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AN ADAPTIVE FINITE DIFFERENCE METHOD USING

FAR-FIELD BOUNDARY CONDITIONS FOR THE

BLACK–SCHOLES EQUATION

Darae Jeong, Taeyoung Ha, Myoungnyoun Kim, Jaemin Shin,

In-Han Yoon, and Junseok Kim

Abstract. We present an accurate and efficient numerical method for
solving the Black–Scholes equation. The method uses an adaptive grid
technique which is based on a far-field boundary position and the Peclet
condition. We present the algorithm for the automatic adaptive grid gen-
eration: First, we determine a priori suitable far-field boundary location
using the mathematical model parameters. Second, generate the uniform
fine grid around the non-smooth point of the payoff and a non-uniform
grid in the remaining regions. Numerical tests are presented to demon-
strate the accuracy and efficiency of the proposed method. The results
show that the computational time is reduced substantially with the ac-
curacy being maintained.

1. Introduction

In this paper, we develop an accurate and efficient numerical method to
solve the Black–Scholes (BS) equation:

∂u

∂t
= −1

2
(σx)2

∂2u

∂x2
− rx

∂u

∂x
+ ru for (x, t) ∈ (0,∞)× [0, T ),(1)

where u(x, t) is the value of the derivative security, x is the value of the under-
lying security, t is the time, T is the expiry date, r is the risk-free interest rate
and σ is the volatility of the underlying asset [2, 16]. By changing the variable
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with τ = T − t, we can rewrite Eq.(1) as follows:

∂u

∂τ
=

1

2
(σx)2

∂2u

∂x2
+ rx

∂u

∂x
− ru for (x, τ) ∈ (0,∞)× (0, T ].(2)

The initial condition is given by

u(x, 0) = p(x).(3)

The original continuous BS problem is posed on an infinite spatial domain
(0,∞). However, we need a finite domain and boundary condition for solving
the problem numerically.

An adaptive grid generation technique has been used to reduce the number
of grid-points maintaining the discretization error at a prescribed level. Many
people have been studied the adaptive algorithm in space and time. In [17, 18],
the authors used an adaptive technique proposed in [13] based on local dis-
cretization error. Moreover, the computational grid is refined in blocks and the
grid and time step change at every discrete time point in [14]. The authors in
[6] developed space-time adaptive and high-order methods for valuing Amer-
ican options using PDE approach. In [15], the grid and time step sizes were
chosen dynamically to satisfy a bound on the global error at the expiry date.
In addition, an adaptive finite element discretization was developed in [1, 19]
for American options. Also, the authors in [25] applied a discrete singular
convolution algorithm with an adaptive mesh.

The purpose of this work is to present an adaptive grid distribution de-
pending on a far-field boundary position and the Peclet condition to solve the
Black–Scholes equation accurately and efficiently. The proposed algorithm is as
follows: First, we determine a priori suitable far-field location using estimates
with a given error tolerance. Next, we distribute a uniform fine grid around the
strike point and a non-uniform grid in the remaining regions, using the Peclet
condition.

This paper is organized as follows. In Section 2, we discretize the BS equa-
tion on a non-uniformly spaced grid. In addition, we present a detailed dis-
cussion of our proposed adaptive grid generating method, which depends on a
far-field boundary condition and the Peclet condition of the BS equation. Sec-
tion 3 provides two numerical results for uniform and adaptive cases. Section
4 concludes with a short summary.

2. Numerical solution

2.1. Discretization with finite differences

The finite difference method has been applied to pricing financial contracts
for many years [21]. For more details about finite difference methods in com-
putational finance, we refer the reader to the books [7, 22, 23] and papers
[3, 4, 12, 20].
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The BS equation is discretized on a grid defined by x0 = 0 and xi+1 = xi+hi

for i = 0, . . . , Nx − 1, where Nx is the number of grid intervals and hi is the
grid spacing, see Fig. 1. And we assume that xNx

= Smax and hNx
= hNx−1.

0

x0 x1 · · · xi−1 xi xi+1 · · ·

Smax

xNx

x

hi−1 hi

Figure 1. A non-uniform grid with space step sizes hi.

Let us denote the numerical approximation of the solution by

un
i ≈ u(xi, n∆τ),

where ∆τ = T/Nτ is the time step size and Nτ is the total number of time
steps. By applying an implicit scheme to Eq.(2), we have

un+1
i − un

i

∆τ
=

σ2x2
i

2

(

∂2u

∂x2

)n+1

i

+ rxi

(

∂u

∂x

)n+1

i

− run+1
i ,(4)

where the first and second derivatives are defined as
(

∂u

∂x

)n+1

i

= − hi

hi−1(hi−1 + hi)
un+1
i−1 +

hi − hi−1

hi−1hi
un+1
i +

hi−1

hi(hi−1 + hi)
un+1
i+1 ,

(

∂2u

∂x2

)n+1

i

=
2

hi−1(hi−1 + hi)
un+1
i−1 − 2

hi−1hi
un+1
i +

2

hi(hi−1 + hi)
un+1
i+1 .

