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a b s t r a c t

In this paper, we propose a new level set-based model and an unconditionally stable
numerical method for bimodal image segmentation. Our model is based on the Lee–Seo
active contour model. The numerical scheme is semi-implicit and solved by an analytical
method. The unconditional stability of the proposed numerical method is proved analyti-
cally. We demonstrate performance of the proposed image segmentation algorithm on sev-
eral synthetic and real images to confirm the efficiency and stability of the proposed
method.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Image segmentation is one of the fundamental tasks in computer vision and automatic image processing. Its goal is to
divide the given image into different objects in each of which the intensity is homogeneous [1,2]. Up to now, various algo-
rithms [3–19] have been proposed to solve the image segmentation problem. Among them, there are two widely used clas-
sical models based on the edges [3–9] or the regions [12–19]. In particular, the Chan–Vese model [13], which is a
representative region-based image segmentation method, has been widely applied for various image processing applica-
tions. Their approach is based on the minimizing of the piecewise constant Mumford–Shah functional [18] by using the level
set method [20]. The level set method is used to trace interfaces separating a domain into subdomains and effectively con-
tours the image with the zero level set.

Lee and Seo pointed out that the energy functional of the Chan–Vese method has no minimizer [17]. Therefore it is dif-
ficult to set a termination criterion on the algorithm. To resolve the problem, Lee and Seo proposed a new mathematical
model. However, they implemented their model with an explicit finite difference scheme. In practice, a stable and robust
numerical algorithm is more desirable than explicit schemes. Therefore, in this paper, we propose a new level set-based
model which can be solved by an accurate and unconditionally stable semi-implicit method.

This paper is organized as follows. In Section 2, a brief review of previous and our proposed models for image segmen-
tation is given. We also describe our proposed numerical method and prove its unconditional stability. In Section 3, we pres-
ent various image segmentation experiments on synthetic and real images using the proposed model and numerical method.
Finally, conclusions are drawn in Section 4.

2. Description of the previous and the proposed models

In this section, we briefly review the Mumford–Shah, the Chan–Vese, and the Lee–Seo models for image segmentation.
Then we propose a computationally efficient model and prove the unconditional stability of the proposed numerical scheme.
. All rights reserved.
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2.1. Mumford–Shah model

The Mumford–Shah model is an energy-based method proposed by Mumford and Shah via an energy functional [18]. Let
X � R2 be the two dimensional image domain and f0 be a given image on X. Then we want to find the smooth and closed
finite set of segmenting curves C and f which is the piecewise smooth approximation to f0 through the minimization of
the following Mumford–Shah energy functional:
EMSðf ;CÞ ¼ ljCj þ
Z

X
f0ðxÞ � f ðxÞj j2dxþ m

Z
XnC
rf ðxÞj j2dx; ð1Þ
where jCj is the length of the curve, l and m are positive parameters. The first term in Eq. (1) regularizes the contour by penal-
izing the arc length, the second is the data fitting term, and the third is the smoothing term.

Theoretical results of existence and regularity of minimizers of Eq. (1) can be found in Mumford and Shah [18]. In practice,
it is not easy to minimize the Mumford–Shah energy functional because of the unknown curve C and the non-convexity of
the functional, which may have multiple local minima [21].

2.2. Chan–Vese model

To overcome the difficulties in solving the Mumford–Shah functional, Chan and Vese proposed the following energy
functional:
ECVðc1; c2;CÞ ¼ ljCj þ k1

Z
insideðCÞ

f0ðxÞ � c1j j2dxþ k2

Z
outsideðCÞ

f0ðxÞ � c2j j2dx; ð2Þ
where k1 and k2 are positive parameters [13]. The constants c1 and c2 are the averages of f0 inside and outside of C, respec-
tively. And then Chan and Vese replaced the unknown curve C by the level-set function /ðxÞ,
/ðxÞ ¼
distðx;CÞ if x 2 inside C;

0 if x 2 C;

�distðx; CÞ if x 2 outside C;

8><
>: ð3Þ
where distðx;CÞ is the smallest Euclidean distance from x to the points in C. Then the energy functional ECV ðc1; c2;CÞ can be
rewritten as
ECV ðc1; c2;/Þ ¼ l
Z

