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A Cartesian grid method for computing flows with complex immersed, stationary and
moving boundaries is presented. We introduce an augmented projection method for the

numerical solution of the incompressible Navier-Stokes equations in arbitrary domains.
In a projection method an intermediate velocity field is calculated from the momentum
equations, which is then projected onto the space of divergence-free vector fields. In
the proposed augmented projection method, we add one more step, which effectively
eliminates spurious velocity field caused by complex immersed moving boundaries. The
methodology is validated by comparing it with analytic, previous numerical and experi-
mental results.
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1. Introduction

In the applications of mathematical modeling in engineering and medical devices,

it is often necessary to solve the incompressible Navier-Stokes (NS) equations in

irregular domains [Ye et al. (1999)]. In this paper we present an augmented pro-

jection method for the incompressible NS equations in a domain with embedded

irregular boundaries. The applications targeted with this method are wide-ranging

and include fluid-structure interaction, multiphase flows, solidification dynamics,

and cell mechanics.

Udaykumar et al. [2001] has presented a finite-volume Cartesian method, using

local geometry and quadratic interpolation functions to calculate flux across the

elements that intersect the immersed boundary. This method does not require the

coordinate transformation from Euclidian space to general curvilinear coordinates.

Peskin [1977] developed a method which represents a body within a flow field

via a forcing term added to the governing equations. When applied at certain points

in the flow, this forcing term simulates the effect of the body on the flow, allowing
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for the modeling of a boundary of any shape within a Cartesian computational box

without the necessity of mapping.

In comparison with the other approaches mentioned above, the advantages of

the proposed augmented projection method are (i) simple; (ii) versatile; and (iii)

straightforward to extend to three-dimensional space and incorporate parallelization

and adaptive mesh refinement. For a simple presentation of basic ideas, we focus

on (i) and (ii) here and the feature (iii) is left for the future paper.

The contents of this paper are: in Section 2, governing equations are given. In

Section 3, we describe the numerical solution. In Section 4, we present numeri-

cal experiments to validate our new augmented projection scheme. In Section 5,

conclusions are given.

2. Governing equations

The motion of an incompressible viscous fluid flow is governed by the following

Navier-Stokes equations and continuity equation.

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p+ µ∆u, (1)

∇ · u = 0, (2)

on a domain Ω, where ρ is the mass density, u is the velocity field, p is the pres-

sure, and µ is the viscosity. Let us define the following dimensionless forms of the

variables: x∗ = x/L∗, u∗ = u/V∗, and p∗ = p/ρV 2
∗ , where asterisk subscript values

are characteristic values of length, velocity, and pressure, respectively. Using these

dimensionless values, Eqs. (1) and (2) can be written after dropping the asterisk

from the dimensionless variables in resulting equations as:

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∆u, (3)

∇ · u = 0, (4)

where Re = ρµL∗/V∗ is the Reynolds number. Typical initial and boundary condi-

tions for Eqs. (3) and (4) include specifying an initial velocity field u throughout

the domain Ω and a boundary condition for u on the boundary ∂Ω.

3. Numerical procedure

Our strategy for solving the system (3) and (4) is a fractional step scheme having

three parts: first we solve the momentum equation (3) without strictly enforcing

the incompressibility constraint (4), second we approximately project the result-

ing velocity field onto the space of discretely divergence-free vector fields [Bell

et al. (1989)], third we project approximately divergence-free vector fields onto

divergence-free vector fields.

The numerical solution will be for two spatial dimensions and the extension to

three dimensions is straightforward. The computational grid consists of rectangular
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cells of size ∆x and ∆y; these cells Ωij are centered at (xi = (i− 0.5)∆x, yj = (j−

0.5)∆y), where i = 1, · · · ,M and k = 1, · · · , N . M and N are the numbers of cells

in x-direction and y-direction, respectively. For simplicity, let h = ∆x = ∆y. The

discrete velocity field un
ij = (un

ij , v
n
ij) is located at cell centers. The pressure p

n− 1

2

i+ 1

2
,j+ 1

2

is located at cell corners. The notation un
ij is used to represent an approximation

to u(xi, yj , t
n), where tn = n∆t and ∆t is a time step. Likewise, p

n− 1

2

i+ 1

2
,j+ 1

2

is an

approximation to p(xi+ 1

2

, yj+ 1

2

, tn−
1

2 ).

The time-stepping procedure is based on the Crank-Nicholson method. At

the beginning of each time step, given un−1,un, and pn− 1

2 , we want to find

un+1 and pn+ 1

2 which solve the following second-order temporal discretization of

the equation of motion:

un+1 − un

∆t
= −∇dp

n+ 1

2 +
1

2Re
∆d(u

n+1 + un) − (u · ∇du)n+ 1

2 ,

where the updated flow field satisfies the incompressibility condition

∇d · un+1 = 0.