Then we can rewrite Eq.(4) as

αiu
n+1
i−1 + βiu

n+1
i + γiu

n+1
i+1 = fn

i ,(5)

where

αi =
−σ2x2

i + rxihi

hi−1(hi−1 + hi)
, βi =

σ2x2
i − rxi(hi − hi−1)

hi−1hi
+ r +

1

∆τ
,

γi =
−σ2x2

i − rxihi−1

hi(hi−1 + hi)
, fn

i =
un
i

∆τ
.

We impose the zero Dirichlet boundary condition at x = 0 and the linear
boundary condition [17, 21, 24] at x = Smax, which is defined by

∂2u

∂x2
(Smax, τ) = 0 for τ ∈ [0, T ].(6)

Then Eq.(6) is discretized by
(

un+1
Nx−1 − 2un+1

Nx
+ un+1

Nx+1

)

/h2
Nx−1 = 0. By sub-

stituting the relation un+1
Nx+1 = 2un+1

Nx
− un+1

Nx−1 into Eq.(5), we get

(αNx
− γNx

)un+1
Nx−1 + (βNx

+ 2γNx
)un+1

Nx
= fn

Nx
.(7)
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The matrix form of the linear system (5) and (7) can be rewritten as














β1 γ1 0 . . . 0
α2 β2 γ2 . . . 0
...

. . .
. . .

. . .
...

0 . . . αNx−1 βNx−1 γNx−1

0 . . . 0 αNx
− γNx

βNx
+ 2γNx





























un+1
1

un+1
2
...

un+1
Nx−1

un+1
Nx















=















fn
1

fn
2
...

fn
Nx−1

fn
Nx















.

We solve the linear system by using the Thomas algorithm, which inverts the
tri-diagonal matrix directly.

2.2. Adaptive grid generation technique

In this section, we propose an improved adaptive grid technique which is
based on a far-field boundary position of the BS equation and the Peclet con-
dition for the stability of solutions. If the computational domain size and grid
points are large enough, then we can get an accurate result, but we need more
computational resources. For a given number of grid points, we want to improve
the computational accuracy and efficiency by using adaptive grid techniques.
First, we decide the computational domain size, Smax, to be as small as possi-
ble while keeping the resulting solution within an error tolerance. Second, we
adaptively distribute grid points so that we get an accurate numerical solution.

2.2.1. Choice of far-field boundary position. Let u(x, τ) and w(x, τ) be so-
lutions of Eq.(2) on an infinite domain (0,∞) × (0, T ] and a finite domain
(0, Smax) × (0, T ], respectively. For the boundary condition at x = Smax, we
set w(Smax, τ) = p(Smax) for all τ ∈ (0, T ).

First, we consider a European call option, whose payoff function is given as
p(x) = max(x − K, 0). Since −K + x ≤ p(x) ≤ x and Eqs.(11) and (12) in
Appendix A, we can say that −Ke−rτ + x ≤ u(x, τ) ≤ x. Therefore, we have
supτ∈(0,T ) |u(Smax, τ) − w(Smax, τ)| ≤ K. Then, by Eq.(14) in Appendix A,

|u(x, τ)− w(x, τ)| ≤ Ke−
ln

Smax
K (ln Smax

K
+min{0,σ2−2r}τ)

2σ2τ

for x ∈ [0,K]. Therefore, if we want the error on the finite domain to be less
than K/A, then Smax should satisfy the following inequality:

Ke−
ln

Smax
K (ln Smax

K
+min{0,σ2−2r}τ)

2σ2τ ≤ K

A
.

This estimation tells us that if

Smax ≥ Ke−
1
2
min{0,(σ2−2r)τ}+1

2

√
(min{0,(σ2−2r)τ})2+8σ2τ lnA,(8)

then we can be sure that w(x, τ), the solution of the truncated domain problem,
gives us a call option value that is within K/A from the correct value [11].

Next, let us consider the other type of European call options, a cash-or-
nothing option, whose payoff function is p(x) = Cash if x > K and p(x) = 0
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otherwise. Similar to the first case, since supτ∈(0,T ) |u(Smax, τ)−w(Smax, τ)| ≤
Cash, for all x ∈ (0, Smax), u(x, τ) and w(x, τ) satisfy the following inequality:

|u(x, τ)− w(x, τ)| ≤ Cash e−
ln

Smax
K (ln Smax

K
+min{0,σ2−2r}τ)

2σ2τ .

Therefore, if we want the error on the finite domain to be less than K/A, then
we need

Smax ≥ Ke−
1
2
min{0,(σ2−2r)τ}+ 1

2

√
min{0,(σ2−2r)τ}2+8σ2τ ln(A Cash/K).(9)

These estimations are essential when performing numerical approximations of
infinite domain problems since we must use a finite domain in finite difference
schemes. Therefore, for the accuracy and efficiency of our proposed method,
we utilize this error estimation to choose the far-field boundary position.

2.2.2. