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Abstract We present a robust and accurate numer-
ical method for simulating gravity-driven, thin-film
flow problems. The convection term in the governing
equation is treated by a semi-implicit, essentially non-
oscillatory scheme. The resulting nonlinear discrete
equation is solved using a nonlinear full approxima-
tion storage multigrid algorithm with adaptive mesh
refinement techniques. A set of representative numeri-
cal experiments are presented. We show that the use of
adaptive mesh refinement reduces computational time
and memory compared to the equivalent uniform mesh
results. Our simulation results are consistent with pre-
vious experimental observations.

Keywords Adaptive mesh refinement · Nonlinear
diffusion equations · Thin film · Nonlinear multigrid
method

1 Introduction

Coating flows are fluid flows that generate thin liquid
films on surfaces as a result of external forces such
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as inertia, viscosity, gravity, and surface tension [1].
These coating flows are useful for covering a large sur-
face area with one or more thin, uniform liquid lay-
ers [2].

The behavior of thin film flows has been studied
experimentally [3, 4], analytically [5–18], and numer-
ically [19–43]. Sun et al. [34] presented a detailed im-
plementation of an adaptive finite element method, and
demonstrated its performance on the thin-film problem
with a moving contact line. Lee et al. [32, 36] solved a
thin film flow over a plane containing well-defined sin-
gle and grouped topographic features using a full ap-
proximation storage multigrid algorithm and employ-
ing automatic mesh adaptivity.

In this paper, we develop an adaptive finite differ-
ence method for a nonlinear time-dependent gravity-
driven thin liquid film equation.

The rest of the paper is organized as follows. In
Sect. 2, we briefly describe the governing equation
for gravity-driven thin liquid film flow with a lubri-
cation model. In Sect. 3, the fully discrete and non-
linear multigrid scheme and adaptive mesh refinement
(AMR) method for the governing equation are given.
In Sect. 4, we present numerical results. Conclusions
are given in Sect. 5.

2 Governing equation

We consider the dynamics of a thin liquid layer on an
inclined surface driven by gravity [24].
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Fig. 1 (a) A schematic diagram of the thin film flow.
(b) A photo of fluid flowing down an inclined plane: Figure
reprinted with permission from L. Kondic, SIAM Review, 45,
95–115 (2003) [24]. Copyright (2012) SIAM. Note that a simi-
lar physical experiment was also performed by H.E. Huppert [6]

Figures 1(a) and 1(b) show a schematic illustration
and real experimental result for s gravity-driven thin
film [24], respectively. The coordinate x increases in
the flow direction, y measures distance in the trans-
verse direction, and z is the elevation perpendicular to
the substrate. Let z = h(x, y, t) be the thickness of the
thin liquid layer. The motion of the fluid is governed
by the time-dependent lubrication equation [24]:

∂h

∂t
= −1

3η
∇ · [τh3∇�h+ρgh3(sinαex − cosα∇h)

]
,

(1)

where η is viscosity, τ is surface tension, ρ is den-
sity, g is the gravitational constant, α is the angle of
inclination of the substrate from the horizontal, and
ex = (1,0).

To non-dimensionalize Eq. (1), we employ non-
dimensional variables (denoted by hats) by defin-
ing the characteristic variables in terms of balancing
terms.

h = Hĥ, x = Lx̂, y = Lŷ, and t = T t̂.

(2)

Here H is the thickness of the flat upstream part of
the film. L and T are then given by

L =
(

τH

ρg sinα

)1/3

and T = 3ηL

ρgH 2 sinα
. (3)

After substituting Eqs. (2) and (3) into Eq. (1) and
dropping the ‘ˆ’, we obtain the dimensionless thin film
equation as

ht + (
h3)

x
= ∇ · (h3∇(Dh − �h)

)
, (4)

where D = (
H 2ρg sinα

τ
)1/3 cotα measures the size of

the normal component of gravity.

3 Numerical method

First, we split the fourth order Eq. (4) into a system of
second order equations as follows.

ht + fx(h) = ∇ · (f (h)∇μ
)
, h = h(x, y, t), (5)

μ = Dh − �h, for (x, y) ∈ Ω = (0,Lx) × (0,Ly),

(6)

where f (h) = h3. Boundary conditions are given by

h(0, y, t) = h∞, h(Lx, y, t) = b,

h(x,0, t) = h(x,Ly, t),

μx(0, y, t) = μx(Lx, y, t) = 0,

μ(x,0, t) = μ(x,Ly, t),

where h∞ is a constant upstream height and b is a pre-
cursor film thickness.

