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In this paper, we propose a simple and robust numerical method for the forced Korteweg–
de Vries (fKdV) equation which models free surface waves of an incompressible and invis-
cid fluid flow over a bump. The fKdV equation is defined in an infinite domain. However, to
solve the equation numerically we must truncate the infinite domain to a bounded domain
by introducing an artificial boundary and imposing boundary conditions there. Due to
unsuitable artificial boundary conditions, most wave propagation problems have numeri-
cal difficulties (e.g., the truncated computational domain must be large enough or the
numerical simulation must be terminated before the wave approaches the artificial bound-
ary for the quality of the numerical solution). To solve this boundary problem, we develop
an absorbing non-reflecting boundary treatment which uses outward wave velocity. The
basic idea of the proposing algorithm is that we first calculate an outward wave velocity
from the solutions at the previous and present time steps and then we obtain a solution
at the next time step on the artificial boundary by moving the solution at the present time
step with the velocity. And then we update solutions at the next time step inside the
domain using the calculated solution on the artificial boundary. Numerical experiments
with various initial conditions for the KdV and fKdV equations are presented to illustrate
the accuracy and efficiency of our method.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Surface waves of an incompressible and inviscid fluid flow in a two-dimensional channel have attracted much attention.
The first-order approximation of long nonlinear surface waves over a bump results in the forced Korteweg–de Vries (fKdV)
equation [1–21]:
gt þ 2kgx � 3ggx � ð1=3Þgxxx ¼ bx; x 2 ð�1;þ1Þ; t > 0; ð1Þ
where gðx; tÞ is a wave height measured from an undisturbed water level, k is a measurement of the perturbation of the
upstream uniform flow velocity from its critical value, and bðxÞ is a function related to the bump on the flat bottom. The fKdV
equation has been used to describe many physical situations, from the flow of shallow water over rocks to atmospheric, and
oceanic stratified flows encountering topographic obstacles, or even a moving pressure distribution over a free surface [22].
An important parameter in the fKdV equation is the Froude number F ¼ U=

ffiffiffiffiffiffi
gH

p
, which is defined as the ratio of the

upstream velocity to the critical speed of shallow water waves, where U and H are the velocity and depth of the uniform
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Fig. 1. Configuration of the flow forced by a bump on the flat bottom of a two-dimensional channel.
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flow far upstream, respectively, and g is the gravitational acceleration (see Fig. 1). F ¼ 1þ �k and � is a small positive number.
If F > 1 (F < 1), the flow is called supercritical (subcritical). If F > 1 on one side and F < 1 on the other side, the flow is called
critical. The terms critical, subcritical, and supercritical come from linear theory [23].

In the absence of a forcing term bx, the KdV equation is completely integrable and its solitary wave solutions can be found
analytically [24–32], while the fKdV equation is not known to be integrable and thus is studied mainly numerically. Forbes
and Schwartz [1] used the boundary integral method to obtain numerical solutions of the two-dimensional steady flow of a
fluid over a semi-circular obstacle. Vanden–Broeck [3] discovered the existence of two branches of supercritical positive sol-
itary wave solutions of the stationary fKdV equation. Forbes [4] computed numerical solutions of critical flow over a semi-
circular obstacle using the formulation of Forbes and Schwartz [1]. The flow was a uniform subcritical stream ahead of the
obstacle, followed by a uniform supercritical stream behind the obstacle. This type of solution is generally referred to as
‘hydraulic fall’. Camassa and Wu [5,6] performed a stability analysis of forced steady solitary-wave solutions when the forc-
ing term is given as a sech4ðxÞ-profile, and confirmed their analytical findings with accurate numerical simulations. Gong and
Shen [7] studied supercritical positive solitary wave solutions of the stationary fKdV equation under three types of forcing
functions, including a well-shape forcing, a sine-shape forcing, and a two semi-elliptic bump forcing. Shen et al. [12] dem-
onstrated numerically the collision process of the solitary waves in the fKdV equation using a semi-implicit pseudo-spectral
method. In the case of a single obstacle, Dias and Vanden–Broeck [13] found new solutions called ‘generalized hydraulic
falls’. These solutions are characterized by a supercritical flow on one side of the obstacle and a train of waves on the other.
Dias and Vanden–Broeck [14] computed new solutions for the flow past two obstacles of arbitrary shape. These solutions are
characterized by a train of waves ‘trapped’ between the obstacles. Choi et al. [18] studied solutions of the fKdV equation with
zero and nonzero initial conditions using a generalized Crank–Nicolson scheme for the time discretization and a Fourier-
spectral method for the space discretization. Donahue and Shen [19] demonstrated numerically the stability of the hydraulic
fall and cnoidal wave solution of the fKdV equation using a semi-implicit spectral method. Chardard et al. [20] derived solu-
tions of the stationary fKdV equation and studied their stability analytically and numerically.

