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AN ACCURATE AND EFFICIENT NUMERICAL METHOD
FOR BLACK-SCHOLES EQUATIONS

Darae Jeong, Junseok Kim, and In-Suk Wee

Abstract. We present an efficient and accurate finite-difference method
for computing Black-Scholes partial differential equations with multi-
underlying assets. We directly solve Black-Scholes equations without
transformations of variables. We provide computational results showing
the performance of the method for two underlying asset option pricing
problems.

1. Introduction

Black and Scholes [1], and Merton [10] derived a parabolic second order
partial differential equation (PDE) for the value u(s, t) of an option on stocks.
We propose a finite difference method to solve the generalized multi-asset Black-
Scholes PDE. Let si, i = 1, 2, . . . , n denote the price of the underlying i-th asset
and u(s1, s2, . . . , sn, t) denote the value of the option. The prices si of the
underlying assets are described by geometric Brownian motions

dsi = µisidt + σisidWi, i = 1, 2, . . . , n,

where µi and σi denote a constant expected rate of return and a constant
volatility of the i-th asset, respectively. Here, Wi is the standard Brownian
motion. Let ρij denote the correlation coefficient between two Brownian mo-
tions Wi and Wj where

dWidWj = ρijdt, i, j = 1, 2, . . . , n, i 6= j.
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Then, the no arbitrage principle leads to the following generalized n-asset
Black-Scholes equation [7, 9, 20]:

∂u(s, t)
∂t

+
1
2

n∑

i,j=1

σiσjρijsisj
∂2u(s, t)
∂si∂sj

+ r

n∑

i=1

si
∂u(s, t)

∂si
= ru(s, t)(1)

for (s, t) = (s1, s2, . . . , sn, t) ∈ Rn
+ × [0, T ),

where r > 0 is a constant riskless interest rate. The final condition is the payoff
function uT (s) at expiry T

u(s, T ) = uT (s).(2)

The analytic solutions of Eqs. (1) and (2) for exotic options are very lim-
ited. Therefore, we need to rely on a numerical approximation. To obtain an
approximation of the option value, we can compute a solution of Black-Scholes
PDEs (1) and (2) using a finite difference method (FDM) [3, 15, 16, 17, 20].

We apply the FDM to the equation over a truncated finite domain. The
original asymptotic infinite boundary conditions are shifted to the ends of the
truncated finite domain. To avoid generating large errors in the solution due to
this approximation of the boundary conditions, the truncated domain must be
large enough resulting in large computational costs. The purpose of our work
is to propose an efficient and accurate FDM to directly solve the Black-Scholes
PDEs (1) and (2) without transformations of variables.

The outline of this paper is the following. In Section 2 we formulate the
Black-Scholes (BS) partial differential equation with two underlying assets. In
Section 3, we focus on the details of a multigrid solver for the BS equation. In
Section 4, we present the results of numerical experiments. We draw conclu-
sions in Section 5.

2. The Black-Scholes model

We use a Black-Scholes model with two underlying assets to keep this pre-
sentation simple. However, we can easily extend the current method for more
than two underlying assets. Let us consider the computational domain Ω =
(0, L)× (0,M) for the two assets case. Let x = s1 and y = s2. Then from the
change of variable τ = T − t, we obtain an initial value problem:

∂u

∂τ
=

1
2
(σ1x)2

∂2u

∂x2
+

1
2
(σ2y)2

∂2u

∂y2
+ σ1σ2ρxy

∂2u

∂x∂y
(3)

+rx
∂u

∂x
+ ry

∂u

∂y
− ru for (x, y, τ) ∈ Ω× (0, T ],

with an initial condition u(x, y, 0) = uT (x, y) for (x, y) ∈ Ω. There are several
possible boundary conditions such as Neumann [3, 5], Dirichlet, linear, and
PDE [3, 16] that can be used for these kinds of problems. In this work, we use
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a linear boundary condition on all boundaries, i.e.,

∂2u

∂x2
(0, y, τ) =

∂2u

∂x2
(L, y, τ) =

∂2u

∂y2
(x, 0, τ) =

∂2u

∂y2
(x, M, τ) = 0,

∀τ ∈ [0, T ] for 0 ≤ x ≤ L, 0 ≤ y ≤ M.

3. A numerical solution

3.1. Discretization with finite differences

A finite difference method is a common numerical method that has been
used by many researchers in computational finance. For an introduction to
these methods we recommend the books [3, 15, 16, 17, 20]. They all introduce
the concept of finite differences for option pricing and provide basic knowledge
needed for a simple implementation of the method. An approach for the Black-
Scholes option problem is to use an efficient solver such as the Bi-CGSTAB
(Biconjugate gradient stabilized) method [12, 14, 19], GMRES (Generalized
minimal residual algorithm) method [11, 13], ADI (Alternating direction im-
plicit) method [2, 3], and the OS (Operator splitting) method [3, 8].