3.1 Discretization of the proposed scheme

We now present fully discrete schemes for Eqs.
(5) and (6) in the two-dimensional domain Ω =
(0,Lx) × (0,Ly). Let Nx and Ny be positive even
integers, �x = Lx/Nx = Ly/Ny be the uniform mesh
size, and Ω�x = {(xi, yj ) : xi = (i − 0.5)�x,yj =
(j − 0.5)�x,1 ≤ i ≤ Nx,1 ≤ j ≤ Ny} be the set of
cell-centers. Let hn

ij and μn
ij be approximations of

h(xi, yj , n�t) and μ(xi, yj , n�t), respectively. Here,
�t = T/Nt is the time step, T is the final time, and Nt

is the total number of time steps. Then, a semi-implicit
time and centered difference space discretization of
Eqs. (5) and (6) is
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hn+1
ij − hn

ij

�t
= ∇d · (f (h)n+1

ij ∇dμn+1
ij

) − fx(h
n+1
ij )

2

− fx(h
n
ij )

2
, (7)

μn+1
ij = Dhn+1

ij − �dhn+1
ij , (8)

where the superscripts denote discrete time steps.
Here, we use five points to discretize the terms
�dhn+1

ij and ∇d · (f (h)n+1
ij ∇dμn+1

ij ) as

�dhn+1
ij

= hn+1
i,j+1 + hn+1

i,j−1 + hn+1
i+1,j + hn+1

i−1,j − 4hn+1
ij

h2
,

∇d · (f (h)n+1
ij ∇dμn+1

ij

)

=
f n+1
i+ 1

2 ,j
(μn+1

i+1,j
− μn+1

ij
) − f n+1

i− 1
2 ,j

(μn+1
ij

− μn+1
i−1,j

)

h2

+
f n+1

i,j+ 1
2
(μn+1

i,j+1 − μn+1
ij ) − f n+1

i,j− 1
2
(μn+1

ij − μn+1
i,j−1)

h2
,

where f n+1
i+ 1

2 ,j
= f ((hn+1

ij + hn+1
i+1,j )/2), and the other

terms are similarly defined. fx(h
n
ij ) and fx(h

n+1
ij ) are

treated using an explicit and a semi-implicit essentially
non-oscillatory (ENO) type scheme [44], respectively.

fx

(
hn

ij

) = f ′(hn
ij

)( h̄n

i+ 1
2 ,j

− h̄n

i− 1
2 ,j

�x

)
.

The values h̄n

i+ 1
2 ,j

are calculated as follows:

k =
{

i if f ′(hij ) ≥ 0
i + 1 otherwise.

a = hn
kj − hn

k−1,j

�x
, c = hn

k+1,j − hn
kj

�x
,

dkj =
{

a if |a| ≤ |c|
c otherwise.

h̄n

i+ 1
2 ,j

= hn
kj + �x

2
dkj

(
1 − 2(k − i)

)
.

As f ′(h) = 3h2 > 0, then with k = i we can define

fx

(
hn

ij

) := f ′(hn
ij

)(hn
ij − hn

i−1,j

�x

)
+ �(

hn
ij

)
,

fx

(
hn+1

ij

) := f ′(hn+1
ij

)(hn+1
ij − hn+1

i−1,j

�x

)
+ �(

hn
ij

)
,

where �(hn
ij ) = 0.5(dij − di−1,j )f

′(hn
ij ). We define

the boundary condition as

Fig. 2 Block-structured local refinement with four levels

h0j = 2h∞ − h1j , hNx+1,j = 2b − hNxj ,

hi0 = hiNy ,

hi,Ny+1 = hi1, μ0j = μ1j , μNx+1,j = μNxj ,

μi0 = μiNy , μi,Ny+1 = μi1.

In this paper, we use AMR [45] to solve the non-
linear discrete system (7) and (8) at the implicit time
level. Figure 2 shows a schematic diagram of block-
structured local refinement with a four level AMR
method. A pointwise Gauss–Seidel relaxation scheme
is used as the smoother in the multigrid method. The
next section gives further details of the AMR algo-
rithm.

3.2 Dynamic adaptive mesh refinement algorithms

In the AMR algorithms, we consider a hierarchy of in-
creasingly finer grids, Ωl+1, . . . ,Ωl+l∗ , which are re-
stricted to smaller and smaller subdomains, while the
last hierarchy of global grids is Ω0,Ω1, . . . ,Ωl . That
is, we consider a hierarchy of grids, Ω0,Ω1, . . . ,Ωl+0,

Ωl+1, . . . ,Ωl+l∗ . Here, we denote Ωl+0 as level zero,
Ωl+1 as level one, and so on. Construction of the mul-
tilevel mesh begins at the zero-level grid. Finer reso-
lution grids are added at level one to cover those grid
points on the zero grid where refinement is flagged.
This process continues in the same fashion until level
l∗ is reached. Moreover, the grid spacing �xk on
level k is related to that of the next level (k + 1) as
�xk = 2�xk+1. Figure 2 shows a schematic illustra-
tion of the set of finer grids with four levels (l∗ = 3).
The AMR is performed by uniformly subdividing each
mother cell into four daughter cells.