The KdV and fKdV equations are originally defined in an infinite domain. When numerical simulations of the KdV and
fKdV equations are performed, it is a common practice to truncate the infinite domain to a bounded domain by introducing
an artificial boundary and imposing boundary conditions there. A proper choice of these boundary conditions should mimic
the absorption of waves traveling through the artificial boundary to the exterior domain and makes the truncated problem
equivalent to the full system. However, a poor choice of artificial boundary conditions may change the qualitative behavior of
the solutions due to spurious wave reflection [33]. In many previous studies for nonlinear waves [7,11,12,16,18–21,34–42],
periodic boundary conditions and zero Dirichlet boundary conditions were mainly used. Due to unsuitable artificial bound-
ary conditions, the truncated problem has numerical difficulties such as large computational domain and early termination
of the computation. To overcome these difficulties, we develop an absorbing non-reflecting boundary treatment which uses
outward wave velocity. We first calculate an outward wave velocity at the domain boundary from the solutions of previous
time steps and then we obtain a solution at the next time step on the artificial boundary. And we next update solutions at the
next time step inside the domain using the calculated solution on the artificial boundary.

The paper is organized as follows. In Section 2, we present a simple and robust boundary treatment for the fKdV equation.
We perform some characteristic numerical experiments with various initial conditions for the KdV and fKdV equations to
illustrate the accuracy and efficiency of our method in Section 3. Finally, conclusions are drawn in Section 4.

2. Numerical solution

In this section, we describe a simple and robust boundary treatment for the fKdV equation on a bounded domain. Let
X ¼ ½a; b� be a bounded computational domain which contains the compact support of bðxÞ;Nx be a positive integer,
h ¼ ðb� aÞ=Nx be a grid size, and xi ¼ aþ ði� 1Þh for i ¼ 1; . . . ;Nx þ 1. Let gn

i be an approximation of gðxi;nDtÞ for
n ¼ 0; . . . ;Nt , where Dt ¼ T=Nt is a time step size, T is a final time, and Nt is a total number of time steps.

A fully implicit discretization of Eq. (1) takes the form
gnþ1
i � gn

i

Dt
þ 2k� 3gnþ1

i

� �gnþ1
iþ1 � gnþ1

i�1

2h
�

gnþ1
iþ2 � 2gnþ1

iþ1 þ 2gnþ1
i�1 � gnþ1

i�2

6h3 ¼ biþ1 � bi�1

2h
: ð2Þ
Eq. (2) is nonlinear in terms of the unknown variable gnþ1
i . To avoid this, we approximate the nonlinear term gnþ1

