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Abstract We propose an efficient and accurate numerical scheme for solving prob-
ability generating functions arising in stochastic models of general first-order reaction
networks by using the characteristic curves. A partial differential equation derived by a
probability generating function is the transport equation with variable coefficients. We
apply the idea of characteristics for the estimation of statistical measures, consisting of
the mean, variance, and marginal probability. Estimation accuracy is obtained by the
Newton formulas for the finite difference and time accuracy is obtained by applying
the fourth order Runge–Kutta scheme for the characteristic curve and the Simpson
method for the integration on the curve. We apply our proposed method to motivating
biological examples and show the accuracy by comparing simulation results from the
characteristic method with those from the stochastic simulation algorithm.

Keywords First-order reaction network · Characteristic method ·
Monte Carlo method · First-order partial differential equation

1 Introduction

Various biological processes occur in a cell of living organisms. The mechanism of
those processes can be described by modeling a reaction network and analyzing its
dynamics with mathematical tools such as differential equations and stochastic pro-
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cesses. As researches have been recently focused on relatively small biological sys-
tems such as gene regulatory networks, stochastic modeling has been used to capture
random properties such as fluctuations or noises, which are intrinsic phenomena for
small systems characterized by molecular interactions [1]. In the stochastic modeling,
the dynamics of a reaction network is described by the chemical master equation

∂

∂t
p(n, t) =

r∑

k=1

[ak(n − Vk)p(n − Vk, t) − ak(n)p(n, t)], (1)

where n is the random vector of the number of molecules of species, ak is so-called a
propensity function that is the probability of kth reaction occurring per unit time, and
Vk is the kth column vector of the stoichiometric matrix V [2]. The propensity ak is
determined by the mass-action or other kinetics. It is not possible to find the solution
of Eq. (1) due to high dimensionality of variables except the simple cases.

One of important chemical processes in biochemical reaction networks is the cata-
lytic reaction and many essential biochemical reactions can be considered as catalytic
reactions. For example, the transcription and translation in a gene regulatory network
have been modeled as catalytic reactions [3]. The analysis of the catalytic reaction is
the essential step towards understanding the dynamics of complex reaction networks.
The catalytic reaction can be modeled as a first-order reaction by

φ
k E→ P, (2)

where φ denotes a source outside the system, E and P denote the enzyme and the
product, respectively, and k is the reaction rate constant [3,4].

A general first-order reaction network consists of first-order reactions such as con-
version, production from sources outside, degradation, and catalytic production from
sources [4]. For first-order reaction networks of conversions, the probability solution
as well as the mean and variance can be found by analytic methods under certain con-
ditions [4,5]. However, if a first-order reaction network has catalytic reactions such
as (2), the analytic solution of only mean and variance are known under strongly-
connected assumption on the network [4].

For general first reaction networks, it is very difficult, if not impossible, to find
the analytical solution of the probability as well as the mean and variance. In this
case, researchers rely on computational methods such as the stochastic simulation
algorithm (SSA). The SSA is a Monte Carlo type algorithm, which was firstly pro-
posed by Gillespie [6,7]. The SSA computes which reaction occurs at what time using
the two random numbers under the Markovian assumption. At each iteration, time to
next reaction and reaction index are randomly drawn, and then the state vectors and
propensity functions are updated [6–8].

One of the shortcomings of the SSA is that the random time step would be usu-
ally very small in case that there are various species, many numbers of molecules or
fast reactions. Moreover, for finding important statistical data such as the mean and
variance, a considerable number of realizations should be performed. Thus, inten-
sive and expensive computations are required when the SSA or other Monte Carlo
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type algorithm are applied for simulating reasonably complex reaction networks. To
overcome such shortcomings of the SSA, there have been a variety of works for the
improvement of the SSA based on approximation of the chemical master equation
[9–19].

In this paper, we present a novel numerical scheme to find the computational solu-
tions of the probability equation as well as the mean and variance of general first-order
reaction networks with catalytic reactions by solving the probability generating func-
tion (PGF) with characteristic curves, instead of solving or approximating the chemical
master equation. Our proposed method improves the accuracy of the solution com-
pared with the SSA and the computational cost of the method can be remarkably
lower.

This paper is organized as follows. In Sect. 2, we introduce the PGF and PDE for
stochastic reaction networks and present motivating biological examples. In Sect. 3,
we describe the method of characteristics which will be applied to the PGF. In Sect. 4,
we describe the numerical method for solving the PDE and the details of the treatment
of the scheme using the characteristic curves. In Sect. 5, the numerical results of the
Monte Carlo and characteristic methods are described for showing the robustness and
superiority of the characteristic method. Conclusions are presented in Sect. 6.