X
d�ð/ðxÞÞ r/ðxÞj jdxþ k1

Z
X

f0ðxÞ � c1j j2H�ð/ðxÞÞdxþ k2

Z
X

f0ðxÞ � c2j j2ð1� H�ð/ðxÞÞÞdx; ð4Þ
where H� and d� are the regularized approximations of the Heaviside and the Dirac delta functions, respectively and are de-
fined as
H�ðzÞ ¼
1
2
þ 1

p
arctan

z
�

� �
and d�ðzÞ ¼

�
pð�2 þ z2Þ : ð5Þ
The constants c1 and c2 represent the mean intensity values inside and outside the contour C, respectively and are defined as:
c1 ¼
R

X f0ðxÞH�ð/ðxÞÞdxR
X H�ð/ðxÞÞdx

and c2 ¼
R

X f0ðxÞð1� H�ð/ðxÞÞÞdxR
Xð1� H�ð/ðxÞÞÞdx

: ð6Þ
By using the gradient descent method [22], the authors got the following evolution equation:
@/
@t
¼ d�ð/Þ lr � r/

r/j j

� �
� k1ðf0 � c1Þ2 þ k2ðf0 � c2Þ2

� �
: ð7Þ
The level set based algorithm of Chan and Vese works well in processing images with a large amount of noise and detecting
objects whose boundaries can not be defined by gradient. However, due to the continual increase in the magnitude of the
value of /, it becomes difficult to set a termination criterion on the algorithm [17].

2.3. Lee–Seo model

To make the solution of image segmentation become a stationary global minimum, Lee and Seo [17] proposed the follow-
ing energy functional with two shifted Heaviside functions:
ELSðc1; c2;/Þ ¼ k1

Z
X

f0ðxÞ � c1ð Þ2/ðxÞHðaþ /ðxÞÞdx� k2

Z
X

f0ðxÞ � c2ð Þ2/ðxÞHða� /ðxÞÞdx; ð8Þ
where a is an arbitrary small positive value. Here, / is multiplied to prevent from computing a local minimum and Hð�/Þ is
shifted by �a to confine the range of /. Then, we have the following gradient descent flow equation:
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/t ¼ �k1ðf0 � c1Þ2½Hðaþ /Þ þ /dðaþ /Þ� þ k2ðf0 � c2Þ2½Hða� /Þ � /dða� /Þ�: ð9Þ
Let /n
ij be approximations of /ði; j;nDtÞ, where Dt ¼ T=Nt is the time step, T is the final time, and Nt is the total number of time

steps. Lee and Seo implemented Eq. (9) with an explicit finite difference scheme.
/nþ1
ij � /n

ij

Dt
¼ �k1ðf0;ij � c1Þ2 maxðsignðaþ /n

ijÞ;0Þ þ /n
ijdeðaþ /n

ijÞ
h i

þ k2ðf0;ij � c2Þ2 maxðsignða� /n
ijÞ;0Þ � /n

ijdeða� /n
ijÞ

h i
:

Here the maxða;0Þ and the signðaÞ functions are defined as
maxða;0Þ ¼
a if a P 0
0 else

�
and signðaÞ ¼

1 if a P 0
�1 else

�

Even though the Lee–Seo model works well on many bimodal segmentation problems, there are time step size restrictions
on the discrete scheme since it uses the explicit Euler’s scheme.

2.4. Proposed model

The Lee–Seo model has time step constraint since it uses an explicit Euler’s method. To develop an implicit scheme, we
replace the Heaviside function in Eq. (9) with
HcðzÞ ¼
1þ z

2
:

Fig. 1 shows Heaviside function H0:05 and our proposed form Hc .
Then we propose the following energy functional:
Eðc1; c2;/Þ ¼ k1

Z
X

f0ðxÞ � c1ð Þ2/ðxÞHcð1þ /ðxÞÞdx� k2

Z
X
ðf0ðxÞ � c2Þ2/ðxÞHcð1� /ðxÞÞdx: ð10Þ
The constants c1 and c2 are defined as:
c1 ¼
R