i

gnþ1
iþ1
�gnþ1

i�1
2h

by gnþ1
2

i

gnþ1
iþ1
�gnþ1

i�1
2h , where the half time value gnþ1

2
i is calculated using an extrapolation from previous values, i.e., gnþ1

2
i ¼

2gn
i � gn�1

i . This yields



Fig. 2.
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gnþ1
i � gn

i

Dt
þ 2k� 3gnþ1

2
i

� �gnþ1
iþ1 � gnþ1

i�1

2h
�

gnþ1
iþ2 � 2gnþ1

iþ1 þ 2gnþ1
i�1 � gnþ1

i�2

6h3 ¼ biþ1 � bi�1

2h
: ð3Þ
Eq. (3) can be rearranged as
1

6h3 gnþ1
i�2 �

2k� 3gnþ1
2

i

2h
þ 1

3h3

 !
gnþ1

i�1 þ
1
Dt

gnþ1
i þ 2k� 3gnþ1

2
i

2h
þ 1

3h3

 !
gnþ1

iþ1 �
1

6h3 gnþ1
iþ2 ¼

1
Dt

gn
i þ

biþ1 � bi�1

2h
: ð4Þ
The advantages of this semi-implicit discretization are (i) the resulting difference equation is linear in gnþ1
i and (ii) the linear

system formed in Eq. (4) is a pentadiagonal matrix which can be inverted directly [43]. Note that a two-step method needs
two values g�1

i and g0
i in order to start the time integration (4). From the given initial condition g0

i , we set g�1
i ¼ g0

i for
convenience.

Since we truncate the unbounded domain to a bounded domain by introducing artificial boundaries, nonreflecting bound-
ary conditions are needed to ensure that no (or little) spurious wave reflection occurs from the artificial boundaries. Natu-
rally, the quality of the numerical solution depends on the boundary conditions. We propose a new simple and robust
boundary treatment which is based on the fact that the solution of the equation
gt þ cgxxx ¼ 0 ð5Þ
propagates in the opposite direction to the sign of a constant c. We consider the Fourier mode
gðx; tÞ ¼ ĝeiðcxþxtÞ; ð6Þ
where x is the frequency and c is the wave number. If we insert Eq. (6) into Eq. (5), the dispersion relation for Eq. (5) is
x ¼ c3c.Therefore, the wave propagates with speed �x=c ¼ �c2c [44]. For example, the time evolution of the solution of
gt � gxxx ¼ 0 is shown in Fig. 2 for the following initial conditions: gðx;0Þ ¼ sinðxÞ and gðx;0Þ ¼ sinð2xÞ. Note that the wave
number of the second initial condition is twice that of the first initial condition. Clearly, the solutions associated with differ-
ent wave numbers propagate with different velocities (the solution corresponding to the second initial condition moves four
times faster than that corresponding to the first initial condition). From the fact that the solution moves with a velocity (see
Fig. 2), we can approximate the solution at the ðnþ 1Þth time step by the solution at the nth time step and velocity.

In the fKdV equation (1), solitary waves are generated at the bump and propagate to the boundaries. Therefore, in our
method, for each time step we calculate the outward wave velocities from the solutions at time steps n and n� 1. Using
these velocities, we extrapolate the solutions (gnþ1

0 ;gnþ1
1 ;gnþ1

Nxþ1, and gnþ1
Nxþ2) at the ðnþ 1Þth time step near or on artificial

boundaries from the solutions at time steps n and n� 1. Then, we calculate the solutions (gnþ1
2 ; . . . ;gnþ1

Nx
) at the ðnþ 1Þth time

step in the interior region with the extrapolated solutions.
Let us now describe an algorithm for approximating gnþ1

0 ; gnþ1
1 , gnþ1

Nxþ1, and gnþ1
Nxþ2. Since the treatment of the two bound-

aries is essentially identical, we consider only the right boundary. To find gnþ1
Nxþ1 and gnþ1

Nxþ2, we follow the procedure below.

Step 1. Given three points ðxNx�1;gn
Nx�1Þ; ðxNx ;gn

Nx
Þ, and ðxNxþ1;gn

Nxþ1Þ on the wave (see Fig. 3), we find a quadratic function
f ðxÞ ¼ ax2 þ bxþ c which passes through the three points:
a

b
c

0
B@

1
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x2
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x2
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1
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(a) (b)
Time evolution of the solution of gt � gxxx ¼ 0 for two initial conditions: (a) gðx;0Þ ¼ sinðxÞ and (b) gðx;0Þ ¼ sinð2xÞ. In each figure, times are
=64;p=48;p=32, and p=16 (from left to right). The wave in (b) moves four times faster than that in (a).