2 Probability generating functions for first-order reactions

In this section, we first introduce the definition and properties of the PGF and then
we present examples with catalytic reactions. We derive the PDEs of the PGF for the
examples.

2.1 Definition and properties of the PGF

We suppose a chemical reaction network has s distinct species. The probability gen-
erating function (PGF) for the chemical reaction network is defined as

G(x, t) =
∞∑

m=0
¯

xm p(n = m, t), (3)

where xm = xm1
1 xm2

2 . . . xms
s , x = (x1, x2, . . . , xs), m = (m1, m2, . . . , ms), and

xi ∈ [−1, 1]. Using the PGF, one can find the probability distribution as well as the
mean and variance as follows [4]: One can obtain a PDE for G by differentiating
Eq. (3) with respect to t ,

Gt (x, t) =
∞∑

m=0
¯

xm ∂

∂t
p(n = m, t). (4)
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After we substitute the chemical master equation (1) for the term ∂p/∂t in Eq. (4),
we obtain a PDE

Gt = H
(

x1, x2, . . . , xs, G, DG, D2G, . . . , D�G
)

, (5)

where Gt denotes ∂G/∂t and Dk G, k = 1, 2, . . . , � denote any kth order partial
derivatives of G,

Dk G = ∂

∂xi1

∂

∂xi2

. . .
∂

∂xik

G = Gi1...ik ,

for 1 ≤ i j ≤ s, j = 1, 2, . . . , k. If all reactions are first-order, Eq. (5) is written as

Gt = H(x1, x2, . . . , xs, G, G1, G2, . . . , Gs), (6)

where Gi denotes the partial derivative ∂G/∂xi .
Initial and boundary conditions on G:
The following three conditions hold for any x:

G(x, t = 0) = xn0 if the initial condition is n(0) = n0,

G(x = 0
¯
, t) = p(n = 0

¯
, t),

G(x = 1, t) =
∑

n

p(n, t) = 1.

Probability distribution:

Pi (k, t) = 1

k!
∂k G(x, t)

∂xk
i

∣∣∣∣∣
xi =0,x j �=i =1

,

where Pi (k, t) denotes the marginal probability that ni = k at time t .
Mean and covariance:

μi (t) = Gi (x = 1, t) = E[ni (t)],
Covi j (t) = Gi j (x = 1, t) =

{
E[ni n j (t)], if i �= j,
E[n2

i (t)] − E[ni (t)], if i = j.

Here, E[ni (t)] denotes the expectation of a random variable ni at time t .

2.2 Definition and properties of the PDE

The first-order PDE (6) is represented as

Gt = rG + v1G1 + v2G2 + · · · + vs Gs . (7)
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Hereafter we denote the gradient vector by ∇G = (G1, G2, . . . , Gs), velocity vec-
tor by v = (v1, v2, . . . , vs), and spatial vector by x = (x1, x2, . . . , xs) where vi is a
coefficient function depending on x, i.e., vi = vi (x). The coefficient of function G is
also depending on x, r = r(x). Then Eq. (7) is represented as follows:

Gt = rG + v · ∇G. (8)

We wish to calculate the following statistical measures for t ≥ 0.

1. Mean:

E(ni , t) = Gi (x = 1, t).

2. Variance:

V(ni , t) =
(

Gii + Gi − G2
i

)
(x = 1, t).

3. Probability distributions:

Pi (k, t) = 1

k!
∂k G(x, t)

∂xk
i

∣∣∣∣∣
xi =0,x j �=i =1

.

2.3 Examples of first-order reaction

In this section, we study motivating examples of first-order reaction networks with
catalytic reactions such as a single gene model, a three-species model, and a gene
transcription model.