Let us first discretize the given computational domain Ω = (0, L) × (0,M)
as a uniform grid with a space step h = L/Nx = M/Ny and a time step
∆t = T/Nt. Let us denote the numerical approximation of the solution by

un
ij ≡ u(xi, yj , t

n) = u ((i− 0.5)h, (j − 0.5)h, n∆t) ,

where i = 1, . . . , Nx and j = 1, . . . , Ny. We use a cell centered discretization
since we use a linear boundary condition. By applying the implicit time scheme
and centered difference for space derivatives to Eq. (3), we have

un+1
ij − un

ij

∆t
= LBSun+1

ij ,(4)

where the discrete difference operator LBS is defined by

LBSun+1
ij =

(σ1xi)2

2
un+1

i−1,j − 2un+1
ij + un+1

i+1,j

h2

+
(σ2yj)2

2
un+1

i,j−1 − 2un+1
ij + un+1

i,j+1

h2

+σ1σ2ρxiyj

un+1
i+1,j+1 + un+1

i−1,j−1 − un+1
i−1,j+1 − un+1

i+1,j−1

4h2

+rxi

un+1
i+1,j − un+1

i−1,j

2h
+ ryj

un+1
i,j+1 − un+1

i,j−1

2h
− run+1

ij .

3.2. A multigrid method

Multigrid methods belong to the class of fastest iterations, because their
convergence rate is independent of the space step size [4]. In order to explain
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(a) Ω3 (16× 16) h

(c) Ω1 (4× 4) 4h

(b) Ω2 (8× 8) 2h

(d) Ω0 (2× 2) 8h (e)

Figure 1. (a), (b), (c), and (d) are a sequence of coarse
grids starting with h = L/Nx. (e) is a composition of grids,
Ω3, Ω2, Ω1, and Ω0.

clearly the steps taken during a single V-cycle, we focus on a numerical solution
on a 16× 16 mesh. We define discrete domains, Ω3, Ω2, Ω1, and Ω0, where

Ωk = {(xk,i = (i− 0.5)hk, yk,j = (j − 0.5)hk) | 1 ≤ i, j ≤ 2k+1 and hk = 23−kh}.
Ωk−1 is coarser than Ωk by a factor of 2. The multigrid solution of the discrete
BS Eq. (4) makes use of a hierarchy of meshes (Ω3, Ω2, Ω1, and Ω0) created
by successively coarsening the original mesh, Ω3 as shown in Fig. 1. A point-
wise Gauss-Seidel relaxation scheme is used as the smoother in the multigrid
method. We use a notation un

k as a numerical solution on the discrete domain
Ωk at time t = n∆t. The algorithm of the multigrid method for solving the
discrete BS Eq. (4) is as follows. We rewrite the above Eq. (4) by

L3(un+1
3,ij ) = φn

3,ij on Ω3,(5)

where

L3(un+1
3,ij ) = un+1

3,ij −∆tLBS3u
n+1
3,ij and φn

3,ij = un
3,ij .

Given the numbers, ν1 and ν2, of pre- and post- smoothing relaxation sweeps,
an iteration step for the multigrid method using the V-cycle is formally written
as follows [18]. That is, starting an initial condition u0

3, we want to find un
3 for

n = 1, 2, . . .. Given un
3 , we want to find the un+1

3 solution that satisfies Eq. (4).
At the very beginning of the multigrid cycle the solution from the previous
time step is used to provide an initial guess for the multigrid procedure. First,
let un+1,0

3 = un
3 .
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Multigrid cycle

un+1,m+1
k = MGcycle(k, un+1,m

k , Lk, φn
k , ν1, ν2).

That is, un+1,m
k and un+1,m+1

k are the approximations of un+1
k before and after

an MGcycle. Now, define the MGcycle.
Step 1) Presmoothing

ūn+1,m
k = SMOOTHν1(un+1,m

k , Lk, φn
k ),

means performing ν1 smoothing steps with the initial approximation un+1,m
k ,

source terms φn
k , and a SMOOTH relaxation operator to get the approxima-

tion ūn+1,m
k . Here, we derive the smoothing operator in two dimensions.