3.3 Creation of the grid hierarchy

There are many possible criteria for deciding where
refinement is necessary. In many physical problems,
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Fig. 3 Three steps in the regridding algorithm: (a) tag cells and
enclose them in a box, (b) split the box into two boxes using
a histogram of the column or row sums of tagged cells, (c) fit

new boxes to each split box and repeat if the ratio of tagged to
untagged cells is too small, and (d) the most efficient rectangles

physical quantities such as sharp density gradients or
large charge distributions may provide indicators for
refinement. In the current implementation, the grid is
adapted dynamically based on the undivided gradient
|∇uh|k , which is defined as

|∇uh|kij =
√(

hk
i+1,j − hk

i−1,j

)2 + (
hk

i,j+1 − hk
i,j−1

)2
,

where hk
ij are cell center values defined with respect

to the level-k grids on the domain Ωl+k . We then tag
cells containing the front, i.e., those in which the undi-
vided gradient of the film height is greater than a criti-
cal value tol, i.e., |∇uh|k > tol. Throughout this paper,
we use tol = 0.01. Once we have decided which cells
are to be refined, we use this information to create a hi-
erarchy of levels. We use the algorithm of Berger and
Rigoutsos [46], in which tagged points are clustered
into efficient boxes. The efficiency of a grid is defined
as the number of cells in the grid that were tagged
for refinement divided by the total number of cells
in the grid. The grid generator takes a list of tagged
points and draws the smallest box around them. For

efficiency, the boxes are not allowed to become too
small. This procedure performs the following steps:

1. Fit a box to enclose the tagged cells.
2. Recursively sub-divide the box. Split the box in

the longest direction at a position based on the
histogram formed from the sum of the number of
tagged cells per row or column.

3. After splitting the box, fit new bounding boxes to
each half and repeat the process. Continue until the
size of every box is not smaller than a given value
and every box consists of a minimum number of
non-tagged cells.

4. Compute the fill ratio, which is defined as the num-
ber of tagged cells divided by the size of the box.
For example, the fill ratio in Fig. 3(c) is 135/182. If
this grid does not satisfy an efficiency criterion (in
the current implementation, fill ratio ≥ 0.75), the
grid generator will look for the best way to subdi-
vide the tagged points in order to create more effi-
cient boxes, as shown in Fig. 3(d).
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Fig. 4 Schematic illustration of our proposed adaptive meshes
with different views

Fig. 5 Interpolation on the coarse-fine boundary: Use quadratic
interpolation through coarse cells (open circles) to get interme-
diate values (solid circles), then use intermediate value with fine
cells (×’s) to get ghost cell values (open triangles) for comput-
ing coarse-fine fluxes (arrows)

A schematic illustration of our proposed adaptive
meshes with different views is shown in Fig. 4. Note
that our method is not based on triangular adaptive
mesh refinement, we simply illustrate these with a tri-
angular mesh plot using MATLAB 2012a [47].

3.4 Coarse-fine boundary interpolation

In order to discretize the Laplacian on a generic level
grid, we use the standard nearest neighbor stencils in
the definitions of the discrete derivatives to fill the
ghost-layer values by interpolation.

The grid-to-ghost-layer exchange process is illus-
trated in Fig. 5(a). The main idea is to use quadratic
interpolation through coarse cells (open circles) to get
intermediate values (solid circles), then use intermedi-
ate values with fine cells (×’s) to get ghost cell values
(open triangles) for computing the coarse-fine fluxes
(arrows).

To obtain the value hc

i,j+ 1
4

(solid circle), we use

three points hc
i,j−1, hc

i,j , and hc
i,j+1 with the quadratic

polynomial approximation as shown in Fig. 5(b). Let
the quadratic polynomial approximation be hc

i (t) =
αt2 +βt +γ . And assume hc

i (−�c
x) = hc

i,j−1, hc
i (0) =

hc
ij , and hc

i (�
c
x) = hc

i,j+1. The parameters α, β , and γ

can be calculated by the following equations.
⎛

⎝
α

β

γ

⎞

⎠ =
⎛

⎝
(�c

x)
2 −�c

x 1
0 0 1

(�c
x)

2 �c
x 1

⎞

⎠

−1
⎛

⎜
⎝

hc
i,j−1
hc

ij

hc
i,j+1

⎞

⎟
⎠ .