Single gene model
We consider a single gene model proposed in [3]:

φ
c1−→ R, φ

c2 R−→ P, R
c3−→ φ, P

c4−→ φ,

where R and P denote mRNA and protein in the single gene, respectively. If we
denote the number of molecules of R and P by n1 and n2, respectively, we can write
the master equation

∂p(n, t)

∂t
= c1 p(n1 − 1, n2) + c2n1 p(n1, n2 − 1) + c3(n1 + 1)p(n1 + 1, n2)

+c4(n2 + 1)p(n1, n2 + 1) − (c1 + c2n1 + c3n1 + c4n2)p(n1, n2),

where n = (n1, n2). From the master equation, we can derive the PDE of G(x, t)
where x = (x1, x2):

Gt = (x1 − 1) (c1G − c3G1) + (x2 − 1) (c2x1G1 − c4G2)

= c1(x1 − 1)G +
[
c2x1(x2 − 1) + c3(1 − x1)

]
G1 − c4(x2 − 1)G2. (9)
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Here, we assume the parameters c1 = 10, c2 = 10, c3 = 5, c4 = 0.1 (arbitrary
units) and the initial condition G(x, 0) = x2

1 x4
2 [20,22].

A three-species model with catalytic reactions
We consider a three-species model in which each species catalyzes the production

of another species;

φ
c1 A1−→ A2, φ

c2 A2−→ A3, φ
c3 A3−→ A1.

If we denote the number of molecules of A1, A2, and A3 by n1, n2, and n3, respec-
tively and n = (n1, n2, n3), we can write the master equation

∂p(n, t)

∂t
= c1n1 p(n1, n2 − 1, n3) + c2n2 p(n1, n2, n3 − 1)

+c3n3 p(n1 − 1, n2, n3) − (c1n1 + c2n2 + c3n3)p(n1, n2, n3).

From the master equation, we can derive the PDE of G(x, t) where x = (x1, x2, x3):

Gt = c1x1(x2 − 1)G1 + c2x2(x3 − 1)G2 + c3x3(x1 − 1)G3, (10)

where c1 = 1, c2 = 2, and c3 = 0.1 (arbitrary units) and the initial condition is
G(x, 0) = x1x2x3.

Gene Transcription Model
We consider a gene transcription model [20,21]

Di → D∗
i , D∗

i → Di , D∗
i → D∗

i + R, 1 ≤ i ≤ m

and

R → R + P, R → φ, P → φ,

where Di and D∗
i denote the i th gene copy in its inactive and active states, respectively,

and R and P denote mRNA and protein, respectively. The third reaction represents
the active i th gene producing mRNA and has the form of catalytic production from
a source. The fourth reaction also involves catalytic production from a source; in this
case mRNA causes protein to be produced. The fifth and sixth reactions model the
degradation of mRNA and protein, respectively. We assume m = 3 as in [20]. Thus,
the model is described as

D1
c1→ D∗

1 , D∗
1

c2→ D1, D2
c3→ D∗

2 , D∗
2

c4→ D2,

D3
c5→ D∗

3 , D∗
3

c6→ D3, D∗
1

c7→ D∗
1 + R, D∗

2
c8→ D∗

2 + R,

D∗
3

c9→ D∗
3 + R, R

c10→ R + P, R
c11→ φ, P

c12→ φ.
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Here, we denote the number of D1, D∗
1 , D2, D∗

2 , D3, D∗
3 , R, P by n1, n2, n3, n4,

n5, n6, n7, n8, respectively. We can obtain the master equation

∂p

∂t
(n, t) = c1(n1 + 1)p(n + e1 − e2, t) + c2(n2 + 1)p(n − e1 + e2, t)

+ c3(n3 + 1)p(n + e3 − e4, t) + c4(n4 + 1)p(n − e3 + e4, t)

+ c5(n5 + 1)p(n + e5 − e6, t) + c6(n6 + 1)p(n − e5 + e6, t)

+ c7n2 p(n − e7, t) + c8n4 p(n − e7, t) + c9n6 p(n − e7, t)

+ c10n7 p(n − e8, t)+c11(n7+1)p(n+e7, t)+c12(n8+1)p(n+e8, t)

− (c1n1 + c2n2 + c3n3 + c4n4 + c5n5 + c6n6 + c7n2 + c8n4 + c9n6

+c10n7 + c11n7 + c12n8) p(n, t),

where ei , i = 1, 2, . . . , 8 denote the 8×1 unit vector containing 1 at the i th entry and
0 elsewhere. From the above master equation, we obtain the PDE of G(x, t) where
x = (x1, x2, . . . , x8);

Gt = c1(x2 − x1)G1 +
[
c2(x1 − x2) + c7x2(x7 − 1)

]
G2

+c3(x4 − x3)G3 +
[
c4(x3 − x4) + c8x4(x7 − 1)

]
G4

+c5(x6 − x5)G5 +
[
c6(x5 − x6) + c9x6(x7 − 1)

]
G6

+
[
c10x7(x8 − 1) + c11(1 − x7)

]
G7 + c12(1 − x8)G8,

where we assume c1 = c2 = c3 = c9 = c11 = c12 = 0.1, c4 = c5 = c6 = c7
= c8 = c10 = 1 (arbitrary units) and the initial condition G(x, 0) = x1x3x5.