Fig. 3. Schematic diagram for finding gnþ1
Nxþ1 (star symbol).
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Step 2. Using the bisection algorithm [45], we find a solution p to f ðxÞ ¼ gn�1
Nx

on the interval ½xNx ; xNxþ1�.
Step 3. We take gnþ1

Nxþ1 as f ðxNx þ xNxþ1 � pÞ. The boundary value gnþ1
Nxþ2 is computed in a similar manner.

Owing to the proposed boundary treatment, we can simulate the absorption of waves traveling through the artificial
boundaries to the exterior domain. Therefore, in contrast to previous studies, it is possible to run the numerical simulation
on the small computational domain until and after the waves reach the artificial boundary.

3. Numerical experiments

In this section, we perform some characteristic numerical experiments with various initial conditions for the KdV and
fKdV equations to illustrate the accuracy and efficiency of our method. We define the error of the numerical solution as [46]
en
max ¼max

i
gn

i � gðxi; nDtÞ
�� ��:
Unless otherwise specified, the forcing term bðxÞ in Eq. (1) is chosen as bðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

for jxj 6 1 and bðxÞ ¼ 0 for jxj > 1, and
we take the time and space step sizes as 10�4 and 10�2, respectively.

3.1. Traveling wave solutions

For c < 2k, the KdV equation, gt þ 2kgx � 3ggx � ð1=3Þgxxx ¼ 0, has a traveling solitary-wave solution
Sc;x0 ðx; tÞ ¼ ð2k� cÞsech2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2k� cÞ

p
ðx� x0 � ctÞ=2

� �
;

where c stands for the traveling velocity of the wave and x0 is a phase shift. With c > 0, the traveling solitary wave moves to
the downstream. Thus, in previous studies, the numerical simulation was terminated before the wave reaches artificial
boundary due to wave reflection. To examine the performance of our method, we consider the following initial condition:
Fig. 4. Time evolution of the solution g of gt þ 2kgx � 3ggx � ð1=3Þgxxx ¼ 0 with k ¼ 0:5 and c ¼ 0:5.



Fig. 5.
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gðx;0Þ ¼ Sc;x0 ðx;0Þ þ Sc;x1 ðx; 0Þ þ Sc;x2 ðx;0Þ
on the domain X ¼ ½�25;25� with k ¼ 0:5; c ¼ 0:5; x0 ¼ �15; x1 ¼ 0, and x2 ¼ 15. Fig. 4 shows the time evolution of the
solution g of the KdV equation. It is clear that the simulation continues until the waves completely move out of the domain
due to our boundary treatment.

3.2. Single and two soliton solutions – comparison with previous results

In [35], the following KdV equation,
gt þ 6ggx þ gxxx ¼ 0; ð7Þ
is studied numerically by the semi-implicit method and zero Dirichlet boundary conditions. A single soliton solution of Eq.
(7) is
gðx; tÞ ¼ c
2

sech2
ffiffiffi
c
p

2
ðx� ct þ x0Þ

� 	
;

Time evolution of the single soliton solution g of gt þ 6ggx þ gxxx ¼ 0 obtained with the boundary treatment in Ref. [35] (a) and in our method (b).
nes and open circles represent the numerical and exact solutions, respectively. For both, we take h ¼ 10�2 and Dt ¼ 10�2. (c) Evolution of the error
th iteration number for both methods. The errors en

max at t ¼ 40 are 2.50e�1 and 2.80e�3 for previous and our methods, respectively.
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where x0 is the initial position of the soliton and c is related to the amplitude of the soliton. For the initial wave

gðx; 0Þ ¼ 1
4 sech2

ffiffiffiffiffi
0:5
p

2 x
� �

on the domain X ¼ ½�20;20�, Fig. 5(a) and (b) show the time evolution of the solution g of Eq. (7)

obtained with the boundary treatment in Ref. [35] and in our method, respectively. And the evolution of the error en
max with

iteration number for both methods is shown in Fig. 5(c). For both, we take h ¼ 10�2 and Dt ¼ 10�2. From t ¼ 0 until t ¼ 20,
the numerical results of both cases stay very close to the exact solutions (the errors en

max at n ¼ 2000 (t ¼ 20) are 1.43e�3 and
1.35e�3 for previous and our methods, respectively). However, in the former case (Fig. 5(a)), as time evolves, i.e., as the wave
approaches the artificial boundary, the large error comes from the artificial boundary (the errors en

max at t ¼ 30 and 40 are
3.58e�2 and 2.50e–1, respectively). In the latter case (Fig. 5(b)), the error en

max is less than 3.49e–3 during our entire
simulation.