The outline of the main procedures in one time step is follows:

Step 1). Define ψ = 1 for fluid domain and ψ = 0 for solid domain.

Step 2). Initialize u0 to be the divergence-free velocity field.

Step 3). Compute (u · ∇du)n+ 1

2 by using a second order ENO scheme [Shu and

Osher (1989)].

A well-known projection method [Bell et al. (1989)] is used for the flow solver,

but we treat the advection terms differently from theirs, where the advection terms

are computed using a Godunov procedure. Now, we describe the discretization of

the advection terms. The half time value u
n+ 1

2

ij is calculated using an extrapolation

from previous values, i.e., u
n+ 1

2

ij = (3un
ij −un−1

ij )/2. In this section, we suppress the

n+ 1

2
temporal index for clarity of expressions. From these cell centered values we

obtain cell edged values by

ui+ 1

2
,j =

ui−1,j + uij

2
, vi,j+ 1

2

=
vi,j−1 + vij

2
.

In general, the normal velocities ui+ 1

2
,j and vi,j+ 1

2

at the edges are not

divergence-free. We apply the MAC projection [Sussman and Puckett (2000)] before

constructing the convective derivatives. The equation

∆dφ = ∇MAC · u (5)

is solved for a cell centered φ, where ∆dφ is the standard five point discretization

and

∇MAC · uij =
ui+ 1

2
,j − ui− 1

2
,j

h
+
vi,j+ 1

2

− vi,j− 1

2

h
.
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The resulting linear system (5) is solved using a multigrid method, specifically, V-

cycles with a Gauss-Seidel relaxation. Then the divergence-free normal velocities

ũ and w̃ are defined by

ũi+ 1

2
,j = ui+ 1

2
,j −

φi+1,j − φij

h
, ṽi,j+ 1

2

= vi,j+ 1

2

−
φi,j+1 − φij

h

From these cell edged values we obtain cell centered values by

ũij =
ũi− 1

2
,j + ũi+ 1

2
,j

2
, ṽij =

ṽi,j− 1

2

+ ṽi,j+ 1

2

2
.

The convective term is discretized as:

(u · ∇du)ij =
ũij

h
(ūi+ 1

2
,j − ūi− 1

2
,j) +

ṽij

h
(ūi,j+ 1

2

− ūi,j− 1

2

).

The edge values ūi± 1

2
,j and ūi,j± 1

2

are computed using a higher order ENO

procedure derived in [Shu and Osher (1989)]. The procedure for computing the

quantity ūi+ 1

2
,j is as follows:

k =

{

i ũi+ 1

2
,j ≥ 0

i+ 1 otherwise

a =
ũkj − ũk−1,j

h
, b =

ũk+1,j − ũkj

h
, d =

{

a if |a| ≤ |b|

b otherwise

ūi+ 1

2
,j = ũkj +

h

2
d(1 − 2(k − i)).

The other quantities are computed in the same manner.

Step 4). We solve

u∗ − un

∆t
= −∇dp

n− 1

2 +
1

2Re
∆d(u

∗ + un) − (u · ∇du)n+ 1

2 (6)

using a multigrid method for the intermediate velocity u∗ without strictly enforcing

the incompressibility constraint. Let us rewrite Eq. (6)

u∗ −
∆t

2Re
∆du

∗ = un − ∆t∇dp
n− 1

2 − ∆t(u · ∇du)n+ 1

2 +
∆t

2Re
∆du

n, (7)

where

∇dpij =

(

pi+ 1

2
,j+ 1

2

+ pi+ 1

2
,j− 1

2

− pi− 1

2
,j+ 1

2

− pi− 1

2
,j− 1

2

2h
,

−
pi+ 1

2
,j+ 1

2

+ pi− 1

2
,j+ 1

2

− pi+ 1

2
,j− 1

2

− pi− 1

2
,j− 1

2

2h

)

.

and let the right hand side of Eq. (7) be (sn
1 , s

n
2 ). Then we have

u∗ −
∆t

2Re
∆du

∗ = (sn
1 , s

n
2 ). (8)
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The first component of the Eq. (8) is discretized as follow:
(

1 +
2∆t

h2Re

)

u∗ij = sn
1 ij +

∆t

2h2Re
(u∗i+1,j + u∗i−1,j + u∗i,j+1 + u∗i,j−1)

The second component of the Eq. (8) is discretized in a similar manner. The re-

sulting discrete equations are solved using a multigrid method with Gauss-Seidel

relaxation.

Step 5). Project u∗ onto the space of approximately discrete divergence-free vec-

tor fields and get the velocity u∗∗, i.e.,

u∗ = u∗∗ + ∆t∇dφ,

where φ satisfies ∆dφ = ∇d ·
(

u
∗

−u
n

∆t

)

. A detailed description of the approximate

projection is given by [Almgren et al. (1996)]. And then we reset the velocity field

by u∗∗ = ψu∗∗.

Step 6). Update the pressure field, pn+ 1

2 = pn− 1

2 + φ.

Step 7). (Augmented projection step). Since u∗∗ is an approximatly divergence

velocity field, we project u∗∗ into divergence free space using the same procedure in

the Step 3). And then we reset the velocity field by un+1 = ψun+1. These complete

one space and temporal step.

4. Numerical results

The proposed augmented projection method for the incompressible NS equations in

arbitrary domains has been applied on test problems to verify the accuracy and fea-

sibility of the model. The numerical experiments are the second order convergence

in spatial and temporal spaces, simulation of the vortex shedding flow past a cylin-

der, and simulation of moving boundaries with two-dimensional dendrite growths.

We also present a room ventilation simulation, which is quite useful for industrial

application.

4.1. Convergence test

In this section, we validate our scheme by verifying the second-order temporal and

spatial convergence. To test our algorithm and obtain an estimate of the rate of

convergence, we perform a number of simulations for a sample initial problem on

a set of increasingly finer grids. We take a similar test problem performed in [Tau

(1994)].

We apply our algorithm to a domain with one disk (10) (see Fig. 1) which is

bounded by a 2π×2π square. We solve the following two-dimensional unsteady flow

test problem with known solutions for the Eqs. (3) and (4):

u(x, y, t) = (− cosx sin y, sinx cos y)e−
2t
Re , (9)

p(x, y, t) = −
1

4
(cos 2x+ cos 2y)e−

4t
Re .
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Fig. 1. Geometry and velocity field.

ψ(x, y) =

{

0 if
√

(x− π)2 + (y − π)2 < 1

1 otherwise
(10)

Exact velocity field u (9) on the disk domain (ψ ≡ 0) is assumed at each time t.

The numerical solutions are computed on the uniform grids, h = ∆x = ∆y =

π/2n for n = 4, 5, 6, and 7. For each case, the convergence is measured at time

t = 0.1 and the uniform time steps, ∆t = 0.1h, are used. We define the error to be

the discrete maximum norm of the difference between the numerical solution and

the exact one:

eh(u) = max
ij

|ehij
(u)|, where ehij

(u)
def
= u(xi, yj) − uhij

.

The error of velocity field is measured by eh(u) = max(eh(u), eh(v)). The rate

of convergence is defined as the ratio of successive errors: log2[eh(u)/eh
2

(u)]. The

errors and rates of convergence for the two Re numbers (Re = 1, 100) are given

in Table 1. The results suggest that the numerical scheme is indeed second order

accurate.

Table 1. l2-norm of the errors and convergence rates.

Re 32x32 rate 64x64 rate 128x128 rate 256x256

1 1.82e-3 3.05 2.19e-4 3.21 2.37e-5 3.72 1.18e-6
100 3.04e-3 2.65 4.84e-4 2.53 8.38e-5 2.39 1.60e-5
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4.2. Stationary boundary - Vortex shedding flow past a circular

cylinder at a Reynolds number of 100

In this section, the Strouhal number, calculated for an immersed cylinder, is com-

pared with previous experimental and numerical results. A large number of exper-

imental and numerical studies have been carried out on the vortex shedding flow

that is produced by the flow across a fixed circular cylinder [Strykowski and Sreeni-

vasan (1990)]. Depending on the Reynolds number, different kind of flow behaviors

can be characterized. At a low Reynolds number, the flow is viscosity dominated.

At higher Reynolds number (up to Re = 45), two symmetrical standing vortices

are formed and attached behind the cylinder. When the Reynolds number gets

higher, these vortices develop an altering vortex shedding called the Kármán vor-

tex street. This flow has been previously computed by Johnson and Patel [1999],

who used a body fitted grid, and Fadlun et al. [2000], who employed variants of

hybrid Cartesian/immersed boundary techniques. The present model was tested by

simulating flow past a circular cylinder for Re = 100. The computational domain

is [0, 32] × [0, 8]. The inflow velocity at the left boundary has a constant value of

u = (u∞, 0) = (1, 0); the disk measure D = 1 in diameter and its center is situated

at (7, 4). The numbers of grid points are 512×128 in the streamwise (x) and trans-

verse (y) directions, respectively. The velocity components of the cylinder, u, were

set to zero.

ψ(x, y) =

{

0 if
√

(x− 7)2 + (y − 4)2 < 1

1 otherwise
(11)

For initial data we choose u(x, y) = 1 − ψ(x, y) and v(x, y) = 0.

Fig. 2 shows vorticity past a circular cylinder at Re = 100. When the steady flow

becomes unstable and the body starts shedding vortices, the frequency with which

the vortices are shed from the body can be made dimensionless by the formula

St =
fqD

u∞
, (12)

where fq is the vortex shedding frequency. The parameter St is called the Strouhal

number. The present Strouhal number at Re = 100 is in reasonable agreement with

those of previous numerical and experimental results as shown in Table 2.

Table 2. The comparison of the numerical and exper-
imental Strouhal number

Re Present result Numericala Experimentalb

100 0.1667 0.169 0.16-0.17

a[Russell and Wang (2003)]
b[Berger and Wille (1972)]
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Fig. 2. A cycle of vorticity plots past a circular cylinder at Re = 100; solid and dotted lines denote
negative and positive levels, respectively.

4.3. Moving boundary - Phase-field simulations of dendritic

crystal growth in a forced flow

To show how the present method handles complex moving boundaries, we have

conducted simulations of the two-dimensional dendrite growths with and without

flow using a phase field model. The phase field variable φ is set to be 1 in solid,

-1 in melt, and varies smoothly between zero and one in the interface region. We

capture interface by the zero level set of φ. The governing equations for dendrite

growth with flow as follows [ Beckermann et al. (1999)]:

∂u

∂t
+ u · ∇u = −∇p+ Pr∆u + F, (13)

∇ · u = 0, (14)

∂θ

∂t
+Du · ∇θ = D∆θ +

1

2

∂φ

∂t
, (15)

W (n)2
∂φ

∂t
= [φ− λθ(1 − φ2)](1 − φ2) + ∇ · (W (n)2∇φ)
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+∇ ·

(

|∇φ|2W (n)
∂W (n)

∂∇φ

)

, (16)

where θ is the rescaled temperature and D = 4 is the dimensionless thermal diffu-

sivity, Pr = 23.1 is the Prandtl number. Following Karma and Rappel [1996], we

choose

W (n) = (1 − 3ǫ4)

[

1 +
4ǫ4

1 − 3ǫ4

φ4
x + φ4

y

|∇φ|4

]

.

The problem parameters are undercooling ∆ = −0.55, λ = 6.383, and anisotropy

ǫ4 = 0.05 (5 % anisotropy). In the simulations presented here the initial and inlet

melt temperature is θin = ∆. The initial velocities are taken to be those for steady

flow around seed. The equations (13) and (14) are solved using the proposed scheme,

while the temperature (15) and the phase-field (16) equations are solved using an

explicit method. When we reset the velocity field, we use u = 0.5(1 − φ)u here.

The computational domain is a square with an initial circular seed. We used

a box of 128 × 128. At the inflow boundary (top) of the computational domain,

the uniform velocity and the undercooling temperature are specified. The left and

right boundaries are periodic, and the fluid is allowed to flow freely out through

the bottom boundary by putting the gradient of temperature and velocity to zero.

Results are shown for inlet velocities u = 0, v = −1. ∆t = 0.016, ∆x = 0.8.

(a) (b)

Fig. 3. Evolution of phase-field contours for a dendrite growing at ∆ = 0.55 and ǫ = 0.05 without
convection (a) and with convection (b).

Fig. 3 illustrates the computed evolution of the dendrites without flow (a) and

with flow (b). For better visualization, we have interpolated the flow field onto a

grid that is about 4 times coarser than the one used in the computations. It can
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be seen that the shape of the dendrites is significantly influenced by the flow. The

growth rates of the upstream tips are higher than those of the downstream tips

because the impinging flow reduces the thermal boundary-layer thickness on the

upstream side. This result is qualitatively in a good agreement with previous result

[ Beckermann et al. (1999)].

4.4. Room ventilation

The flow inside buildings is often the important object of fluid engineering investi-

gations. In this context, a common problem is the effectiveness of room ventilation

provided by air conditioning systems in department stores, office buildings, etc. Fig.

4 shows the results of the numerical simulation of the ventilation of a model room

without (a) and with (b) the augmented projection. Fresh air is introduced through

an opening in the top of the domain and one outflow vent is placed in the part of

the wall on the right. As it can be seen in the Fig. 4(a), without the augmented

projection, the flow field is dissipative and directs toward the objects. However, with

the augmented projection Fig. 4(b), the flow field appears to be quite reasonable

with the imbedded structure.

(a) (b)

Fig. 4. Numerical results without (a) and with (b) the augmented projection

5. Conclusion

In this paper we have presented an augmented projection method for the incom-

pressible Navier-Stokes equations in an arbitrary moving domain. The projection

method has been reformulated and augmented to deal with arbitrary domains. Our

numerical examples illustrate that the method is second-order accurate and read-

ily applicable to flows with arbitrarily moving complex immersed boundaries. Our
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approach, therefore, should be promising for simulating complex flow/structure in-

teraction problems on Cartesian grids.
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