3 Method of characteristics

In this section, we present the characteristic method to solve the first-order PDE (8)
at a given point x0. We define the non-linear ordinary differential equations

dx1

dt
= v1(x),

dx2

dt
= v2(x), . . . ,

dxs

dt
= vs(x). (11)

For simplicity of exposition, hereafter Eq. (11) are written as xt = v(x). In order to
describe the application of the characteristic curve, we first assume that the coefficient
of G is zero, i.e., r = 0. We represent the PDE (8) as a typical transport equation [23]

Gt − v · ∇G = 0, in Rs × (0,∞),

G = g, on Rs × {t = 0}, (12)
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where the initial condition g = g(x) is a continuous function in Rs . Let us suppose
the curve is described parametrically by the function

x(ξ) = (x1(ξ), x2(ξ), . . . , xs(ξ)) ,

where the parameter ξ is in R. We define

z(ξ) := G(x(ξ), t − ξ). (13)

We then differentiate z(ξ) with respect to ξ ,

d

dξ
z(ξ) = ∂G

∂x1

dx1

dξ
+ ∂G

∂x2

dx2

dξ
+ · · · + ∂G

∂xs

dxs

dξ
− ∂G

∂t
= v · ∇G(x(ξ), t − ξ) − Gt (x(ξ), t − ξ) = 0.

Thus z(ξ) is a constant function of ξ and consequently for each point (x, t). It implies
that G is also constant function on the curve with the direction v(x(ξ)) ∈ Rs on x(ξ).
Because the initial value of G is given at any point on each curve, we can find the
value of x(ξ) everywhere in Rs × (0,∞).

Note that, in the general expression of the method of characteristics, the coefficients
of the gradient term of Eq. (12) are positive. However, by focusing on the fixed point
x0, we want to directly get the value of G(x0, t) for t ≥ 0. This setting is for going
backward to the characteristic curve. Hereafter we say the curve x(t) by the backward
characteristic curve with the initial x(0).

Since G is a constant function on the curve and from Eq. (13), we have

z(0) = z(t),

for any value t ∈ R. Hence we deduce

G(x0, t) = G(x(0), t) = G(x(t), 0) = g(x(t), 0), (14)

for some initial position x0 = x(0), x(t) ∈ Rs , and t ≥ 0. Now, we consider the case
r �= 0.

Gt − v · ∇G = rG, in Rs × (0,∞),

G = g, on Rs × {t = 0}.

Using the same definition of z(ξ) with Eq. (13), we get

d

dξ
z(ξ) = v · ∇G(x(ξ), t − ξ) − Gt (x(ξ), t − ξ)

= −r(x(ξ))G(x(ξ), t − ξ) = −r(x(ξ))z(ξ).
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We solve the ordinary differential equation by using the integrating factor.

z(ξ) = z(0) exp

⎛

⎝−
ξ∫

0

r (x(ξ)) dξ

⎞

⎠.

Finally, substituting ξ = t and organizing with respect to z(0), we obtain

z(0) = z(t) exp

⎛

⎝
t∫

0

r (x(t)) dt

⎞

⎠.

Moreover, by the definition (13) of z, we have

G(x0, t) = g(x(t), 0) exp

⎛

⎝
t∫

0

r (x(t)) dt

⎞

⎠. (15)

4 Numerical methods

In this section, we propose a numerical method for solving the probability generating
functions by using the characteristic curves. We can directly solve Eq. (8) if we have
the closed-form solution of system (11). However, if the closed-form solution is not
available, then we need to use numerical techniques to approximate the solution.

We present a method to estimate the mean, variance, and probabilities for each
variable ni . Because these statistical measures are obtained by using the derivatives
of the function G, we need a numerical differentiation. For a numerical differentia-
tion, we use the Newton forward and backward formulas [24] which are the standard
finite difference methods. We apply the backward difference formula to the mean and
variance and apply the forward difference formula to the probability. For the sake of
simplicity, we use the notation x = y(i) = a to denote that a vector x is equal to y
except for i th component and i th component of x is a.