Next, a particular case with the initial condition gðx;0Þ ¼ 6sech2x yields a two soliton solution
Fig. 6.
and das
iteratio
gðx; tÞ ¼ 12
3þ 4 coshð2x� 8tÞ þ coshð4x� 64tÞ
½3 coshðx� 28tÞ þ coshð3x� 36tÞ�2

:

Note that the initial wave disintegrates into two solitons as time evolves. We take the initial condition as gðx;0Þ ¼ 6sech2x on
the domain X ¼ ½�10;10�, and use h ¼ 10�2 and Dt ¼ 10�5. Fig. 6(a) and (b) show the time evolution of the solution g of Eq.
(7) obtained with the boundary treatment in Ref. [35] and in our method, respectively. And the evolution of the error en

max

with iteration number for both methods is shown in Fig. 6(c). For both, the error en
max is less than 1.24e�1 within t ¼ 0:5.
(a) (b)

(c)
Time evolution of the two soliton solution g of gt þ 6ggx þ gxxx ¼ 0 obtained with the boundary treatment in Ref. [35] (a) and in our method (b). Solid
hed lines represent the numerical and exact solutions, respectively. For both, we take h ¼ 10�2 and Dt ¼ 10�5. (c) Evolution of the error en

max with
n number for both methods. The errors en

max at t ¼ 0:6 are 7.66 and 1.39e�1 for previous and our methods, respectively.



(a) (b)

(c)
Fig. 7. Time evolution of the solution g of the fKdV equation with zero initial condition. (a) Results obtained by the spectral method for X ¼ ½�600;600� (the
figure is shown only for �30 6 x 6 40). (b) Results obtained by the spectral method for X ¼ ½�30;40�. (c) Results obtained by our method for X ¼ ½�30;40�.
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However, when t ¼ 0:6, the error en
max of the former case is 7.66 while the error en

max of the latter case is 1.39e�1. As we can
see in Figs. 5 and 6, our method can produce permeable and non-reflecting waves in a small bounded domain.
3.3. Numerical solutions with zero initial condition – comparison with previous results

In this section, numerical solutions of the fKdV Eq. (1) with zero initial condition gðx;0Þ � 0 are discussed. In previous
studies used the spectral method, the sufficiently large computational domain was employed to satisfy the periodicity re-
quired by the spectral method used. Fig. 7(a) shows the time evolution of the solution g of Eq. (1) using the spectral method.
In this simulation, a generalized Crank–Nicolson scheme is used to discretize the temporal variable, the periodic boundary
conditions are used for the spatial variable, and the computational domain is X ¼ ½�600;600� (this problem setting is the
same as Section 4.3.2 of Ref. [18]). Owing to the sufficiently large computational domain, there is no spurious wave reflection
occurs from artificial boundaries. However, when the computational domain is small (X ¼ ½�30;40� in Fig. 7(b)), small oscil-
latory waves are generated and the stem waves are broken. Fig. 7(c) shows the time evolution of the solution g on
X ¼ ½�30;40� using our method. As we can see, the results in Fig. 7(c) are qualitatively in agreement with the results in
Fig. 7(a) despite the use of small computational domain. Owing to the use of small computational domain, the CPU time used
in our method (241.1 s) is less than the one needed in the spectral method (2565.3 s).