Using α, β , and γ , we get hc

i,j+ 1
4

= hc
i (�

c
x/4). To ob-

tain h
f

2i,2j , we implement another quadratic interpola-

tion with the values hc

i,j+ 1
4
, h

f

2i+1,2j , and h
f

2i+2,2j in a

similar fashion.

3.5 Numerical solution—adaptive nonlinear
multigrid method

In this subsection, we will only describe the adaptive
full approximation storage cycle to solve the non-
linear discrete system of Eqs. (7) and (8). The al-
gorithm of the V-cycle multigrid method for solving
the discrete system is as follows. First, let us rewrite
Eqs. (7) and (8) as N(hn+1,μn+1) = (φn,ψn), where

N(hn+1,μn+1) = (
hn+1

ij

�t
− ∇d · (f (h)n+1

ij ∇dμn+1
ij ) +

f ′(hn+1
ij )

2 (
hn+1

ij −hn+1
i−1,j

�x
),μn+1

ij − Dhn+1
ij + �dhn+1

ij )

and the source term is (φn,ψn) = (
hn

ij

�t
−

f ′(hn
ij )

2 (
hn

ij −hn
i−1,j

�x
) − �(hn

ij ),0).
Using the above notation on all levels k = 0,1, . . . ,

l, l + 1, . . . , l + l∗, an adaptive multigrid cycle is for-
mally written as follows [48]:

Adaptive cycle
First we calculate φn

k ,ψn
k on all levels and set

the previous time solution as the initial guess, i.e.,
(h0

k,μ
0
k) = (hn

k ,μ
n
k).

(
hm+1

k ,μm+1
k

)

= ADAPTIVEcycle
(
k,hm

k ,hm
k−1,μ

m
k ,mum

k−1,Nk,

φn
k ,ψn

k , ν
)
.

(1) Presmoothing
• Compute (h̄m

k , μ̄m
k ) by applying ν smoothing

steps to (hm
k , μm

k ) on Ωk .
(
h̄m

k , μ̄m
k

) = SMOOTHν
(
hm

k ,μm
k ,Nk,φ

n
k ,ψn

k

)
,
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where one SMOOTH relaxation operator step consists
of solving Eqs. (11) and (12) given below by 2 × 2
matrix inversion for each i and j . Note that a point-
wise Gauss–Seidel relaxation scheme is used as the
smoother in the multigrid method. Rewriting Eqs. (7)
and (8), we get

(
1

�t
+ f ′(hn+1

ij )

2�x

)
hn+1

ij

+
f n+1

i+ 1
2 ,j

+ f n+1
i− 1

2 ,j
+ f n+1

i,j+ 1
2
+ f n+1

i,j− 1
2

�x2
μn+1

ij

= φn
ij +

f n+1
i+ 1

2 ,j
μn+1

i+1,j + f n+1
i− 1

2 ,j
μn+1

i−1,j

�x2

+
f n+1

i,j+ 1
2
μn+1

i,j+1 + f n+1
i,j− 1

2
μn+1

i,j−1

�x2

+ f ′(hn+1
ij )hn+1

i−1,j

2�x
, (9)

−
(

D + 4

�x2

)
hn+1

ij + μn+1
ij

= ψn
ij − hn+1

i+1,j + hn+1
i−1,j + hn+1

i,j+1 + hn+1
i,j−1

�x2
. (10)

Next, we replace hn+1
kl and μn+1

kl in Eqs. (9) and
(10) with h̄m

kl and μ̄m
kl if k ≤ i and l ≤ j ; otherwise we

replace them with hm
kl and μm

kl , i.e.,

(
1

�t
+ f ′(hm

ij )

2�x

)
h̄m

ij

+
f m

i+ 1
2 ,j

+ f m

i− 1
2 ,j

+ f m

i,j+ 1
2
+ f m

i,j− 1
2

�x2
μ̄m

ij

= φn
ij +

f m

i+ 1
2 ,j

μm
i+1,j + f m

i− 1
2 ,j

μ̄m
i−1,j

�x2

+
f m

i,j+ 1
2
μm

i,j+1 + f m

i,j− 1
2
μ̄m

i,j−1

�x2

+ f ′(hm
ij )h̄

m
i−1,j

2�x
, (11)

−
(

D + 4

�x2

)
h̄m

ij + μ̄m
ij

= ψn
ij − hm

i+1,j + h̄m
i−1,j + hm

i,j+1 + h̄m
i,j−1

�x2
, (12)

(2) Coarse-grid correction

(
h̄m

k−1, μ̄
m
k−1

) =
{

I k−1
k (h̄m

k , μ̄m
k ) on Ωk−1 ∩ Ωk

(hm
k−1,μ

m
k−1) on Ωk−1 − Ωk.