Mean: Set a vector x0 = 1 and define x1 = x0(i) = 1 − h. Then we approximate
the first derivative of G with respect to xi

∇i G(x0, t) := G(x0, t) − G(x1, t)

h
,

where h is the spatial step size. We estimate the mean as E(ni , t) = ∇i G(x0, t).
Variance: We define x2 = x0(i) = 1 − 2h. Then we approximate the second

derivative of G with respect to xi

∇2
i G(x0, t) := G(x0, t) − 2G(x1, t) + G(x2, t)

h2 .
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(a) (b) (c)

Fig. 1 Schematics for estimating the a mean, b variance, and c probability

We estimate the variance, V (ni , t) = (∇2
i G + ∇i G − ∇i G2

)
(x0, t), using the first

and second derivatives.
Probability: We define the vectors xpi = x0(i) = 0 and xk

pi
= x0(i) = 1 − kh

for k = 1, 2, . . . , n. To calculate high-order differentiations, we use the forward
difference with respect to xi

Δn
i G(xpi , t) :=

n∑

k=0

(−1)n−k
nCk G

(
xk

pi
, t

)
,

where nCk = n!
k!(n−k)! . We estimate the probability by Pi (k, t) = Δn

i G(xpi , t)/n!
Figure 1 shows the schematics for estimating the mean, variance and probability

for n2. The locations of what we want to calculate are at the corner of the unit domain.
For estimating the mean or variance, we need only one or two backward characteristic
curves, as shown in Fig. 1a and b. On the other hand, in terms of the probability, we
calculate the curves as many as the order of differentiation. For example, see Fig. 1c,
we need five curves to get the marginal probability that n2 = 4. In particular, we
also use these curves to calculate marginal probabilities that n2 < 4. The suggested
difference methods are just of first order accuracy. However, because we can choose
the sufficiently small value for the spatial step size h, we can maximize the accuracy
of numerical solutions.

Next, we present the method to calculate x1(t), x2(t), and xpi (t) with the initial
condition x1, x2, and xpi , respectively. If r = 0, we solve the ordinary differential
system (11) using the forth order Runge–Kutta method [24] for Eq. (14). Here xn

is defined as the approximation of x(nΔt) where Δt is a temporal step size. If we
set an initial condition x0 = x(0), for given vector xn , we approximate the next
time vector xn+1 as follows: We calculate four intermediate vectors k1 = v (xn) ,

k2 = v (xn + 0.5Δtk1) , k3 = v (xn + 0.5Δtk2) , k4 = v (xn + Δtk3) , then
xn+1 = xn + Δt (k1 + k2 + k3 + k4) /6. Finally, we calculate the value of function
G of x0 using the given initial state x0.

G(x0, nΔt) = G(xn, 0).
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If r �= 0, we calculate the numerical integration of Eq. (15) using the Simpson
method [24,25] on the characteristic curve, which have been solved by the Runge–
Kutta method

G
(

x0, nΔt
)

= G(xn, 0) exp

(
Δt

3

m∑

k=1

{
r
(

xk−2
)

+ 4r
(

xk−1
)

+ r
(

xk
) })

,

where n = 2m for m = 1, 2, . . ..
In addition, we apply the multiple precision to the estimation of the marginal prob-

ability. When we estimate the marginal probability for a large number of species
ni , we need high-order differentiations. In this case, it is possible that unreasonable
results can be obtained because the precision, which is the number of correct digits in
some quantity, is limited. As a result of the finite number of digits used by computer
machines, numbers are stored inexactly and operations are carried out inaccurately
[25].

5 Numerical experiments

We perform numerical experiments containing two, three, and eight dimensional sim-
ulations consisting of a single gene model, a three-species model, and a gene tran-
scription model.

5.1 Simulation of the single gene model

Figure 2 shows backward characteristic curves of the single gene model. We place
starting points (◦) around the boundary. The temporal step size Δt = 0.001 is used
to draw the curves. A dashed curve is associated with an initial point located on the
line x1 = 0 and a solid line is related to a corresponding circle on the line x1 = 1.
Likewise, one curve associated with an initial point located on the line x2 = 1 cannot
distinguish from the other curve. All curves which are associated with an initial point
on the line x2 = 1 may only move on the line x2 = 1 and toward x = 1.

The information of a point on a corresponding curve is transported to the circle
along the curve. The single gene model has a critical curve and it is identical to a zero
contour of the coefficient of G1 term, that is c2x1(x2 − 1) + c3(1 − x1). Since the
information direction of x1 spreads out from the zero contour, there exists a critical
curve. Curves approach the critical curve, and then these converge to x = 1. The start-
ing points are not used to estimate stochastic measures, but the figure is just illustrated
for visualizing the information on the unit domain.

