
Computers & Fluids 44 (2011) 178–186
Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/locate /compfluid
Accurate contact angle boundary conditions for the Cahn–Hilliard equations

Hyun Geun Lee, Junseok Kim ⇑
Department of Mathematics, Korea University, Seoul 136-701, Republic of Korea
a r t i c l e i n f o

Article history:
Received 8 February 2010
Received in revised form 2 September 2010
Accepted 24 December 2010
Available online 8 January 2011

Keywords:
Cahn–Hilliard equation
Contact angle
Unconditionally gradient stable scheme
Nonlinear multigrid method
0045-7930/$ - see front matter � 2011 Elsevier Ltd. A
doi:10.1016/j.compfluid.2010.12.031

⇑ Corresponding author.
E-mail address: cfdkim@korea.ac.kr (J. Kim).
URL: http://math.korea.ac.kr/~cfdkim/ (J. Kim).
a b s t r a c t

The contact angle dynamics between a two-phase interface and a solid surface is important in physical
interpretations, mathematical modeling, and numerical treatments. We present a novel formulation
based on a characteristic interpolation for the contact angle boundary conditions for the Cahn–Hilliard
equation. The new scheme inherits characteristic properties, such as the mass conservation, the total
energy decrease, and the unconditionally gradient stability. We demonstrate the accuracy and robustness
of the proposed contact angle boundary formulation with various numerical experiments. The numerical
results indicate a potential usefulness of the proposed method for accurately calculating contact angle
problems.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The contact angle is the dihedral angle formed at the interface
among three fluid phases a, b, c or between two fluid phases a, b
and a solid surface c, as shown in Fig. 1a and b. We shall represent
the dihedral angles by ha, hb, and hc, thus naming them after the
phases they contain. At equilibrium, the net force on any element
of the three phase lines vanishes. Resolving this force in directions
that lie, respectively, along the ab, bc, and ca interfaces and are
perpendicular to the three phases line, we have

rab þ rbc cos hb þ rca cos ha ¼ 0;
rab cos hb þ rbc þ rca cos hc ¼ 0;
rab cos ha þ rbc cos hc þ rca ¼ 0;

ð1Þ

where rab is the tension of the ab interface, etc. [1]. When the c
phase is a solid as shown in Fig. 1b, the angle hc is p. In this case,
the second equation of (1) becomes

rab cos hb ¼ rca � rbc;

which is Young’s equation [2] and we denote this hb by h.
Modeling and numerical representations of the contact line be-

tween a two-phase interface and a solid surface are still open prob-
lems from the physical, mathematical, and numerical points of
view [3]. In this paper, we consider an accurate and robust numer-
ical scheme for the Cahn–Hilliard (CH) equation with contact angle
ll rights reserved.
boundary conditions. The quantity c(x, t) is defined to be the differ-
ence between the concentrations of the two mixtures (e.g.,
c(x, t) = (ma �mb)/(ma + mb) where ma and mb are the masses of
phases a and b). The Cahn–Hilliard equation is given by

@cðx; tÞ
@t

¼ MDlðx; tÞ; x 2 X; 0 < t 6 T; ð2Þ

lðx; tÞ ¼ F 0ðcðx; tÞÞ � �2Dcðx; tÞ; ð3Þ
@cðx; tÞ
@n

¼ � f 0wðcðx; tÞÞ
�2 ; x 2 @X; 0 < t 6 T; ð4Þ

@lðx; tÞ
@n

¼ 0; ð5Þ

where X � R2 and n is the direction normal to and into the wall.
This equation was introduced to model spinodal decomposition
and coarsening phenomena in binary alloys [4,5]. It arises from
the total Helmholz free energy functional

FðcÞ ¼ EðcÞ þWðcÞ ¼
Z

X
FðcÞ þ �

2

2
jrcj2

� �
dxþ

Z
@X

fwðcÞds;

where F(c) = 0.25(c2 � 1)2 is the Helmholz free energy (Fig. 2a) of a
unit volume of homogeneous material of composition c and � is a
positive constant. fwðcÞ ¼ �ðc3 � 3cÞ=ð3

ffiffiffi
2
p
Þ cos h is the specific wall

free energy, which depends only on the concentration at the solid
surface and the contact angle h. The surface integral term WðcÞ rep-
resents the contribution of solid-fluid interactions. Fig. 2b shows
fw(c) with � = 0.01 and h = 45�, 60�, 90�, and 135�.

