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a b s t r a c t

In this paper we propose a fast, robust, and accurate operator splitting method for phase-field

simulations of dendritic growth in both two- and three-dimensional space. The proposed method is

based on operator splitting techniques. We split the governing phase-field equation into three parts:

the first equation is calculated by using an explicit Euler’s method. The second is a heat equation with a

and is evaluated using a closed form solution. We also present a set of representative numerical

experiments for crystal growth simulation to demonstrate the accuracy and efficiency of the proposed

method. Our simulation results are also consistent with previous numerical experiments.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Crystal growth is a classical example of phase transformations
from the liquid phase to the solid phase via heat transfer. For several
decades, to understand and simulate crystal growth, several meth-
ods have been developed including boundary integral [1–4], cellular
automaton [5–8], front-tracking [9–13], level-set [14–17], Monte-
Carlo [18,19], and phase-field [20–37] methods. Among these
various methods, the phase-field method is popular and widely
used. Its advantage is that the explicit tracking of the interface is
unnecessary by introducing an order parameter, i.e., a phase-field
variable. In this paper, we focus on the phase-field method for
crystal growth problems which avoids difficulties associated with
tracking the interface and computes complex crystal shapes.

We consider here the solidification of a pure substance from its
supercooled melt in both two- and three-dimensional space. A great
challenge in the simulation with various supercoolings is the large
difference in time and length scales. In order to overcome this, many
numerical methods have been proposed such as explicit [11,27,
31,36,38], mixed implicit-explicit [30,35,37], and adaptive [21,22,29,
32,33] methods. In explicit methods, which are widely used, the
solutions become unstable for large time steps. For this reason the
authors in [11,36] suggested Dtoh2=ð4DÞ for stability of explicit
methods. Here, Dt is the time step, h is the mesh size, and D is the
thermal diffusivity. In [11], the time step is also restricted to
ll rights reserved.

x: þ82 2 929 8562.
Dtrh=ð10jVmaxjÞ, where jVmaxj is the magnitude of the maximum
value of the interface velocity. Also the authors in [36] showed that
Dt¼ h2=ð5DLÞ works well for not too large choices of the anisotropy
by numerical experiments, where DL ¼Mfe2, Mf is the kinetic
mobility, and e is the interface energy anisotropy. Implicit methods
allow relatively larger time steps, however, they are computation-
ally more expensive per step than explicit ones. Another classical
method is a multiple time-step algorithm that uses a larger time
step for the flow-field calculations while reserving a finer time step
for the phase-field evolution [34]. The use of mesh adaptivity is a
natural choice to overcome this problem. However, explicit adaptive
technology also suffers the time step restriction. Therefore, we need
a scheme that allows the use of a sufficiently large time step
without the technical limitations. In this paper we present a new,
computationally efficient, and robust operator splitting algorithm
for solving phase-field simulations of dendritic growth and demon-
strate the accuracy and efficiency of the method by a set of
representative numerical experiments.

This paper is organized as follows: in Section 2 the governing
equations for crystal growth based on the phase-field method are
given. In Section 3 we describe the computationally efficient
operator splitting algorithm. In Section 4 we present numerical
results for solving the crystal growth simulation both in 2D and
3D. Finally, conclusions are given in Section 5.
2. The phase-field model

The basic equations of the phase-field model are derived from
a single Lyapounov functional [39]. We model the solidification in
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two and three dimensions using a standard form of phase-field
equations. The model is given by
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where f is the order parameter, eðfÞ is the anisotropic function, l
is the dimensionless coupling parameter, and U ¼ cpðT�TMÞ=L is
the dimensionless temperature field. Here cp is the specific heat at
constant pressure, TM is the melting temperature, L is the latent
heat of fusion, D¼ at0=e2

0, a is the thermal diffusivity, t0 is the
characteristic time, and e0 is the characteristic length. The order
parameter is defined by f¼ 1 in the solid phase and f¼�1 in the
liquid phase. The interface is defined by f¼ 0 and l is given as
l¼D=a2 with a2 ¼ 0:6267 [26,27]. For the four-fold symmetry,
eðfÞ is defined as
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where e4 is a parameter for the anisotropy of interfacial energy.
3. Numerical solution

In this section, we propose a robust hybrid numerical method
for crystal growth simulation. For simplicity of exposition we
shall discretize Eqs. (1) and (2) in two-dimensional space, i.e.,
O¼ ða,bÞ � ðc,dÞ. Let Nx and Ny be positive even integers,
h¼ ðb�aÞ=Nx be the uniform mesh size, and Oh ¼ fðxi,yjÞ :

xi ¼ ði�0:5Þh, yj ¼ ðj�0:5Þh, 1r irNx,1r jrNyg be the set of cell-
centers. Let fn

ij be approximations of fðxi,yj,nDtÞ, where Dt¼ T=Nt

is the time step, T is the final time, and Nt is the total number of
time steps. The discrete differentiation operator is rdfij ¼