Figure 3 shows the evolution of the single gene model on the unit domain at
t = 0, 1, 10. The mesh size is 33 × 33 and the temporal step size is Δt = 0.001.
The initial condition is G(x, 0) = x2

1 x4
2 as shown in Fig. 3a. The value of function G

is decreased by the damping term c1(x1 − 1)G. The parameter c4 which determines
the speed of information direction of x2 is quite lower than c1 which determines the
damping rate. Figure 3b shows the progress that the values near the position (0, 1)
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Fig. 2 Backward characteristic
curves up to t = 2 of the single
gene model
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Fig. 3 Evolution of the single gene model. a t = 0, b t = 1, c t = 10

is developed and the gradient of surface is steeper than one of the initial surface in
Fig. 3a. Finally, there is a region where the gradient is steep near x2 = 1, see Fig. 3c.

Figure 4 shows results for the mean and variance of the single gene model. The solid
and dashed lines represent the results of the Monte Carlo and characteristic methods,
respectively. The estimation of the mean and variance is based on 50,000 realiza-
tions for the Monte Carlo method. The numerical parameters for the characteristic
method are as follows: The spatial step size is h = 5E−5 and the temporal step size
is Δt = 5E−3.

The results from the characteristic method are comparable to those from the Monte
Carlo method. It is shown at the Appendix that the mean of n1 is 2 for all time and the
variance of n1 rapidly increase and asymptotically approach 2. The mean and variance
of n1 from the characteristic method fit in well with the exact solutions. However, in
contrast, the mean and variance of n1 from the Monte Carlo method slightly fluctuate
near 2. In terms of the mean of n2, the results of two method are almost identical.
From the numerical result of the characteristic method, we can reasonably predict that
the asymptotic value is about 583.4.

Figure 5 shows marginal probabilities of the single gene model using the Monte
Carlo and characteristic methods. The Monte Carlo and characteristic methods are
associated with the solid and dashed lines, respectively. In the case of n1, the circle

123



328 J Math Chem (2013) 51:316–337

0 20 40 60 80 100
1.8

1.9

2

2.1

2.2

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Monte Carlo method
Characteristic method

0 20 40 60 80 100
0

50

100

150

200

Monte Carlo method
Characteristic method

(a)

0 20 40 60 80 100
0

100

200

300

400

500

600

Monte Carlo method
Characteristic method

(b)

Characteristic method
Monte Carlo method

Fig. 4 Means and variables of the single gene model: first and second rows are with respect to n1 and n2,
respectively. a Means, b Variances

(◦), right triangle (�), and diamond (�) symbols are corresponding to marginal prob-
abilities that n1 = 2, 3, and 4, respectively. Meanwhile, in the case of n2, the circle
(◦), right triangle (�), and diamond (�) symbols are corresponding to marginal prob-
abilities that n2 = 4, 6, and 8, respectively. The results of the Monte Carlo method
are based on 50,000 realizations. On the other hand, for the characteristic method, the
spatial step size h = 1E−10 and temporal step size Δt = 0.01 are used.

All marginal probabilities of n1 go to steady state on the time interval [0, 1]. In terms
of n2, the marginal probability that n2 = 4 monotonically decreases and approaches
zero. On the other hand, the marginal probability that n2 > 4 increases until a certain
time and monotonically decreases and vanishes after some time. Two methods have
similar behavior, but the results of the characteristic method are more smooth.

Figure 6 shows marginal probabilities that n2 = k, where the value k is relatively
larger than one of Fig. 5b. For long time simulation and higher order differentiation to
estimate marginal probability, the numerical parameters for the characteristic method
are chosen as follows: The number of digit is 212, the spatial step size is h = 1E−10,
and the temporal step size is Δt = 0.01. The results from Monte Carlo method are
based on 50,000 realizations. As shown in Fig. 4, the mean of n2 increases up to
the value 199. The results from the characteristic method show that the probability
monotonically increases over time if the value of k is greater than 199.
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Fig. 5 The symbols and solid lines are probabilities of the single gene model using the Monte Carlo and
characteristic method, respectively. a P1(k, t), b P2(k, t)
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Fig. 6 Probabilities of the single gene model over long time. a Monte Carlo method, b Characteristic
method

Figure 7a and b are the summation of probabilities P1(k, t) from k = 1 to k = 10
and the summation of probabilities P2(k, t) from k = 1 to k = 300, respectively. We
are concerned about the probability that n1 is from 0 to 10, because there is the case
that the number of species n1 is zero and the variance is about 2. On the other hand,
we are interested in the probability that n2 is from 1 to 300, because the mean is about
200 and the standard deviation distribution is bounded by the value 25. For both cases
of n1 and n2, the summation is almost 1. The small decrease in the case of n2 is due
to the increase of the mean and variance of n2.

5.2 Simulation of a three-species model

Figure 8 shows backward characteristic curves of the three-species model, whose the
initial points are represented by circles (◦). To show the traveling speed of each curve,
a curve is drawn by the dots (·) and solid line (-) which show the time evolution up
to t = 1 and t = 8, respectively. In order to show backward characteristic curves, the
temporal step size Δt = 0.001 is used.
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Fig. 7 Summations of probabilities of a the first 10 states with zero state for n1 and b the first 300 states
for n2 in the single gene model a n1, b n2

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

Fig. 8 Backward characteristic curves of the three-species model: Dots and solid lines are up to t = 1 and
t = 8, respectively

Unlike the single gene model, backward characteristic curves are sucked in the point
x = 0

¯
such as the spiral. The speed of curve is the faster, the closer the dots are on the

solid line. The parameter c3 is the coefficient of G3 term of Eq. (10), and it is related
to the speed of information to x3 direction. In particular, a left curve corresponding to
(0, 1, 1) is more sensitive to c3 than a right curve corresponding to (1, 0, 1). Thus, the
left curve is down to 0

¯
more faster than the right curve. We can deduce that all values

except x = 1 will be zero. Therefore, there is a singularity at x = 1.
For the three-species model, we illustrate the means and variances for n1 and n2,

see Fig. 9. The Monte Carlo and characteristic methods have almost identical perfor-
mance. The results from Monte Carlo method are based on 50,000 realizations. The
numerical parameters for estimating the means and variance using the characteristic
method are as follows: The spacial step size is h = 1E−4 and temporal step size is
Δt = 1E−3. Being based on the spiral and singularity of Fig. 8, we can deduce that
there is no steady state solution. All means and variances are exponentially increasing.
The mean and variance of n2 is more steeply increasing than those of n1.
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Fig. 9 a Means and b variances of n1 and n2 in the three-species model
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Fig. 10 Probabilities of the three-species model using Monte Carlo and characteristic methods

Figures 10 and 11 sfhow probabilities of the three-species model. In Fig. 10, the
circle (◦), right triangle (�), and diamond (�) symbols are corresponding to marginal
probabilities that n1 = 1, 3, and 5, respectively. Likewise, in Fig. 11, the circle (◦),
right triangle (�), and diamond (�) symbols are corresponding to marginal probabili-
ties that n2 = 50, 100, and 200, respectively. The results of the Monte Carlo method
are based on 50,000 realizations. To estimate the result from the characteristic method,
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Fig. 11 Probabilities of the three-species model using the Monte Carlo and characteristic methods
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Fig. 12 Summations of probabilities of the first 500 states for both a n1 and b n2 in the three-species
model

the following parameters are used. The number of digit is 212, the spatial step size is
h = 1E−10, and the temporal step size is Δt = 0.01.

Two methods match well in the case of the lower species. However, the method of
characteristics is more reasonable, because the results of the Monte Carlo method are
fluctuant and numerically unstable. Using the characteristic method, we can find the
time when the probability reaches its maximum, while it is difficult to find the appro-
priate time from the Monte Carlo method due to the fluctuations. Since the means and
variances of the three-species model keep increasing, any probability eventually tends
to zero.

Figure 12 shows the summation of probabilities Pi (k, t) from k = 1 to k = 500
for i = 1, 2. In the three-species model, the increase of the mean and variance is
continued, and we estimate up to k = 500. In both of Fig. 12a and b, the summation
is decreasing in the last stage. Because the both mean keep increasing, the summation
up to k = 500 is not sufficient to be 1 after some time.
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Fig. 13 a Means and b variances of the gene transcription model
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Fig. 14 Probabilities of the gene transcription model using the Monte Carlo and characteristic methods

5.3 Simulation of gene transcription model

Figure 13 shows means and variances for the gene transcription model. We illustrate
the results with respect to n1, n6, n7, and n8. To estimate the mean and variance using
the characteristic method, the following parameters are used: The spatial step size
is h = 0.0001 and the temporal step size is Δt = 0.1. The results from the Monte
Carlo simulation are based on 30,000 realizations. The Monte Carlo and characteristic
methods have analogous results. The characteristic method is smooth and consistent,
while the Monte Carlo method has fluctuations. the means of n7 and n8 increase up
to about 6.4065 and 63.8321.