Next, we derive the governing Eqs. (2)–(5). To derive the varia-
tion of the functional F, with

R
X /dx ¼ 0, we calculate the

following
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(a) (b)

Fig. 1. Definitions of dihedral angles at the junctions of three surfaces where three phases meet. (a) a, b, and c are fluids. (b) a and b are fluids, c is a solid.
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d
dg

Fðc þ g/Þ
����
g¼0
¼
Z

X
/F 0ðcÞ þ �2r/ � rc
� �

dxþ
Z
@X

/f 0wðcÞds

¼
Z

X
F 0ðcÞ � �2Dc
� �

/dx

þ
Z
@X

�2 @c
@n
þ f 0wðcÞ

� �
/ds

¼
Z

X
F 0ðcÞ � �2Dc
� �

/dx;

where we have used a natural boundary condition,

@c
@n
¼ � f 0wðcÞ

�2 ¼ 1� c2ffiffiffi
2
p
�

cos h: ð6Þ

This boundary condition becomes Eq. (4) and has been widely
used for the contact angle boundary conditions [6–13]. However,
Eq. (6) is not easy to implement accurately since we need to eval-
uate its value at the boundary and we do not know the concentra-
tion value at the boundary.

Now we get the chemical potential l as the variational deriva-
tive of F with respect to c

l :¼ dF
dc
¼ F 0ðcÞ � �2Dc

and we define the flux, J :¼ �Mrl, where M > 0 is a diffusional
mobility. As a consequence of mass conservation, we have
ct ¼ �r �J, which gives us the CH Eqs. (2) and (3). The mass con-
serving boundary condition is

@l
@n
¼ 0: ð7Þ

So that

d
dt

Z
X

c dx ¼
Z

X
ct dx ¼ M

Z
X

Dldx ¼ �M
Z
@X

@l
@n

ds ¼ 0: ð8Þ
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Fig. 2. (a) F(c) = 0.25(c2 � 1)2. (b) fwðcÞ ¼
We differentiate the energy F with respect to time variable to get

d
dt

FðtÞ ¼
Z

X
ðF 0ðcÞct þ �2rc � rctÞdxþ

Z
@X

f 0wðcÞct ds

¼
Z

X
lct dxþ

Z
@X

�2 @c
@n
þ f 0wðcÞ

� �
ct ds ¼

Z
X
lMDldx

¼
Z
@X

lM
@l
@n

ds�
Z

X
Mrl � rldx ¼ �

Z
X

Mjrlj2 dx; ð9Þ

which guarantees that the free energy functional decreases with
time. Here we used the no-flux boundary condition (7).

The CH equation with Neumann [14,15], periodic [16] or dy-
namic [17] boundary conditions has been studied intensively with
numerical methods. In recent work [18], the authors presented
simulations of dynamic wetting far from equilibrium based on
phase field theory. However, only a few authors studied the CH
equation with contact angle boundary conditions [6,7]. We pro-
pose a new accurate and robust contact angle boundary condition
that is based on a characteristic interpolation.

This paper is organized as follows. In Section 2, we describe the
proposed contact angle boundary condition and its numerical algo-
rithm. The numerical results that demonstrate the accuracy and
robustness of the proposed contact angle boundary formulation
are described in Section 3. A discussion is presented in Section 4.

2. Proposed contact angle boundary condition and numerical
algorithm

In this section, we propose a method which gives an accurate
contact angle boundary condition as well as a numerical stability.
Our method is based on a technique for solving partial differential
equations known as the method of characteristics. First, we present
an unconditionally gradient stable scheme for the CH equation in
two dimensional space X = (a,b) � (c,d) [19–21]. Let Nx and Ny be
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�ðc3 � 3cÞ=ð3
ffiffiffi
2
p
Þ cos h and � = 0.01.
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positive even integers, h = (b � a)/Nx be the uniform mesh size,
Xh = {(xi, yj):xi = (i � 0.5)h, yj = (j � 0.5)h, 1 6 i 6 Nx, 1 6 j 6 Ny} be
the set of cell-centers, and cn

ij be an approximation of c(xi, yj,
nDt), where Dt = T/Nt is the time step, T is the final time, and Nt

is the total number of time steps. We take M � 1 for convenience.
Then, an unconditionally gradient stable time and centered differ-
ence space discretization of Eqs. (2) and (3) is

cnþ1
ij � cn

ij

Dt
¼ Ddmnþ1

ij � Ddcn
ij; ð10Þ

mnþ1
ij ¼ F 0ðcnþ1

ij Þ þ cnþ1
ij � �2Ddcnþ1

ij : ð11Þ

The resulting nonlinear system of Eqs. (10) and (11) is solved effi-
ciently using a nonlinear multigrid method. The method is described
in [21] in detail. Now, we describe how we impose the contact angle
boundary conditions (4) and (5). When the contact angle is h = 90�,
an equilibrium solution to Eq. (2) in an infinite domain would be

cðx; yÞ ¼ tanh
xffiffiffi
2
p
�
: ð12Þ

We can consider x in the argument of the tanh() function as the
signed distance from the line x = 0. Eq. (12) with � = 0.01 is shown
in Fig. 3a on the domain X = (�4,4) � (�1, 1). When the contact an-
gle is h = 45�, an equilibrium state (see Fig. 3b) is given as

cðx; yÞ ¼ tanh
x� y

2�
: ð13Þ

In this case ðx� yÞ=
ffiffiffi
2
p

is the signed distance from the line x � y = 0.
When the contact angle is a = tan�1(0.5) (180/p)�, we have

cðx; yÞ ¼ tanh
sinðaÞx� cosðaÞyffiffiffi

2
p
�

; ð14Þ

where sin(a)x � cos(a)y is the signed distance from the line
sin(a)x � cos(a)y = 0. This is shown in Fig. 3c. Fig. 3d shows contour
plots of Eqs. (12)–(14) at the levels �0.9, �0.6, �0.3, 0, 0.3, 0.6, 0.9.
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Fig. 3. (a) cðx; yÞ ¼ tanh xffiffi
2
p
�
, (b) cðx; yÞ ¼ tanh x�y

2� , (c) cðx; yÞ ¼ tanh sinðaÞx�cosðaÞyffiffi
2
p
�

, and
From these observations, data at the ghost points should be ob-
tained from the characteristic line whose slope is tanh.

Let the phase-field be defined as

cðx; yÞ ¼ tanh
sinðhÞx� cosðhÞyffiffiffi

2
p
�

;

which means that the contact angle is h at the origin. For a contact
angle boundary condition, we have

rc �m ¼ 0;

where m = (cosh, sinh) is a unit tangent vector to the interface at the
contact point and h is a prescribed contact angle (see Fig. 1b). When
the contact angle is h = 90�, we have

cnþ1
i;0 ¼ cnþ1

i;1 :

When the contact angle is h = 45�, we have

cnþ1
i;0 ¼

cnþ1
iþ1;1 if cnþ1

i�1;1 > cnþ1
iþ1;1;

cnþ1
i�1;1 otherwise:

(

When the contact angle is h = tan�1(0.5)(180/p)�, we have

cnþ1
i;0 ¼

cnþ1
iþ2;1 if cnþ1

i�1;1 > cnþ1
iþ1;1;

cnþ1
i�2;1 otherwise:

(

These interpolations are shown in Fig. 4a. If the prescribed con-
tact angle is not particular angles ðh ¼ 90�;45�; 180

p tan�1ð0:5Þ�Þ,
then we use an interpolation between the two closest points. For
example, when h = 60�, the angle is between h = 45� and h = 90�,
therefore we use cnþ1

i;1 and cnþ1
iþ1;1 to get cnþ1

i;0 value.

cnþ1
i;0 ¼

1� 1ffiffi
3
p

� 	
cnþ1

i;1 þ 1ffiffi
3
p cnþ1

iþ1;1 if cnþ1
i�1;1 > cnþ1

iþ1;1;

1ffiffi
3
p cnþ1

i�1;1 þ 1� 1ffiffi
3
p

� 	
cnþ1

i;1 otherwise:

8><
>:

This is shown in Fig. 4b. In general, when h – 0�, 90�, 180�, the
characteristic line is y = tan(h)x and the interpolation position of
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(d) contour plots of c(x,y) at �0.9, �0.6, �0.3, 0, 0.3, 0.6, 0.9 with � = 0.01.
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x-coordinate is x = h/tan(h). We can write x as a sum of an integer
part and a fraction part, i.e., x = k + a, where k is an integer and
0 6 a < 1. Then the characteristic interpolation is defined as

cnþ1
i;0 ¼

ð1� aÞcnþ1
iþk;1 þ acnþ1

iþkþ1;1 if cnþ1
i�1;1 > cnþ1

iþ1;1;

acnþ1
iþk�1;1 þ ð1� aÞcnþ1

iþk;1 otherwise:

(

Fig. 5 shows ‘�’ and ‘⁄’ are ci,1 and ci,0 values inside and outside of
the bottom domain boundary, respectively. The contact angles are
(a) h = 90�, (b) h = 45�, and (c) h = tan�1(0.5)(180/p)�. Line segments
represent the difference, jci,1 � ci,0j. As we can see in Fig. 5, the dif-
ference jci,1 � ci,0j for particular angles (except h = 90�) is not uni-
form. There is this difference in the transition region, however,
there is no significant difference outside the region.

The core of the proposed algorithm is a characteristic interpola-
tion, which gives both stability and accuracy. In order to get the
mass conservation, we should get

0 ¼
XNx

i¼1

XNy

j¼1

cnþ1
ij � cn

ij

Dt
¼
XNx

i¼1

XNy

j¼1

Dd mnþ1
ij � cn

ij

� 	

¼ �
XNy

j¼1

mnþ1
1;j � mnþ1

0;j

� 	
� cn

1;j � cn
0;j

� 	
h2

þ
XNy

j¼1

mnþ1
Nxþ1;j � mnþ1

Nx ;j

� 	
� cn

Nxþ1;j � cn
Nx ;j

� 	
h2

�
XNx

i¼1

mnþ1
i;1 � mnþ1

i;0

� 	
� cn

i;1 � cn
i;0

� 	
h2

þ
XNx

i¼1

mnþ1
i;Nyþ1 � mnþ1

i;Ny

� 	
� cn

i;Nyþ1 � cn
i;Ny

� 	
h2 :
(a) (b)

Fig. 4. (a) Illustration of the characteristic interpolation stencil for particular
contact angles (h = 90�, 45�, tan�1(0.5)(180/p)�) at a domain boundary. (b)
Characteristic interpolation stencil for the contact angle h = 60� at a domain
boundary.
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Fig. 5. ‘�’ and ‘⁄’ are ci,1 and ci,0 values inside and outside of the bottom domain boundar
represent the difference, jci,1 � ci,0j.
If we impose numerical no-flux boundary conditions, then we have
mass conserving properties.

mnþ1
0;j ¼ mnþ1

1;j � cn
1;j þ cn

0;j;

mnþ1
Nxþ1;j ¼ mnþ1

Nx ;j
þ cn

Nxþ1;j � cn
Nx ;j for1 6 j 6 Ny;

mnþ1
i;0 ¼ mnþ1

i;1 � cn
i;1 þ cn

i;0;

mnþ1
i;Nyþ1 ¼ mnþ1

i;Ny
þ cn

i;Nyþ1 � cn
i;Ny

for1 6 i 6 Nx:

This is the numerical boundary condition for Eq. (5). To solve the
discrete system efficiently at the implicit time-level, we have used
an unconditionally stable scheme with a nonlinear multigrid meth-
od. For a detailed description of the numerical method used in solv-
ing the discrete equations, refer to [22].

Recently, Ding and Spelt [6] proposed a new geometric formu-
lation. We briefly review the geometric formulation. The normal
vector to the interface can be written in terms of the gradient of
c as ns =rc/jrcj. At the contact line, ns intersects the solid sub-
strate at an angle of h, where h is the contact angle (see Fig. 6a).
Then, the contact angle can be computed geometrically in terms
of c by

tan
p
2
� h

� 	
¼ n � rc
jrc � ðn � rcÞnj : ð15Þ

Eq. (15) is referred to as a geometric formulation for the computa-
tion of the contact angle h. For example, to evaluate ci,0 values, we
use the following extrapolation.

ci;0 ¼ ci;2 � tan
p
2
� h

� 	
jciþ1;1 � ci�1;1j:

Note that to get the ghost cell value (circled x), we use three interior
values (x). This extrapolation is effectively more accurate at the
open circle than at the solid circle position at the domain boundary
(Fig. 6b).
3. Numerical results

In this section, we perform numerical experiments such as equi-
librium contact angles with a mesh refinement convergence test,
advancing drop by contact angle difference, stability, and drop im-
pact on a solid surface with/without the gravity effect in order to
demonstrate the accuracy and robustness of the proposed contact
angle boundary algorithm. In this experiment, for simplicity of pre-
sentation, we apply the periodic boundary condition in x-direction
and zero Neumann boundary condition at the top of the domain. In
the bottom of the domain, we prescribe a contact angle h.
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Fig. 6. (a) Contact angle h, unit normal vector n on the domain boundary, and unit
normal vector ns on the interface. (b) Interpolation stencil at a domain boundary.
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Fig. 8. The interface lengths with contact angles h = 45�, 60�, 90�, and 135�.

Fig. 9. Definition of numerical contact angle.
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3.1. Equilibrium contact angles

Let us consider an equilibrium of an interface contacting a wall
with a prescribed contact angle h. We take the simulation param-
eters, h ¼ 1=128; � ¼ 0:12

ffiffiffi
h
p

;Dt ¼ 5=128, and mesh size 256 � 128
on the computational domain, X = (0,2) � (0,1). The initial state is
taken to be an rectangle, i.e.,

cðx; yÞ ¼
1 if 0:7 6 x 6 1:3 and 0 6 y 6 0:4;
�1 otherwise:




We stop the numerical computations when the discrete l2-norm
[23] of the difference between (n + 1)th and nth time step solutions
becomes less than 10�6. That is kcn+1 � cnk 6 10�6. Fig. 7a and b
show evolutions of interface with prescribed contact angles
h = 45� and h = 135�, respectively. The arrow shows the direction
of the evolution and the thicker lines are corresponding steady
shapes.

Fig. 8 shows interface lengths with contact angles h = 45�, 60�,
90�, and 135�.

To find a numerical contact angle, we use the following proce-
dure. Given three points (x1,y1), (x2,y2), and (x3,y3) on the interface
(see Fig. 9), we calculate the center and the radius of the circle
which passes through the three points. We compute the center
points xc and yc from

ðx1 � xcÞ2 þ ðy1 � ycÞ
2 ¼ ðx2 � xcÞ2 þ ðy2 � ycÞ

2
;

ðx2 � xcÞ2 þ ðy2 � ycÞ
2 ¼ ðx3 � xcÞ2 þ ðy3 � ycÞ

2
;

and calculate the radius r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xcÞ2 þ ðyi � ycÞ

2
q

. Then the
x-intercepts of the circle are x ¼ xc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y2

c

p
and a derivative at

the contact point is

tan h ¼ dy
dx

xc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y2

c

q
;0

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y2

c

p
yc

:

Finally, we define the numerical contact angle as h ¼modðtan�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y2

c

p
=yc

� �
;pÞ.

In Fig. 10, the symbols ‘}’; ‘M’; ‘ � ’, and ‘⁄’ are the numerical re-
sults that we are compared with the analytical values (solid lines)
for contact angles with h = 45�, 60�, 90�, and 135�, respectively. The
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Fig. 7. (a) and (b) are evolutions of interface with prescribed contact angles h = 45� and h
lines are corresponding steady shapes.
proposed method is shown to result in a slope of the interface that
is consistent with the prescribed contact angle value.

The mesh refinement convergence results with various pre-
scribed contact angles are given in Table 1. The results suggest that
the numerical contact angles converge to the theoretical contact
angle values.

3.2. Small and large contact angles – 20� and 160�

In this section, we test contact angles with below and above 45–
135� to demonstrate the accuracy and robustness of the proposed
contact angle boundary formulation.

When a contact angle is h = 20�, the angle is between 18.4349�
and 26.5651�, therefore we use cnþ1

iþ2;1 and cnþ1
iþ3;1 to get cnþ1

i;0 value (see
Fig. 11).
.4 0.6 0.8 1 1.2 1.4 1.6

= 135�, respectively. The arrow shows the direction of the evolution and the thicker
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Fig. 10. The symbols ‘}’; ‘M’; ‘ � ’, and ‘⁄’ are the numerical results that we are
compared with the analytical values (solid lines) for contact angles with h = 45�,
60�, 90�, and 135�, respectively.

Fig. 11. Characteristic interpolation stencil for the contact angle h = 20� at a domain
boundary.
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cnþ1
i;0 ¼

ð1� aÞcnþ1
iþ2;1 þ acnþ1

iþ3;1 if cnþ1
i�1;1 > cnþ1

iþ1;1;

acnþ1
i�3;1 þ ð1� aÞcnþ1

i�2;1 otherwise;

(

where a = 1/tan(20) � 2. This interpolation is straightforward for a
contact angle with h = 160�.

In case of a contact angle with h = 20�, the initial state on the
computational domain X = (0,2) � (0,2) is

cðx; yÞ ¼
1 if 0:25 6 x 6 1:75 and 0 6 y 6 1:5;
�1 otherwise:




In case of a contact angle with h = 160�, the initial state on the com-
putational domain X = (0,4) � (0,1) is

cðx; yÞ ¼
1 if 1:7 6 x 6 2:3 and 0 6 y 6 0:4;
�1 otherwise:




In both cases, we take the simulation parameters, h ¼ 1=2n; � ¼
0:28

ffiffiffi
h
p

, and Dt = 5h for n = 6, 7, 8, and 9.
The mesh refinement convergence results are given in Table 2.

The results suggest that the numerical contact angles converge to
the theoretical contact angle values and the proposed contact angle
boundary formulation is accurate and robust.
3.3. Advancing droplet on a solid surface

One way to move a liquid droplet placed on a solid surface is to
adjust the gradient of the energetic properties of the surface ex-
posed to the liquid. This can be done by depositing molecular lay-
ers or by varying the surface roughness [24]. The computational
domain is X = (0,2) � (0,1) with 256 � 128 mesh and the initial
Table 1
Convergence results – contact angle with h = 45�, 60�, 90�, and 135�.

Mesh size 128 � 64 256 � 128

Numerical angle (�) 40.5210 43.9694
64.0015 60.8926
90.9887 90.8424
136.9205 135.5932
configuration is a half disk as given in Eq. (16). We took
h ¼ 1=128; � ¼ 0:17

ffiffiffi
h
p

, and Dt = 1/256.

cðx; y;0Þ ¼ tanh
0:25�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1:5Þ2 þ y2

q
ffiffiffi
2
p
�

0
@

1
A: ð16Þ

We prescribed the contact angles as h = 135� (left contact point) and
h = 90� (right contact point). After the transition period, the shape of
the half disk deforms and reaches a fixed shape. The speed of the
contact points converges to a constant value (	0.05), which is the
slope of the line in Fig. 12a.

Fig. 13a shows the distances from the reference position,
(1.75,0). ‘�’ and ‘}’ are the front and back positions, respectively.
‘⁄’ is the length of the droplet. In Fig. 13b–e are surface, contour
lines, minus gradient, and Laplacian (positive value is solid line
and negative value is dotted line) of the chemical potential l at
time t = 11.7, respectively. In particular, in Fig. 13d shows the mass
flux which directs toward front interface and coming out back
interface. Also, it is clear from the Fig. 13e that concentration will
increase in the positive area and decrease in the negative region. As
a result, the droplet will advance towards the left. This result sug-
gests that we can control the droplet movement on a solid surface
by changing contact angles.

3.4. Stability of the scheme

To test an unconditionally gradient stability of the scheme, we
perform a numerical experiment with an example of spinodal
decomposition of a binary mixture. In the simulations, the initial
condition is a random perturbation of the maximum amplitude
0.2 of the uniform state c = 0.

cðx; y;0Þ ¼ 0:2randðÞ;

where the random number, rand( ), is distributed between �1 and
1. A 256 � 128 mesh is used on the computational domain
X = (0,2) � (0,1) for the spatial discretization and different time
step sizes, Dt = 0.1, 1000, and 100,000 are employed for the time
integration. We take the simulation parameters, h = 1/128 and
� ¼ 0:24

ffiffiffi
h
p

. The difference between the current scheme and previ-
ous unconditionally stable ones is a boundary treatment. In
Fig. 14a–c are plots with different time step sizes of Dt = 0.1,
1000, and 100,000, respectively after 100 time step iterations. The
results suggest that the scheme with a contact angle boundary con-
dition indeed unconditionally stable.
512 � 256 1024 � 512 Theoretical angle (�)

44.2449 44.4974 45
60.6834 60.5054 60
90.4205 90.1547 90
135.2844 135.0116 135



Table 2
Convergence results – contact angle with h = 20� and 160�.

Mesh size 128 � 128 256 � 256 512 � 512 1024 � 1024 Theoretical angle (�)

Numerical angle (�) 12.0235 15.1080 17.3539 19.9366 20
Mesh size 256 � 64 512 � 128 1024 � 256 2048 � 512 Theoretical angle (�)
Numerical angle (�) 156.9983 157.7652 158.2047 158.2641 160

Fig. 12. Snapshots of the moving droplet (from right to left) for h = 135� (left
contact point) and h = 90� (right contact point).
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3.5. Drop impact on a solid surface

In this preliminary work, we combine the Navier–Stokes equa-
tions to model the two-phase fluid flows contacting a wall. The
nondimensional Navier–Stokes equations are

r � u ¼ 0;

qðcÞðut þ u � ruÞ ¼ �rpþ 1
Re
r � ½gðcÞðruþruTÞ


� 3
ffiffiffi
2
p
�

4We
r � rc

jrcj

� �
jrcjrc þ 1

Fr2 qðcÞg:
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Fig. 13. (a) The distances from the reference position, (1.75,0). ‘�’ and ‘}’ are the front
surface, contour lines, minus gradient, and Laplacian of the chemical potential l at time
These equations are combined with the advective Cahn–Hilliard
equation:

ct þ u � rc ¼ 1
Pe

Dl:

Here u, p, q, g, and g denote the velocity, pressure, density, viscos-
ity, and gravity, respectively. The dimensionless parameters are
Reynolds number, Re, Weber number, We, Froude number, Fr, and
Peclet number, Pe [22].

In the first experiment, we consider a drop lying on a solid sur-
face surrounded by another liquid. A simulation of this problem
has previously been performed by Zahedi et al. using a level-set
method [25]. The initial drop is circular with non-dimensional
radius r = 1.0 centered at (0,0.75) in non-dimensional computa-
tional domain X = (�3,3) � (0,3). The density ratio is q1/q2 = 1
(q1 and q2 are the densities inside and outside the drop, respec-
tively) and the initial velocity is zero. To show role of inertia plays,
we neglected gravity effects. In this simulation we use the param-
eters: � = 0.014, Re = 20, We = 0.6, and Pe = 0.1/�. Mesh size
512 � 256 and time step Dt = 10�4 are used. Fig. 15 shows the wet-
ting on the solid wall for nine different snapshots. The snapshots
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(c) contour lines
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(e)

and back positions, respectively. ‘⁄’ is the length of the droplet. (b–d), and (e) are
t = 11.7, respectively.
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Fig. 14. (a–c) are filled contours at c = 0 with different time step sizes of Dt = 0.1, 1000, and 100,000, respectively.
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can be compared with the snapshots from the level-set computa-
tion in [25]. Using our proposed contact angle boundary formula-
tion, characteristic interpolation for a contact angle h = 110.02� at
the wall y = 0, we can get the qualitatively similar results. Note that
this drop oscillates toward equilibrium due to the resistance of the
drop to change its motion.

In the second experiment, we consider the evolution of inter-
faces with different Bond numbers in order to investigate the grav-
ity effect. The initial drop is circular with non-dimensional radius
r = 1 centered at (0,1) in non-dimensional computational domain
X = (�2,2) � (0,4). The density ratio is q1:q2 = 10:1 (q1 and q2

are the densities inside and outside the drop, respectively) and
the initial velocity is zero. In this simulation we use the parame-
ters: � = 0.03, Re = 100, We = 10, and Pe = 200/�. Mesh size 256 �
256 and time step Dt = 2 � 10�4 are used. Fig. 16a and b show evo-
lutions of the interface with different Bond numbers Bo = 1 and 3,
respectively. The results in Fig. 16 show that our results and the
previous results of Reznik et al. [26] are in good agreement. And
from the result, we can see the followings: (1) the drop spread
Fig. 15. Wetting of a liquid drop on a solid surface.
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Fig. 16. The gravity effect. Evolutions of the
downwards along the surface by the gravity effect; (2) as the Bond
number is increased, the drop is more wetted.
4. Conclusions

In this paper, we have proposed a new contact angle boundary
formulation for solving the CH equation with a contact angle
boundary condition. A key ingredient of the proposed algorithm
is based on a characteristic interpolation. We presented various
numerical tests showing that the scheme is robust and accurate.
The algorithm recovers the prescribed contact angles at the bound-
ary accurately. We implemented it with an unconditionally gradi-
ent stable conservative numerical scheme. We demonstrated
computationally that the scheme is indeed unconditionally stable.
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