X f0ðxÞHcð/ðxÞÞdxR
X Hcð/ðxÞÞdx

and c2 ¼
R

X f0ðxÞð1� Hcð/ðxÞÞÞdxR
Xð1� Hcð/ðxÞÞÞdx

: ð11Þ
If f0ðxÞ � c1, then the first term in Eq. (10) is close to zero. Since ðf0ðxÞ � c2Þ2 is non-zero, /ðxÞHcð1� /ðxÞÞ ¼
ð2/ðxÞ � /2ðxÞÞ=2 should be large. This can be achieved if /ðxÞ ¼ 1. Similarly, if f0ðxÞ � c2, then /ðxÞ ¼ �1.

Fig. 2(a) shows the original image f0. White and gray regions are close to 1 and 0, respectively. Fig. 2(b-e) shows mesh plot
of integrand of the first and second term in Eq. (10) with different /. If /ðxÞ 	 cðconstantÞ, then c1 ¼ c2 from Eq. (11). Thus
ðf0 � c1Þ2 ¼ ðf0 � c2Þ2. In this case, since / – � 1, the integrand of first energy term is high. Similarly, the second one is also
high as / – 1. With these together, the whole energy functional should be minimized (see the fourth column of Fig. 2(b) and
(c)). Furthermore if /ðxÞ ¼ 2f 0ðxÞ � 1, then c1 ¼ 1 and c0 ¼ 0. Obverse the integrand of first term in Eq. (10), for every
x 2 insideðCÞ; f 0ðxÞ ¼ c1 and for every x 2 outsideðCÞ; /ðxÞ ¼ �1. They make the minimizer of energy achieves (see the
fourth column of Fig. 2(d)). Similar results can be concluded from the second energy term. Thus the whole energy is mini-
mized and the segmentation evolution reaches a steady state. In the same way, /ðxÞ ¼ 1� 2f 0ðxÞ is also a solution to min-
imize Eq. (10) shown in Fig. 2(e).

From this energy functional, we have the following parabolic equation:
/t ¼ �k1ðf0 � c1Þ2 1þ /ð Þ þ k2ðf0 � c2Þ2 1� /ð Þ ¼ �½k1ðf0 � c1Þ2 þ k2ðf0 � c2Þ2�/� ½k1ðf0 � c1Þ2 � k2ðf0 � c2Þ2�: ð12Þ
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Fig. 1. Heaviside function H0:05 and our proposed form Hc .
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Fig. 2. (a) Original image. (b)–(e) Results with different /. From left to right for columns: mesh plot of /, mesh plot of the term ðf0ðxÞ � c1Þ2/ðxÞHcð1þ /ðxÞÞ,
mesh plot of the term ðf0ðxÞ � c2Þ2/ðxÞHcð1� /ðxÞÞ, and mesh plot with two terms together.
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Given /n
ij, we want to find /nþ1

ij . Let the constants cn
1 and cn

2 be defined as
cn
1 ¼

PNx
i

PNy

j f0;ijð1þ /n
ijÞPNx

i

PNy

j ð1þ /n
ijÞ

and cn
2 ¼

PNx
i

PNy

j f0;ijð1� /n
ijÞPNx

i

PNy

j ð1� /n
ijÞ

: ð13Þ
We can analytically solve Eq. (12) since it is a first-order linear differential equation. The solution at t ¼ ðnþ 1ÞDt is given as
/nþ1
ij ¼ e�½k1ðf0;ij�cn

1Þ
2þk2ðf0;ij�cn

2Þ
2 �Dt/n

ij þ ðe�½k1ðf0;ij�cn
1Þ

2þk2ðf0;ij�cn
2Þ

2 �Dt � 1Þ k1ðf0;ij � cn
1Þ

2 � k2ðf0;ij � cn
2Þ

2

k1ðf0;ij � cn
1Þ

2 þ k2ðf0;ij � cn
2Þ

2 : ð14Þ
When we solve time-dependent partial differential equations, stability of the numerical scheme to the equations is very
important. Next, we will show our proposed numerical method is unconditionally stable. Let us assume j/nj 6 1, then from
Eq. (14) we have
j/nþ1j 6 e�½k1ðf0�cn
1Þ