We estimate probabilities of n7 and n8, see Fig. 14. The results of the Monte Carlo
method are based on 50,000 realizations. For the characteristic method, the following
parameters are used: The number of digit is 212, the spatial step size is h = 1E−10,
and the temporal step size is Δt = 0.01. In the case of n7, the circle (◦), right triangle
(�), and diamond (�) symbols are corresponding to the probability that n7 = 1, 3,
and 8, respectively. Otherwise, in the case of n8, the circle (◦), right triangle (�),
and diamond (�) symbols are corresponding to the probability that n8 = 1, 10, and
50, respectively. Two methods have similar performance. Since both species n7 and
n8 have no initial state, probabilities of lower populations start from 0 and increase
at early time, and then they decrease after some time, and reach the steady-state. In
contrast, probabilities of higher populations slowly increase and reach the steady-
state.

Figure 15a shows the summation of probabilities P7(k, t) from k = 1 to k = 20.
In the case of n7, the standard deviation is less than σ := 4 and the mean of n7 plus
3.2906σ is bounded by 20 over time. The probability that the population is from 1
to 20 is larger than 99.9 %. Fig. 15b shows the summation of probabilities P8(k, t)
from k = 1 to k = 100. The maximum of the standard deviation is about 31.0641,
but the number of probabilities for the summation is not sufficient to be one. Thus,
the summation of probabilities falls down.
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Fig. 15 Summation of probabilities of a the first 20 states for n7 and b the first 100 states for n8 in the
gene transcription model

6 Conclusions

In this paper, we presented an accurate and efficient numerical algorithm for solving
stochastic first-order reaction networks. The characteristic method is applied to solve
the given governing equation. Because the first-order reaction PDE can be derived
to the nonlinear ordinary differential system, the proposed method is quite fast even
the high dimensional cases. If a first-order reaction network includes catalytic reac-
tions and many molecules are involved in the dynamics of the network, the analytic
solution of probability distribution cannot be found and the stochastic simulation algo-
rithm needs heavy computations for finding the computational solution. The method
presented in this paper gives an efficient and accurate way of finding the probability as
well as the mean and variance for first-order reaction networks with catalytic reactions.

The characteristic method has three merits: (1) efficiency; The computational time
is quite short because we just consider one or two points at which we need to estimate
the mean and variance. Moreover, it is not affected by the additional dimension. (2)

accuracy; Because we can use sufficiently small spatial step size h, we can control
and obtain the high accuracy of the space. Finally (3) independence of the calculation
of characteristic curves which makes the parallelism easy.
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Science and Technology (2010-0024849).

7 Appendix

We present the solution of the single gene equation (9) at x2 = 1. The information
direction of x2 is downward, and it means that the solution on the line x2 = 1 is
independent to the value of the unit domain. The Eq. (9) is modified by
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Gt = k1(x1 − 1)G − k3(x1 − 1)G1,

where k1 = 10 and k3 = 5, and the closed-form solution is

G(x1, 1, t) =
(
(x1 − 1)e−k3t + 1

)2
e
− k1

k3
(x1−1)e−k3t + k1

k3
(x1−1)

.

In particular, the steady state solution is G(x1, 1,∞) = exp(k1(x1 − 1)/k3). We
evaluate the partial derivative with respect to x1, and substitute the value 1 for x1, then

∂

∂x1
G(x1, 1, t)

∣∣∣∣
x1=1

= k1

k3
= 2.

The second derivative can be calculated as follows:

∂2

∂x2
1

G(x1, 1, t)

∣∣∣∣∣
x1=1

=
(

k1

k3
− k1

k3
e−k3t

)(
2e−k3t − k1

k3
e−k3t + k1

k3

)

= 4
(

1 − e−5t
)

.

In particular, the value of G11(x1, 1, t) asymptotically approaches 4 as t goes infinity.
By the definition E(n1, t) and V (n1, t), E(n1, t) = 2 and V (n1, t) = 2 − exp(−5t)
Therefore, the mean E(n1, t) is a constant function of 2, and the variance V (n1, t)
rapidly increases but it is bounded by 2.
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