(
φn

k−1,ψ
n
k−1

) =

⎧
⎪⎪⎨

⎪⎪⎩

I k−1
k {(φn

k ,ψn
k ) − Nk(h̄

m
k , μ̄m

k )}
+ Nk−1I

k−1
k (h̄m

k , μ̄m
k )

on Ωk−1 ∩ Ωk

(φn
k−1,ψ

n
k−1) on Ωk−1 − Ωk.

• Compute an approximate solution (ĥm
k−1, μ̂

m
k−1)

of the coarse grid equation on Ωk−1, i.e.,

Nk−1
(
hm

k−1,μ
m
k−1

) = (
φn

k−1,ψ
n
k−1

)
. (13)

If k = 1, we explicitly invert a 2 × 2 matrix to ob-
tain the solution. If k > 1, we solve Eq. (13) using
(h̄m

k−1, μ̄
m
k−1) as an initial approximation to perform

an adaptive multigrid k-grid cycle:
(
ĥm

k−1, μ̂
m
k−1

)

= ADAPTIVEcycle
(
k − 1, h̄m

k−1, μ̄
m
k−1, h

m
k−2,

μm
k−2,Nk−1, φ

n
k−1,ψ

n
k−1, ν

)
.

• Compute the correction at Ωk−1 ∩ Ωk .
(
ûm

k−1, v̂
m
k−1

) = (
ĥm

k−1, μ̂
m
k−1

) − (
h̄m

k−1, μ̄
m
k−1

)
.

• Set the solution at the other points of Ωk−1 −Ωk .
(
hm+1

k−1 ,μm+1
k−1

) = (
ĥm

k−1, μ̂
m
k−1

)
.

• Interpolate the correction to Ωk ,
(
ûm

k , v̂m
k

) = I k
k−1

(
ûm

k−1, v̂
m
k−1

)
.

• Compute the corrected approximation on Ωk .
(
h

m,afterCGC
k ,μ

m,afterCGC
k

) = (
h̄m

k + ûm
k , μ̄m

k + v̂m
k

)
.

(3) Postsmoothing
(
hm+1

k ,μm+1
k

)

= SMOOTHν
(
h

m,afterCGC
k ,μ

m,afterCGC
k ,

Nk,φ
n
k ,ψn

k

)
.

This completes the nonlinear ADAPTIVE cycle.

4 Numerical experiments

In this section, we perform numerical experiments to
determine the evolution of a thin film with AMR, com-
pare the uniform and adaptive mesh methods, study
the effect of parameter values, compare the experi-
mental and numerical data, and numerically simulate
multiple thin films. Unless otherwise specified, we use
h∞ = 1 and b = 0.01 in this paper.
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Fig. 6 Time evolution of the fluid front with the adaptive mesh
method. The dimensionless times are shown below each figure.
l∗ = 3 levels and level zero domain, Ωl+0 = 64 × 32 are used
on the computational domain Ω = (0,200) × (0,100)

4.1 Evolution of thin film with adaptive mesh
refinement

We start with a numerical simulation for the tem-
poral evolution of a thin film using AMR with the
initial condition h(x, y,0) = 0.5[h∞ + b − (h∞ −
b) tanh(3(x − 10) + rand(x, y))], where rand(x, y) is
a random value between −1 and 1. In this numeri-
cal simulation, D = 0.1, l∗ = 3 levels, and the level
zero domain Ωl+0 = 64×32 are used on the computa-
tional domain Ω = (0,200)× (0,100). The maximum
mesh size is �xmax = 3.13 and the finer mesh sizes
are 64 × 32, 128 × 64, 256 × 128, and 512 × 256. The
calculation is run until time T = 150 with a time step
�t = 0.2. Figure 6 shows the evolution of the contour
(h = 0.5) of the thin film at times t = 0,75, and 150.
It can be observed from the figures that gravity-driven
fingers develop and become longer as time evolves.

Fig. 7 Comparison between uniform mesh (solid line) and
adaptive mesh method (circle) at t = 150. Here, contours of
fluid are at h = 0.1,0.4,0.7,0.9, and 1.2

At the same time, the grid hierarchy structure dynami-
cally adjusts itself to capture the developing finger fea-
ture.

4.2 Comparison between uniform and adaptive mesh

In this numerical simulation, we compare a sequence
of results with different mesh sizes for a thin film
simulation. We compare the numerical solutions ob-
tained on uniform and adaptively refined meshes. The
initial condition is h(x, y,0) = 0.5[h∞ + b − (h∞ −
b) tanh(3(x − 10) + cos (πy/25))] on the computa-
tional domain Ω = (0,200)× (0,100). We use a set of
increasingly finer meshes 26+n × 25+n in the uniform
test and l∗ = n levels in the adaptive mesh method
for n = 3,4, and 5. The maximum grid spacing is
�xmax = 3.13 and D = 0.1. With time step �t = 0.2,
the calculations are run until T = 150. Figure 7 com-
pares the simulation results obtained on uniform and
adaptively refined meshes. This indicates that they are
in good agreement.

To show the efficiency of our proposed AMR
method, the CPU time required for the two methods is
listed in Table 1. On a 2048 × 1024 grid, the uniform
mesh method requires more than 37.4 hours. However,
the adaptive mesh needs only 1056, which is about
128 times faster than the uniform mesh. The adaptive
method uses 10240 nodes at t = 0 and 40960 nodes at
t = 150, which is small compared to the 2048 × 1024
nodes in the uniform mesh.
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Table 1 Comparison of CPU time for uniform and adaptively
refined meshes

Grids 512 × 256 1024 × 512 2048 × 1024

Uniform mesh 5542 s 29559 s 134569 s

Adaptive mesh 79 s 261 s 1056 s
Uniform
Adaptive 70 113 128

Fig. 8 Snapshots of the contact line profiles for the flow down
a vertical plane D = 0 and an inclined plane D = 0.5

4.3 Effect of parameter D

The non-dimensional parameter D plays an important
role in the thin film equation. By changing the film
thickness (H ) and inclination angle (α), we can adjust

D = (
H 2ρg sinα

τ
)1/3 cotα in the experiment. In general,

we have H 2ρg sinα
τ

� 1 (see Refs. [49, 50]), therefore
|D| < |cotα|.

To see the effect of D on the evolution of the
thin liquid film, we take two different values, D = 0
(α = π/2) and D = 0.5 (0 < α < π/2). The ini-
tial condition is h(x, y,0) = 0.5[h∞ + b − (h∞ −
b) tanh(3(x −10)+ cos (πy/25))]. l∗ = 3 and Ωl+0 =
64 × 32 are used on the computational domain Ω =
(0,200) × (0,100) with a time step �t = 0.2. Fig-
ure 8 shows snapshots of the contact line profiles for
the flow down a vertical plane D = 0 and an inclined
plane D = 0.5 at t = 160. The results suggest that,
as the value of the parameter D becomes smaller, the
growth of the fingering patterns becomes faster.

4.4 Dynamic contact angle

When a liquid is brought into contact with a solid sur-
face, the adhesion of the solid with the liquid and the
cohesion of the liquid become interacting forces. The

Fig. 9 Contact angle, defined as the angle between the solid
and a tangent line to the interface of the thin film

contact angle represents the balance between the co-
hesion forces of the liquid and the adhesion forces be-
tween the liquid and the solid [59]. The contact an-
gle of a thin film can be defined as the angle between
the tangent vector of the interface and the solid (see
Fig. 9).

The dynamic contact angle of thin-film flows has
been extensively studied [18, 33, 56, 60, 61], where
the authors considered the surface forces to study the
wetting phenomena of a spreading liquid drop in con-
tact with a solid surface. We will investigate the effect
of b on the dynamic contact angle with two different
models. One is a precursor film model, and the other
is a slipping model. The difference between these two
approaches is that the velocity at the bottom boundary
is zero in the precursor model and nonzero in the slip-
ping model. A schematic illustration of the two models
is shown in Fig. 10. A detailed comparison of the two
models is given in [18, 56, 61]. The different boundary
condition leads to a modification to f (h) = h3 + Ch

in Eq. (5). Here, C is a small positive parameter. Note
that in the slipping model, b has no physical meaning,
but is chosen to numerically preserve non-negativity
of solutions. We use b = 10−6 in the slipping model.

To calculate the dynamic contact angle, we use a
method based on the quadratic polynomial approx-
imation. Let Xm = (xm, ym) for m = 1, . . . ,M be
uniformly distributed Lagrangian points such that
h(Xm) = 0.5 (see ‘+’ symbol in Fig. 11(a)). For
each Xm, we consider the normal coordinate s with
origin at Xm. Along the normal direction (solid
line in Fig. 11(a)), we define a function h̄m(s) by
interp2, which is a 2D interpolation program in
MATLAB 2012a [47]. Let k be an integer that
satisfies h̄m(k�x) ≥ 2b and h̄m((k + 1)�x) ≤ 2b.
We define the quadratic polynomial, φm(s), pass-
ing three points ((k − 2)�x, h̄m((k − 2)�x)), ((k −
1)�x, h̄m((k − 1)�x)), and (k�x, h̄m(k�x)). Let
s∗ be the point that satisfies φm(s∗) = b and s∗ ≥
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Fig. 10 Schematic illustration of (a) precursor film model and (b) slipping model