ðfiþ1,j�fi�1,j,fi,jþ1�fi,j�1Þ=ð2hÞ. We then define the discrete
Laplacian by Ddfij ¼ ðfiþ1,jþfi�1,j�4fijþfi,jþ1þfi,j�1Þ=h2. We
discretize Eqs. (1) and (2):
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where FðfÞ ¼ 0:25ðf2
�1Þ2 and F 0ðfÞ ¼fðf2

�1Þ. Here fnþ1,k for
k¼ 1,2 are defined in the operator splitting scheme. We propose
the following operator splitting scheme:
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In Eq. (5), we can simplify the following terms
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Eq. (7) can be considered as an approximation of the equation

ft ¼
f�f3

e2
ð8Þ

by an implicit Euler’s method with the initial condition fnþ1,2.
We can solve Eq. (8) analytically by the method of separation of
variables [40]. The solution is given as follows:
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Finally, the proposed scheme can be written as follows:
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Eqs. (11) and (13) can be solved by a multigrid method [41,42].

3.1. Calculation of the crystal tip position and velocity

The crystal tip position and velocity are the important para-
meters in the phase-field simulation. To calculate these para-
meters with a high degree of accuracy we use a method based on
the quadratic polynomial approximation. For simplicity, we only
describe the procedure along the y-axis since the crystal is
symmetric. Let yk be the maximum y position on the interface
at each time and the quadratic polynomial approximation be

y¼ ax2þbxþg:

Given three points: (xk�1,yk�1), (xk,yk), and (xkþ1,ykþ1) on the
interface, where one of the three y points is a maximum value
along the interface points, we calculate the parameters a, b, and g
from
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Then using a, b, and g, we find the tip position (xn,yn) which
satisfies the following conditions:

dy

dx

����
x�

¼ 0 and y� ¼ ax2
� þbx�þg:

Furthermore, the crystal tip velocity can be obtained from the
difference of tip positions at each time.
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4. Numerical results

In this section we perform numerical experiments for two- and
three-dimensional solidification to validate that our proposed
scheme is accurate, efficient, and robust. For two-dimensional
tests, unless otherwise specified, we take the initial state as

fðx,y,0Þ ¼ tanh
R0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
ffiffiffi
2
p

 !
and Uðx,y,0Þ ¼

0 if f40

D else:

(

The zero level set (f¼ 0) represents a circle of radius R0. From the
dimensionless variable definition the value U ¼ 0 corresponds to
the melting temperature of the pure material, while U ¼D is the
initial undercooling. The extension to three dimensions is straight-
forward. The capillary length, d0, is defined as d0 ¼ a1=l [20,32,39]
with a1 ¼ 0:8839 [26,27,32] and l¼ 3:1913 [32]. And we take the
value of the anisotropy of interfacial energy as e4 ¼ 0:05.
4.1. Stability of the operator splitting algorithm

As already mentioned in Section 1, the previous methods
suffer from time step restrictions DtrOðh2Þ for stability. In order
to show the stability of our proposed method we consider the
evolution of an interface with arbitrarily large time steps. In these
simulations a 2048� 2048 mesh is used on the computational
domain O¼ ð�200,200Þ2. We choose R0 ¼ 14d0 and D¼�0:55.
The calculations are run up to time T ¼ 900 with different time
steps Dt¼ 0:3 and Dt¼ 0:6. Note that both time steps are larger
than h¼ 400=2048� 0:1953. Figs. 1 (a) and (b) show evolutions of
the interface with different time steps Dt¼ 0:3 and 0:6, respec-
tively. In general, large time steps may cause large truncation
errors. However, as can be seen in Fig. 1 our proposed scheme
works well with large time steps.
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Fig. 1. (a) and (b) show the sequence of interfaces with different time steps

Dt¼ 0:3 and 0:6, respectively. The times are t¼0, 180, 360, 540, 720, and 900

(from inside to outside).
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Fig. 2. The stability of crystal growth with different time steps: (a) Dt¼ 8:60 (256�2
Next, we perform a number of simulations on a set of increas-
ingly finer grids to show that our proposed method is restricted by
the stability constraint Dtr5:5 h. The computational domain is
O¼ ð�200,200Þ2 and we take R0 ¼ 14d0 and D¼�0:55. The
numerical solutions are computed on the uniform grids
h¼ 400=2n with corresponding time steps Dt¼ 5:5h for n¼8, 9,
and 10. Fig. 2 shows the crystal growth after time T¼85.94 with
different time steps. From these results it is clear that our scheme
is stable for time steps Dtr5:5h. And we calculate the maximum
Dt corresponding to different spatial grid sizes h so that stable
solutions can be computed after 20 time step iterations. The results
are shown in Table 1 and we obtain stable solutions for all three
mesh sizes. Note that there is a linear relation between time step
and mesh sizes. Thus, for finer mesh sizes we may use larger time
steps than previous conventional methods.

4.2. Comparison of the dimensionless steady-state tip velocities

To verify the accuracy of our proposed scheme we compare the
dimensionless steady-state tip velocities obtained by our proposed
scheme with previous phase-field simulations and Green’s function
calculations [27]. A 1024�1024 mesh is used on the domain
O¼ ð�200,200Þ2. We choose R0 ¼ 6:924, W0 ¼ 1, and l¼D=a2.
Table 2 shows that the results from our proposed scheme are in
good agreement with results of previous phase-field and Green’s
theory over the whole range of d0,D, and e4 investigated here. Note
that despite the relatively large time step (Dt¼ 5DtKR ¼ 0:08) is
used in our scheme, the results are almost identical.

4.3. Effect of time step, mesh, radius, and undercooling

We consider the evolution of the interface with different time
steps in order to investigate the effect of time step. A 1024�1024
mesh is used on the domain O¼ ð�400,400Þ2 with R0 ¼ 14d0 and
D¼�0:55. Figs. 3(a) and (b) show the position and velocity of the
tip versus time, respectively, both for different time steps
Dt¼ 0:6, 0.3, 0.15, and 0.075. Fig. 3(c) shows the evolution of
the interface with time step Dt¼ 0:15 at times t¼0, 225, 450, 675,
900, 1125, 1350, 1575, and 1800 (from inside to outside). For
different time steps, the interfaces at time T¼1800 are shown
in Fig. 3(d). The velocity of the tip at time T¼1800 versus time
step is shown in Fig. 4. The results suggest that the convergence
rate of the tip velocity is linear with respect to the time step.

Total CPU and average CPU ðCPUÞ times of the simulations for
different time steps are listed in Table 3. The average CPU time is
defined as the real computational time (excluding data printing
times) divided by the total number of iterations.

Next we consider the evolution of the interface with different
mesh sizes. 256�256, 512�512, 1024�1024, and 2048�2048
meshes are used on the domain O¼ ð�200,200Þ2, i.e., we use four
different h¼1.5626, 0.7813, 0.3906, and 0.1953. The parameters used
are R0 ¼ 14d0, D¼�0:55, Dt¼ 0:15, and T¼900. Figs. 5(a)–(d)
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56 mesh), (b) Dt¼ 4:30 (512�512 mesh), and (c) Dt ¼ 2:15 (1024�1024 mesh).



Table 1

Stability constraint of Dt for the proposed scheme.

Mesh size h¼400/256 h¼400/512 h¼400/1024

Time step Dtr20 h Dtr15 h Dtr12 h

Table 2
Comparison of dimensionless steady-state tip velocities calculated by our pro-

posed scheme (Vtip ¼ Vd0=D), calculated by phase-field simulations (VKR
tip), and

calculated by the Green function method (VGF
tip).

D e4 D d0/W0 Vtip VKR
tip VGF

tip

0.65 0.05 1 0.554 0.0470 0.0465 0.0469

0.55 0.05 2 0.277 0.0171 0.0168 0.0170

0.55 0.05 3 0.185 0.0174 0.0175 0.0170

0.55 0.05 4 0.139 0.0172 0.0174 0.0170

0.50 0.05 3 0.185 0.01030 0.01005 0.00985

0.45 0.05 3 0.185 0.00599 0.00557 0.00545

0.45 0.05 4 0.139 0.00598 0.00540 0.00545
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Fig. 3. (a) and (b) show the position and velocity of the tip versus time,

respectively, for different time steps. (c) Evolutions of the interface with time

step Dt¼ 0:15. (d) The interfaces at time T¼1800 for different time steps.
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Fig. 4. The final velocity of the tip versus time step.

Table 3

Total CPU and average CPU ðCPUÞ times for different time steps.

Case Dt¼ 0:6 Dt¼ 0:3 Dt ¼ 0:15 Dt¼ 0:075

CPU time (h) 5.07 9.06 16.77 32.59

CPU time ðsÞ 5.87 5.19 4.80 4.84

Y. Li et al. / Journal of Crystal Growth 321 (2011) 176–182 179
show sequences of interface for different mesh sizes. The position and
velocity of the tip versus time are shown in Fig. 5(e) and (f),
respectively. From the results shown in Fig. 5 we can observe that
the spatial step size h¼0.3906 is enough to simulate accurately and
robustly the evolution of crystal growth.

Now we investigate the effects of radius of the initial solid
seed and undercooling. For each test a 1024�1024 mesh is used
on the domain O¼ ð�400,400Þ2 and we choose D¼�0:55,
Dt¼ 0:15 and T¼1500. The top row of Fig. 6 shows sequences
of interfaces with different radii R0 ¼ 15d0, 50d0, and 100d0 (from
left to right). We can see that for an increase in the initial radius
the dendrite grows faster. Sequences of interfaces with different
undercooling sizes D¼�0:45, �0:55, and �0:65 are presented in
the bottom row of Fig. 6. In this test we take R0 ¼ 14d0. We
observe that the large initial undercooling causes the dendrite to
grow faster.
4.4. Three-dimensional crystal growth

In this section we consider a three-dimensional crystal growth.
The initial conditions are

fðx,y,z,0Þ ¼ tanh
R0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2

p
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2
p

 !
,

Uðx,y,z,0Þ ¼
0 if f40

D else

�

on the domain O¼ ð�100,100Þ3 with a mesh 256�256�256. The
simulation parameters are R0 ¼ 14d0, D¼�0:55, Dt¼ 0:15, and
T ¼ 270. Fig. 7 shows three-dimensional structures at different
times. Structures with different undercooling sizes D¼�0:45,
�0:55, and �0:65 at time T¼200 are presented in Fig. 8(a)–(c),
respectively. As in the two-dimensional experiment, we also
observe that the large initial undercooling causes the dendrite
to grow faster in three-dimensional crystal growth.

4.5. Tail morphology

Brener [43] derived a theory of the tail shape of a 3D needle
crystal with the assumption that the cross section of a 3D needle
crystal should grow as the time dependent 2D growth shapes
away from the tip. In [27], Karma and Rappel compared the
steady-state growth velocities from simulation and theory
derived by Brener.

In this section we compare the velocities calculated by our
scheme and those given in [27]. In 2D and 3D simulations, we
choose h¼0.3906, R0 ¼ 14d0, Dt¼ 0:15, and two different under-
coolings D¼�0:65 and �0:70. In the 2D test a 1024�1024 mesh
is used on the domain O¼ ð�200,200Þ2 and the simulation time is



−150 −50 50 150

−150 −50 50 150

−150 −50 50 150 −150 −50 50 150
−150

−50

50

150

−150

−50

50

150

−150

−50

50

150

−150

−50

50

150

0 150 300 450 600 750 900
0

50

100

150

Time
0 150 300 450 600 750 900

Time

P
os

iti
on

h=1.5626
h=0.7813
h=0.3906
h=0.1953

0

0.1

0.2

0.3

0.4

V
el

oc
ity

h=1.5626
h=0.7813
h=0.3906
h=0.1953

Fig. 5. Sequences of interfaces with different spatial step sizes: (a) h¼1.5626, (b) h¼0.7813, (c) h¼0.3906, and (d) h¼0.1953. (e) and (f) show the position and velocity of

the tip versus time, respectively.
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T¼750. In the 3D test a 256�256�256 mesh is used on the
domain O¼ ð�50,50Þ3 and the simulation time is T¼90. Results of
steady-state growth velocities obtained from 2D and 3D simula-
tions are given in Table 4. Our results show good agreement with
those of Karma and Rappel [27].
5. Conclusion

In this paper we proposed a fast, robust, and accurate
operator splitting method for phase-field simulations of dendri-
tic growth in both two- and three-dimensional space. The



Fig. 7. Three-dimensional structures with R0 ¼ 14d0 and D¼�0:55 at different times. (a) t¼0, (b) t¼54, (c) t¼108, (d) t¼162, (e) t¼216, and (f) t¼270.

Fig. 8. Structures with different undercooling sizes (a) D¼�0:45, (b) D¼�0:55, and (c) D¼�0:65 at time T ¼ 200.

Table 4
Results of steady-state growth velocities.