As we can see in Fig. 7, our method does not have a domain size dependency. To investigate the domain size dependency
in more detail, we perform a number of simulations for the above problem on X ¼ ½�30;40�; ½�30;50�, and ½�30;60�. Fig. 8
shows the time evolution of the solution g on X ¼ ½�30;40� (open circles), ½�30;50� (stars), and ½�30;60� (diamonds). Since



Fig. 8. Time evolution of the solution g on X ¼ ½�30;40� (open circles), ½�30;50� (stars), and ½�30;60� (diamonds). Times are t ¼ 10, 12, 14, 16, 18, and 20
(from bottom to top). Our method does not have a domain size dependency.
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our method does not produce reflecting waves, we can obtain qualitatively the same solutions near and on the artificial
boundaries regardless of domain size.

Next, in Fig. 7(a), there is no spurious wave reflection in the short time simulation since the waves generated by the bump
do not yet reach the boundary of the sufficiently large computational domain. To investigate the long time behavior of the
solution g, we run the simulation for the problem in Fig. 7(a) until t ¼ 200. Figs. 9(a) and (b) show the solution g on
X ¼ ½�600;600� obtained by the spectral and proposed methods at t ¼ 200, respectively. In the case of the spectral method
(Fig. 9(a)), as time evolves, the waves, which propagate to the right boundary and then move out, reenter through the left
boundary due to the periodicity. As a result, in the long time simulation, there are oscillatory waves with high amplitude
despite the use of sufficiently large computational domain (see the left part of Fig. 9(a)). However, in the case of the proposed
method (Fig. 9(b)), there is still no spurious wave reflection and no oscillatory wave in the long time simulation.

3.4. Evolution of the error on the boundary

To illustrate the capability of our method for absorbing the waves without reflection, we solve the fKdV equation (1) with
zero initial condition gðx;0Þ � 0 on X ¼ ½�40;40�. Note that we consider a reference solution gn

ref , because it is generally hard
to find the exact solution of the fKdV equation. We define the reference solution gn

ref as the numerical solution calculated on
X ¼ ½�600;600� with zero Dirichlet boundary conditions, gðx; tÞ ¼ 0 at x ¼ �600, 600 (we employ the sufficiently large com-
Fig. 9. Long time simulation of the solution g on X ¼ ½�600;600�. (a) and (b) are the results obtained by the spectral and proposed methods at t ¼ 200,
respectively.



Fig. 10. Evolution of the error enðxÞ ¼ gnðxÞ � gn
ref ðxÞ

�� �� at x ¼ 36, 38, 40 with iteration number.
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putational domain to avoid the wave reflection occurs from artificial boundaries due to the boundary conditions) and then
define the error as enðxÞ ¼ gnðxÞ � gn

ref ðxÞ
�� ��. Fig. 10 shows the evolution of the error enðxÞ at x ¼ 36, 38, 40 with iteration num-

ber. At x ¼ 40, the errors on a short time scale are zero or very small, but the errors on a long time scale are large compared to
those on a short time scale. However, our method allows to absorb the waves, which travel through the artificial boundary to
the exterior domain, without reflection, and as a result, the errors at x ¼ 36, 38 are zero or very small on both short and long
time scales, i.e., the interior waves are almost not affected by the artificial boundary.
4. Conclusions

In this paper, we proposed a simple and robust numerical method for the fKdV equation. To solve the fKdV equation
numerically we must truncate an infinite domain to a finite domain by introducing an artificial boundary and imposing
boundary conditions there. Due to unsuitable artificial boundary conditions, most wave propagation problems have numer-
ical difficulties. To solve this boundary problem, we developed an absorbing non-reflecting boundary treatment which uses
outward wave velocity. The basic idea of the technique was that we first calculate an outward wave velocity from the solu-
tions at the previous and present time steps and then we obtain a solution at the next time step on the artificial boundary by
moving the solution at the present time step with the velocity. And we next update solutions at the next time step inside the
domain using the calculated solution on the artificial boundary. Numerical experiments with various initial conditions for
the KdV and fKdV equations were presented to illustrate the accuracy and efficiency of our method. Owing to our boundary
treatment, we could simulate the absorption of waves traveling through the artificial boundary to the exterior domain with-
out reflection. Therefore, in contrast to previous studies, it was possible to run the numerical simulation on the small com-
putational domain until and after the waves reach the artificial boundary.
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