Fig. 11 Schematic illustration of dynamic contact angle com-
putation. (a) The solid line is the normal direction at the front
which is the contour at h = 0.5. (b) Computation of dynamic
contact angle

k�x (see Fig. 11(b)). The dynamic contact angle
at Xm is then defined as θm = −tan−1 dφm(s∗)

ds
. The

average dynamics contact angle is given as θ =∑M
m=1 θm/M . We perform a numerical experiment

with two initial conditions, h(x, y,0) = 0.5[h∞ + b −
(h∞ − b) tanh(3(x − 5) + cos (πy/25))] and
h(x, y,0) = 0.5[h∞ + b − (h∞ − b) tanh(3(x − 5))].
Ωl+0 = 64×32 and l∗ = 3 are used on Ω = (0,100)×
(0,50). We choose �t = 0.2, and D = 0. In the pre-
cursor model, we use a set of different precursor film
heights b = 0.1, 0.01, 0.001, and 0.0001. The slip-
ping model uses C = 0.1, 0.01, 0.001, and 0.0001
with a fixed b = 10−6. In Figs. 12(a) and 12(b), we

Fig. 12 Evolution of average dynamic contact angle with
precursor film model and slipping model. (a) The initial profile
is h(x, y,0) = 0.5[h∞ + b − (h∞ − b) tanh(3(x − 5) +
cos (πy/25))]. (b) The initial profile is h(x, y,0) =
0.5[h∞ + b − (h∞ − b) tanh(3(x − 5))]

show the evolution of the average dynamic contact an-
gle obtained by the two models with and without ini-
tial perturbation, respectively. As the values of b and
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Fig. 13 Comparison of profiles (contour at h = 0.5) at
T = 80 with precursor film model and slipping model.
(a) The initial profile is h(x, y,0) = 0.5[h∞ + b −
(h∞ − b) tanh(3(x − 5) + cos (πy/25))]. (b) The initial
profile is h(x, y,0) = 0.5[h∞ + b − (h∞ − b) tanh(3(x − 5))]

C decrease, the dynamic contact angle increases. In
Figs. 13(a) and 13(b), we compare the profiles (con-
tour at h = 0.5) given by each model at T = 80 with
and without initial perturbation, respectively. As can
be seen, smaller values of b or C give a faster evolu-
tion of the thin-film front. We can also observe that the
two methods generate more developed finger shapes
when larger values b or C are used.

4.5 Comparison between simulation and experiment
of gravity-driven fingering

We compare our numerical simulation results with the
experimental data in [24], where silicon oil (surface
tension: τ = 21 dyn/cm and density: ρ = 0.96 g/cm3)
was used. Since the film thickness H is 0.5–1 mm [24]

and the precursor film is thinner than 10−3 mm [56].
We use b = 10−4 to fit the experimental condition. The
computational results were in good agreement with the
experimental data for wetting drops using b ≤ 10−4

[57, 58]. D = (H 2ρg sinα/τ)1/3 cotα = 0.265 with
α = π/3, g = 9.8 m/s2, and H = 0.5 mm.

To define the initial configuration, we take a part
of the experimental photo data from [24] (see top of
Fig. 14(a)). Next, we detect the fluid front by an image
segmentation technique [51–55]. The goal is to parti-
tion a given image into several regions, each of which
has homogeneous intensity. For a given image f0(x)

on the image domain Ω , we find the level-set function
φ(x) that satisfies

φ(x)

⎧
⎨

⎩

> 0 if x ∈ inside Γ,

= 0 if x ∈ Γ,

< 0 if x ∈ outside Γ,

where Γ is the segmenting curve. The geometric ac-
tive contour model based on the mean curvature mo-
tion is given by the following evolution equation:

φt = g(f0)

(
−F ′(φ)

ε2
+ �φ

)
+ λg(f0)F (φ), (14)

where g(f0) is an edge stopping function, F(φ) =
0.25(1 − φ2)2, and λ is a parameter. For more details,
please refer to [53].