D e4 V2D V3D V2D/V3D V2D
KR/ V3D

KR Slope

�0.70 0.0294 0.0353 0.0813 0.434 0.44 0.43

�0.65 0.0294 0.0243 0.0620 0.392 0.39 0.40
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proposed method is based on operator splitting techniques. We
split the governing phase-field equation into three parts. The first
equation is calculated explicitly, the second is a heat equation
with a source term and is solved by a fast solver such as a
multigrid method, and the third is evaluated using a closed form
solution. We also presented a set of representative numerical
experiments for crystal simulation to demonstrate the accuracy
and efficiency of the proposed method. Our simulation results
were also consistent with previous numerical experiments.
Acknowledgments

This work was supported by the National Research Foun-
dation of Korea Grant funded by the Korean Government (MEST)
(NRF-2010-0003989). The authors thank anonymous referee for
very useful comments on this paper.
References

[1] S. Li, J.S. Lowengrub, P.H. Leo, Nonlinear morphological control of growing
crystals, Phys. D 208 (2005) 209–219.

[2] D.I. Meiron, Boundary integral formulation of the two-dimensional sym-
metric model of dendritic growth, Phys. D 23 (1986) 329–339.

[3] J.A. Sethian, J. Strain, Crystal growth and dendlritic solidification, J. Comput.
Phys. 98 (1992) 231–253.

[4] J. Strain, A boundary integral approach to unstable solidification, J. Comput.
Phys. 85 (1989) 342–389.

[5] D. Li, R. Li, P. Zhang, A cellular automaton technique for modelling of a binary
dendritic growth with convection, Appl. Math. Modelling 31 (2007) 971–982.

[6] H. Yin, S.D. Felicelli, A cellular automaton model for dendrite growth in
magnesium alloy AZ91, Modelling Simul. Mater. Sci. Eng. 17 (2009) 075011.

[7] M.F. Zhu, C.P. Hong, A modified cellular automaton model for the simulation
of dendritic growth in solidification of alloys, ISIJ Int. 41 (2001) 436–445.

[8] M.F. Zhu, S.Y. Lee, C.P. Hong, Modified cellular automaton model for the
prediction of dendritic growth with melt convection, Phys. Rev. E 69 (2004)
061610.

[9] N. Al-Rawahi, G. Tryggvason, Numerical simulation of dendritic solidification
with convection: two-dimensional geometry, J. Comput. Phys. 180 (2002)
471–496.

[10] T. Ihle, Competition between kinetic and surface tension anisotropy in
dendritic growth, Eur. Phys. J. B 16 (2000) 337–344.



Y. Li et al. / Journal of Crystal Growth 321 (2011) 176–182182
[11] D. Juric, G. Tryggvason, A front-tracking method for dendritic solidification,
J. Comput. Phys. 123 (1996) 127–148.

[12] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber,
J. Han, S. Nas, Y.-J. Jan, A front-tracking method for the computations of
multiphase flow, J. Comput. Phys. 169 (2001) 708–759.

[13] P. Zhao, J.C. Heinrich, D.R. Poirier, Fixed mesh front-tracking methodology for
finite element simulations, Int. J. Numer. Meth. Eng. 61 (2004) 928–948.

[14] S. Chen, B. Merriman, S. Osher, P. Smereka, A simple level set method for
solving Stefan problem, J. Comput. Phys. 135 (1997) 8–29.

[15] F. Gibou, R. Fedkiw, R. Caflisch, S. Osher, A level set approach for the
numerical simulation of dendritic growth, J. Sci. Comput. 19 (2002) 183–199.

[16] Y.-T. Kim, N. Goldenfeld, J. Dantzig, Computation of dendritic microstructures
using a level set method, Phys. Rev. E 62 (2000) 2471–2474.

[17] K. Wang, A. Chang, L.V. Kale, J.A. Dantzig, Parallelization of a level set method
for simulating dendritic growth, J. Parallel Distrib. Comput. 66 (2006)
1379–1386.

[18] M. Plapp, A. Karma, Multiscale finite-difference-diffusion-Monte-Carlo
method for simulating dendritic solidification, J. Comput. Phys. 165 (2000)
592–619.

[19] T.P. Schulze, Simulation of dendritic growth into an undercooled melt using
kinetic Monte Carlo techniques, Phys. Rev. E 78 (2008) 020601(R).

[20] G. Caginalp, Stefan and Hele-Shaw type models as asymptotic limits of the
phase-field equations, Phys. Rev. A 39 (1989) 5887–5896.

[21] C.C. Chen, C.W. Lan, Efficient adaptive three-dimensional phase-field simula-
tion of dendritic crystal growth from various supercoolings using rescaling,
J. Cryst. Growth 311 (2009) 702–706.

[22] C.C. Chen, Y.L. Tsai, C.W. Lan, Adaptive phase field simulation of dendritic
crystal growth in a forced flow: 2D vs. 3D morphologies, Int. J. Heat Mass
Transfer 52 (2009) 1158–1166.

[23] J.-M. Debierre, A. Karma, F. Celestini, R. Guérin, Phase-field approach for
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