2þk2ðf0�cn
2Þ

2 �Dtj/nj þ ð1� e�½k1ðf0�cn
1Þ

2þk2ðf0�cn
2Þ

2 �DtÞ k1ðf0 � cn
1Þ

2 � k2ðf0 � cn
2Þ

2

k1ðf0 � cn
1Þ

2 þ k2ðf0 � cn
2Þ

2

					
					

6 e�½k1ðf0�cn
1Þ

2þk2ðf0�cn
2Þ

2 �Dtj/nj þ 1� e�½k1ðf0�cn
1Þ

2þk2ðf0�cn
2Þ

2 �Dt
6 1: ð15Þ
Therefore the proposed scheme is unconditionally stable for any time step. Furthermore, since our model makes / converges
to 1 or �1, we can measure the l2 norm error of j/j � 1 every time step, and stop the evolution when the error is smaller than
a given positive value, tol.
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3. Numerical experiments

In this section, we present numerical results using the proposed numerical algorithm on various synthetic and real
images.

Let us consider a simple example which shows the basic mechanism of the proposed algorithm.

f ðx; yÞ ¼ 0:5þ 0:5 tanh 10� 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 30Þ2 þ ðy� 30Þ2

q� �
is a given synthetic image and shown in the first row in Fig. 3.

White and gray regions are close to 1 and 0, respectively. /0ðx; yÞ ¼ tanh 10� 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 30Þ2 þ ðy� 50Þ2

q� �
is an initial guess

and is shown in the third row in Fig. 3(a). Here k1 ¼ k2 ¼ 1 and time step Dt ¼ 30 are used. The top row shows the evolving
contours overlaid on the original image. The middle and bottom rows show the right hand term of Eq. (12) and / with its
zero level set, respectively. Columns (a), (b), (c), and (d) are at n ¼ 0;1;2, and 6, respectively. Observing the results in Fig. 3,
the positive and negative values of the fitting term imply that / moves 1 and �1, respectively. And in the steady state the
segmentation curve is on the edge of the object.

In our numerical experiments, we normalize the given image f as f0 ¼ f�fmin
fmax�fmin

, where fmax and fmin are the maximum and the
minimum values of the given image, respectively. Hence f0 2 ½0;1�. Since solutions with the proposed numerical scheme are
almost insensitive to the initial configuration of /, we simply initialize / ¼ 2f 0 � 1. In this section, tol ¼ 0:1 through all the
numerical tests.

Fig. 4 shows that our proposed model can effectively detect different objects which were described in [17]. Here we used
the parameters k1 ¼ k2 ¼ 1. Since our proposed scheme is unconditionally stable, we get the converged result after only two
iterations with a relatively large time step Dt ¼ 100. The contour plot and mesh plot of the converged result are shown in
Fig. 4(b) and (c), respectively. As can be seen that the agreement between the area and image segmentation is obviously.
Using the Lee–Seo model, we run the computation with the same parameters and the result is shown in Fig. 4(d). Suffering
from the time restriction, the Lee–Seo model can not get the converged state with large time step.