With the image segmentation technique, we can di-
vide the whole domain into four regions, as shown in
the middle of Fig. 14(a). As the initial condition, we
set h(x, y,0) = h∞ in the black region, 0.8hmax in
the gray domain, hmax in the nail part of the fingers,
and b in the precursor region. Here, hmax is the max-
imum thickness of the thin film. To obtain hmax, we
perform a typical simulation with the initial condition
h(x, y,0) = 0.5[h∞ + b − (h∞ − b) tanh(3(x − 10)+
rand(x, y))]. Here, h∞ = 1, b = 10−4, and D = 0.265
are chosen. l∗ = 4 levels and the level zero domain
Ωl+0 = 64×32 are used on the computational domain
Ω = (0,420) × (0,210). The calculation is run until
T = 300 with a time step �t = 0.1. We obtain a value
of hmax = 1.61 and use this to define the initial condi-
tion shown in the middle of Fig. 14(a). Figures 14(a)
and 14(b) compare the results at t = 0 and t = 65, re-
spectively. From top to bottom, they show the exper-
imental data, numerical simulation (filled contours in
h = b, h∞, 0.8hmax, and hmax), and a superposition of
the experimental data and numerical simulation result.
Figure 14(b) indicates that the numerical result gives
a qualitatively good agreement with the experimental
data.
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Fig. 14 Comparison between numerical simulation and exper-
imental data: (a) and (b) show comparisons at t = 0 and t = 65,
respectively. From top to bottom, they are experimental data, nu-
merical simulation (filled contours in h = b, h∞, 0.8hmax, and

hmax), and a superposition of the experimental data and numer-
ical simulation result. Experimental figures are reprinted with
permission from L. Kondic, SIAM Review, 45, 95–115 (2003)
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4.6 Multiple thin film simulation

We consider the temporal evolution of multiple thin
films. The initial condition is h(x, y,0) = 0.5[h∞ +
b + (h∞ − b) tanh(3(x − 10) + 3 cos(πy/25))] if
x < 10 + l1+ . Otherwise, h(x, y,0) = 0.5[h∞ + b −
(h∞ − b) tanh(3(x − 10 − l1 − l2) + 3 cos(πy/25))]
on the computational domain Ω = (0,800)× (0,100).
Here, l1 is the length between two initial bumps and l2
is the size of the preceding bump. Ωl+0 = 128 × 16,
l∗ = 4, �t = 0.1, and D = 0 are used.

Figures 15(a)–15(d) are the evolution of multi-
ple thin-film for (l1, l2) = (100,150), (100,300),
(200,150), and (200,150), respectively. From left to
right, each column is a snapshot at t = 0, 300, 360,
420, and 540. The filled contours are at the levels
h = 0.1, 0.5, 1, and 1.6. In Fig. 15(a), the evolution
of the preceding part becomes slower due to the lim-
ited volume of fluid. On the other hand, for the be-
hind bump, fluid is kept supplied through the Dirichlet
boundary condition. The front velocity is dependent
on a jump of fluid film height across the front, i.e.,
(f (h+) − f (h−))/(h+ − h−), where h+ and h− are
behind and ahead fluid heights of the front, respec-
tively [62, 63]. These lead the following fluid to catch
and merge with the preceding fluid front.

To see the effect of the volume of the preceding
fluid, we consider a larger l2, as shown in Fig. 15(b).
At time t = 300, the finger profile of the following
fluid is similar to the previous reference case (a). In
this case, it takes more time to catch the preceding
fluid front. After the two fronts merge, the finger-
ing profile is similar to the reference case, except for
slightly smaller finger sizes. Next, we consider the ef-
fect of l1 on the fingering dynamics (see Fig. 15(c)).
At t = 300, the fingering pattern of the preceding fluid
front is similar to the reference case. However, the
finger of the following fluid is more developed com-
pared to the reference case. This phenomenon contin-
ues until it merges to the preceding front. After merg-
ing, the finger size of the behind front is reduced.
The final numerical experiment is a phase shifted ini-
tial condition (Fig. 15(d)). That is, for the preceding
fluid, h(x, y,0) = 0.5[h∞ + b − (h∞ − b) tanh(3(x −
10 − l1 − l2) + 3 sin(πy/25))] for x > 10 + l1. Until
t = 480, the fingering pattern is similar to the case in
Fig. 15(c). However, during the merging process, the
fronts disrupt each other, which leads to a smaller fin-
ger pattern.

Fig. 15 (a)–(d) are the evolution of multiple thin-film for
(l1, l2) = (100,150), (100,300), (200,150), and (200,150), re-
spectively. The filled contours are at the levels h = 0.1, 0.5, 1,
and 1.6. The times are shown below each column



Meccanica (2014) 49:239–252 251

5 Conclusions

In this paper, we presented a robust and accurate fi-
nite difference method for simulating a gravity-driven
thin film through numerical investigations with an im-
plicit essentially non-oscillatory scheme. The associ-
ated time-dependent governing equation was solved
using a nonlinear full approximation storage multigrid
algorithm by employing AMR. A set of representa-
tive numerical experiments were presented. By com-
paring the AMR results with those from a uniform
mesh method, it was shown that the adaptive multigrid
offers increased flexibility together with a significant
reduction in memory requirement. A further compari-
son of our numerical solution with experimental data
demonstrated the efficiency of our method.
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