Now we derive a Gauss-Seidel relaxation operator. First, we rewrite Eq. (5)
as

un+1
k,ij =

[
φn

k,ij + ∆t

(
(σ1xk,i)2

2
un+1

k,i−1,j + un+1
k,i+1,j

h2
k

+
(σ2yk,j)2

2
un+1

k,i,j−1 + un+1
k,i,j+1

h2
k

+σ1σ2ρxk,iyk,j

un+1
k,i+1,j+1 + un+1

k,i−1,j−1 − un+1
k,i−1,j+1 − un+1

k,i+1,j−1

4h2
k

+ rxk,i

un+1
k,i+1,j − un+1

k,i−1,j

2hk
+ ryk,j

un+1
k,i,j+1 − un+1

k,i,j−1

2hk

)] /

[
1 + ∆t

(
(σ1xk,i)2 + (σ2yk,j)2

h2
k

+ r

)]
.(6)

Next, we replace un+1
k,αβ in Eq. (6) with ūn+1,m

k,αβ if (α < i) or (α = i and β ≤ j),
otherwise with un+1,m

k,αβ , i.e.,

ūn+1,m
k,ij =

[
φn

k,ij + ∆t

(
(σ1xk,i)2

2
ūn+1,m

k,i−1,j + un+1,m
k,i+1,j

h2
k

+
(σ2yk,j)2

2
ūn+1,m

k,i,j−1 + un+1,m
k,i,j+1

h2
k

+σ1σ2ρxk,iyk,j

un+1,m
k,i+1,j+1 + ūn+1,m

k,i−1,j−1 − ūn+1,m
k,i−1,j+1 − un+1,m

k,i+1,j−1

4h2
k

+ rxk,i

un+1,m
k,i+1,j − ūn+1,m

k,i−1,j

2hk
+ ryk,j

un+1,m
i,j+1 − ūn+1,m

k,i,j−1

2hk

)]
/

[
1 + ∆t

(
(σ1xk,i)2 + (σ2yk,j)2

h2
k

+ r

)]
.(7)
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Therefore, in a multigrid cycle, one smooth relaxation operator step consists
of solving Eq. (7) given above for 1 ≤ i ≤ 2k−3Nx and 1 ≤ j ≤ 2k−3Ny.

Step 2) Coarse grid correction
• Compute the defect: d̄m

k = φn
k − Lk(ūn+1,m

k ).
• Restrict the defect and ūm

k : d̄m
k−1 = Ik−1

k d̄m
k

The restriction operator Ik−1
k maps k-level functions to (k−1)-level functions

as shown in Fig. 2(a).

dk−1(xi, yj) = Ik−1
k dk(xi, yj) =

1
4
[dk(xi− 1

2
, yj− 1

2
) + dk(xi− 1

2
, yj+ 1

2
)

+dk(xi+ 1
2
, yj− 1

2
) + dk(xi+ 1

2
, yj+ 1

2
)].

(a) (b)

Figure 2. Transfer operators : (a) restriction and (b) interpolation.

• Compute an approximate solution ûn+1,m
k−1 of the coarse grid equation on

Ωk−1, i.e.,

Lk−1(u
n+1,m
k−1 ) = d̄m

k−1.(8)

If k = 1, we use a direct or fast iteration solver for (8). If k > 1, we solve (8)
approximately by performing k-grid cycles using the zero grid function as an
initial approximation:

v̂n+1,m
k−1 = MGcycle(k − 1, 0, Lk−1, d̄

m
k−1, ν1, ν2).

• Interpolate the correction: v̂n+1,m
k = Ik

k−1v̂
n+1,m
k−1 . Here, the coarse values

are simply transferred to the four nearby fine grid points as shown in Fig. 2(b),
i.e., vk(xi, yj) = Ik

k−1vk−1(xi, yj) = vk−1(xi+ 1
2
, yj+ 1

2
) for the i and j odd-

numbered integers.
• Compute the corrected approximation on Ωk

um, after CGC
k = ūn+1,m

k + v̂n+1,m
k .

Step 3) Postsmoothing: un+1,m+1
k = SMOOTHν2(um, after CGC

k , Lk, φn
k ).
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This completes the description of a MGcycle. An illustration of the corre-
sponding two-grid cycle is given in Fig. 3. For the multi-grid V-cycle, it is given
in Fig. 4.

smooth
ν1

u
n+1,m
k ū

n+1,m
k

d̄m
k = φn

k −Lk(ūn+1,m
k )

Restrict(Ik−1

k )

d̄m
k−1 = Ik−1

k d̄m
k

Solve

Lk−1(v̂
n+1,m
k−1

) ≈ d̄m
k−1

Interpolate(Ik
k−1)

v̂
n+1,m
k = Ik

k−1v̂
n+1,m
k−1

u
n+1,m+1

k

smooth
ν2

u
m,afterCGC
k

= ū
n+1,m
k + v̂

n+1,m
k

Figure 3. The MG (k, k − 1) two-grid method.

