2) Coarse-grid correction

- Compute

(h̄m
k−1, µ̄

m
k−1) =

{
Ik−1
k (h̄m

k , µ̄
m
k ) on Ωk−1 ∩ Ωk

(hm
k−1, µ

m
k−1) on Ωk−1 − Ωk.

- Compute the right-hand side

(φn
k−1, ψ

n
k−1) =

 Ik−1
k {(φn

k , ψ
n
k )−Nk(h̄m

k , µ̄
m
k )}

+Nk−1I
k−1
k (h̄m

k , µ̄
m
k ) on Ωk−1 ∩ Ωk

(φn
k−1, ψ

n
k−1) on Ωk−1 − Ωk.

- Compute an approximate solution (ĥm
k−1, µ̂

m
k−1)

of the coarse grid equation on Ωk−1, i.e.,

Nk−1(hm
k−1, µ

m
k−1) = (φn

k−1, ψ
n
k−1). (12)
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Fig. 3. Evolution of the fluid front is shown from left to right. The times are t = 0, 1875, and 2850. There are two levels,
and the effective fine mesh is 128 × 256.

If k = 1, we explicitly invert a 2 × 2 matrix to ob-
tain the solution. If k > 1, we solve Eq. (12) by using
(h̄m

k−1, µ̄
m
k−1) as an initial approximation to perform an

adaptive multigrid k-grid cycle:

(ĥm
k−1, µ̂

m
k−1) = ADAPTIVEcycle(k − 1, h̄m

k−1, h
m
k−2,

µ̄m
k−1, µ

m
k−2, Nk−1, φ

n
k−1, ψ

n
k−1, ν).

- Compute the correction at Ωk−1 ∩ Ωk.
(ûm

k−1, v̂
m
k−1) = (ĥm

k−1, µ̂
m
k−1)− (h̄m

k−1, µ̄
m
k−1).

- Set the solution at the other points of Ωk−1 −Ωk.
(hm+1

k−1 , µ
m+1
k−1 ) = (ĥm

k−1, µ̂
m
k−1).

- Interpolate the correction to Ωk, (ûm
k , v̂

m
k ) =

Ik
k−1(û

m
k−1, v̂

m
k−1).

- Compute the corrected approximation on Ωk.

(hm, after CGC
k , µm, after CGC

k )
= (h̄m

k + ûm
k , µ̄

m
k + v̂m

k ).

3) Postsmoothing

(hm+1
k , µm+1

k ) = SMOOTHν

(hm, after CGC
k , µm, after CGC

k , Nk, φ
n
k , ψ

n
k ).

This completes the description of a nonlinear ADAP-
TIVE cycle.

IV. NUMERICAL RESULTS

In this section, we validate our scheme by compari-
son with previously reported numerical results. We then
present an example to show the power of the adaptive
mesh refinement method in computing the evolution of a
thin liquid film. We are concerned here with the slow flow

Fig. 4. (Left) There are four levels, and the effective fine
grid resolution is 1024 × 2048. This figure displays the
fingering phenomenon at t = 7800. (Right) A close-up view
of the mesh refinement around the front.

of a thin liquid layer on a solid or a substrate. Slight per-
turbations of the base state, applied along the front, ini-
tiate the fingering instability. The mathematical model
(Eq. (3)) will be used for a numerical simulation of fin-
gering flows. The initial condition is

h(x, y, 0) = 0.5[h∞ + b− (h∞ − b) tanh(3(y − 7)
+rand(x, y))],

where h∞ = 0.2, b = 0.002, and rand(x, y) is a ran-
dom number in [−1, 1]. These perturbations model de-
viations from the straight front in the experiments. The
computational domain using an effective fine resultion of
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128 × 256 is Ω = [0, 200] × [0, 400]. The uniform time
step ∆t = 1.0 and ε3 = 100 are used. Fig. 3 shows the
evolution of the fluid front at t = 0, 1875, and 2850.

The main result of the present study is shown in Fig.
4 (left), which directly establishes the efficiency of our
method. In Fig. 4 (right), a close-up view of the adaptive
mesh refinement around the front is illustrated. The ef-
fective fine resolution is 1024 × 2048. Compared with the
elapsed time, the new adaptive method is more than 1000
times faster than the preceding uniform mesh method [4].

V. CONCLUSION

In this paper, we described an adaptive mesh refine-
ment algorithm for thin liquid film equations. In our
adaptive mesh refinement computations, we observed
many orders of adaptive speed-up compared to uniform
mesh computations. As a future research plan, this pow-
erful adaptive mesh refinement algorithm will be applied
to the simulation of quantum dot being formed by a
molecular beam [14–18] as we did in Refs. [19–21] for
uniform meshes.
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