In Fig. 5(a), we use 1 iteration to solve the image segmentation problem, which is much smaller than the method in [23],
which used 835 iterations. Here, time step Dt ¼ 100 and k1 ¼ k2 ¼ 1 are used. Fig. 5(b) shows the segmentation of watershed
image. This computational experiments are set by using the same parameters as Fig. 5(a). As can be seen, image segmenta-
tions are successfully done only after 1 iterations. Next computational experiment is from [24] for contouring the image
boundary of multiphase flows shown in Fig. 5(a). Using the parameters k1 ¼ k2 ¼ 1 and Dt ¼ 20, we run the computation
with only about three iterations. Since our initial condition is close to an equilibrium solution and proposed scheme is
unconditionally stable, our method is very fast. Furthermore, comparing to the results shown in the top row and bottom
row of Fig. 5, the agreement between the edge of objects and image segmentation also confirms the efficiency of the pro-
posed method.
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Fig. 3. Synthetic image segmentation using the proposed method. Top: the evolution of the zero level set of /. Middle: the evolution of the right hand side
term of Eq. (12), i.e., k½ð1� /nþ1Þ f0 � cn
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� �2�. Bottom: the evolution of / and its zero level set. Columns (a), (b), (c), and (d) are at
n ¼ 0;1;2, and 6, respectively.
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Fig. 4. Segmentation of different objects. Image size ¼ 420
 409. (a) Original image (b) Finial segmentation result. (c) Result using our proposed model. (d)
Result using the Lee–Seo model.
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Fig. 5. Top row: original images. Bottom row: converged results. (a) Image experiment in [23]. Size ¼ 626
 595. (b) Watershed image. Size ¼ 111
 110.
(c) Computational experiment in [24]. Size ¼ 425
 402.
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As we known the gradient-based active contour model which bases on the edge-function cannot detect the smooth
boundary of blurred image, however the Chan–Vese model and the Lee–Seo model can obtain a smooth one [13,17]. Here
we also consider a test with our model. The initial image with image size 360
 288 is presented in Fig. 6(a). To obtain a
different segmentation of image, we choose different values of k. In Fig. 6(b), we use k1 ¼ 0:1; k2 ¼ 1 and k1 ¼ 1; k2 ¼ 0:1,
respectively. As can be seen, the proposed model segments the image well. Note that in both two cases, using larger time
step Dt ¼ 100, our proposed method take only two iterations, which is much smaller than the Lee–Seo method, which used
24 iterations with smaller time step Dt ¼ 0:5 for time step restriction.

Fig. 7 shows the performance results of the proposed method on medical images. The segmentation result for a real blood
vessel (left anterior descending) image is presented in Fig. 7(a). Here Dt ¼ 10; k1 ¼ 1 and k2 ¼ 0:5 are used. It took three iter-
ations. Fig. 7(b) shows the segmentation of cell image. Dt ¼ 100 and k1 ¼ k2 ¼ 1 are used and it took two iterations. In
Fig. 7(c), the segmentation of brain MR image is shown. k1 ¼ 1 and k2 ¼ 0:5 are used and it took two iteration with the time
step Dt ¼ 15.

Next, time step, total iterations, and CPU time in second for Fig. 7 are compared with the Lee–Seo model in Table 1. Tests
were performed on a 3 GHz Intel Pentium with 3 GB of RAM loaded with MATLAB 2009[25]. As can be observed from Table 1,
our proposed method yields faster results than the Lee–Seo approach. Since our method is unconditional stable, we can solve
the image segmentation problem with large time step. Thus our method is robust and efficient.
(a)

λ1=0.1, λ2=1

λ1=1, λ2=0.1

(b)

Fig. 6. Results of our method for blurred image. Size ¼ 360
 288. (a) Original images. (b) Final segmentation results with different k values.

(a) (b) (c)

Fig. 7. Medical image segmentations. Top row: original images. Bottom row: converged results. (a) Blood vessels image with size ¼ 600
 514. (b) Cell
image with size ¼ 272
 262. (c) Brain MR image with size ¼ 350
 350.



Table 1
Time step, iterations, and CPU time (second) for our proposed method and the Lee–Seo model in segmenting images in Fig. 7.

Fig. 7(a) Fig. 7(b) Fig. 7(c)

Dt Iteration Time Dt Iteration Time Dt Iteration Time

Our method 10 3 0.203 100 2 0.031 15 2 0.047
Lee–Seo 0.5 30 2.094 0.5 51 1.078 0.5 68 2.328
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4. Conclusion

In this paper, we proposed a new level set-based model and an unconditionally stable numerical method for bimodal im-
age segmentation. Our model is based on the Lee–Seo active contour model. The numerical scheme is semi-implicit and
solved by an analytical way. An unconditional stability of the proposed numerical method was proved analytically. Since
our initial condition was close to an equilibrium solution and proposed scheme was unconditionally stable, our method
was very fast compared with the pervious methods [17,23]. Furthermore, observing the results, the agreement between
the edge of objects and image segmentation also confirms the efficiency of the proposed method.
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