4. Computational results

In this section, we perform a convergence test of the scheme and present
several numerical experiments. Two-asset cash or nothing options can be useful
building blocks for constructing more complex exotic option products. Let us
consider a two-asset cash or nothing call option. This option pays out a fixed
cash amount K if asset one, x, is above the strike X1 and asset two, y, is above
strike X2 at expiration. The payoff is given by

u(x, y, 0) =
{

K if x ≥ X1 and y ≥ X2,
0 otherwise.(9)

The formula for the exact value is known in [6] by

u(x, y, T ) = Ke−rT M(α, β; ρ),(10)

where
α = ln(x/K1)+(r−σ2

1/2)T

σ1
√

T
, β = ln(y/K2)+(r−σ2

2/2)T

σ2
√

T
.
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Ω3, h

Ω2, 2h

Ω1, 4h

Ω0, 8h

Figure 4. Schedule of grids for V-cycle.

Here M(α, β; ρ) denotes a standardized cumulative normal function where one
random variable is less than α and a second random variable is less than β.
The correlation between the two variables is ρ:

M(α, β; ρ) =
1

2π
√

1− ρ2

∫ α

−∞

∫ β

−∞
exp

[
−x2 − 2ρxy + y2

2(1− ρ2)

]
dxdy.

The MATLAB code for the closed form solution of a two-asset cash or noth-
ing call option is given in Appendix A.

4.1. Convergence test

To obtain an estimate of the rate of convergence, we performed a number
of simulations for a sample initial problem on a set of increasingly finer grids.
We considered a domain, Ω = [0, 300] × [0, 300]. We computed the numerical
solutions on uniform grids, h = 300/2n for n = 5, 6, 7, and 8. For each case,
we ran the calculation to time T = 0.1 with a uniform time step depending on
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a mesh size, ∆t = 0.032/2n. The initial condition is Eq. (9) with K = 1 and
X1 = X2 = 100. The volatilities are σ1 = 0.5 and σ2 = 0.5. The correlation is
ρ = 0.5, and the riskless interest rate is r = 0.03. Figs. 5 (a) and (b) show the
initial configuration and final profile at T , respectively.

0
100

200
300

0
100

200
300

0

0.5

1

yx

u

(a)
0

100
200

300

0
100

200
300

0

0.5

1

yx

u

(b)

Figure 5. (a) The initial condition and (b) numerical result
at T = 0.1.

We let e be the error matrix with components eij = u(xi, yj)−uij . u(xi, yj)
is the analytic solution of Eq. (10) and uij is the numerical solution. We
compute its discrete L2 norm ‖e‖2 is defined

‖e‖2 =

√√√√ 1
NxNy

Nx∑

i=1

Ny∑

j=1

e2
ij .

The errors and rates of convergence are given in Table 1. The results show
that the scheme is first-order accurate.

Table 1. The L2 norms of errors and convergence rates for u
at time T = 0.1.

Case 32× 32 rate 64× 64 rate 128× 128 rate 256× 256

‖e‖2 0.028161 0.95 0.014562 1.07 0.006928 0.96 0.003572

4.2. Multigrid performance

We investigated the convergence behavior of our MG method, especially
mesh independence. The test problem was that of a two-asset cash or nothing
call option with the convergence test parameter set. The average number of
iterations per time step (see Fig. 6) and the CPU-time in seconds required
for a solution to an identical convergence tolerance are displayed in Table 2.
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Although the number of multigrid iterations for convergence at each time step
slowly increased as the mesh was refined, from a practical viewpoint, it was
essentially grid independent.
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32 × 32
64 × 64
128 × 128
256 × 256

Figure 6. Number of V-cycles.

5. Conclusions

In this paper, we focused on the performance of a multigrid method for
option pricing problems. The numerical results showed that the total compu-
tational cost was proportional to the number of grid points. The convergence
test showed that the scheme was first-order accurate since we used an implicit
Euler method. In a forthcoming paper, we will investigate a switching grid
method, which uses a fine mesh when the solution is not smooth and otherwise
uses a coarse mesh.

Appendix A. MATLAB code for a closed form solution

L=300; K=1; T=0.1; r=0.03; sigma1=0.5; sigma2=0.5; rho=0.5;

Table 2. Grid independence with an iteration convergence
tolerance of 10−5, T = 0.1 and ∆t = 0.001.

Mesh Average iterations per time step CPU(s)
32 × 32 1.00 0.141
64 × 64 1.00 0.579

128 × 128 2.00 2.594
256 × 256 2.24 13.093
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N=64; h=L/N; S=linspace(h/2,L-h/2,N); VE=zeros(N,N); mu=[0 0];

for i=1:N
for j=1:N

y1 = (log(S(i)/K)+(b1-sigma1^2/2)*T)/(sigma1*sqrt(T));
y2 = (log(S(j)/K)+(b2-sigma2^2/2)*T)/(sigma2*sqrt(T));
X = [y1 y2];

cov = [1 rho; rho 1];
M = mvncdf(X,mu,cov);

V(i,j) = K*exp(-r*T)*M;
end

end

[X, Y] = meshgrid(S); surf(X, Y, V)
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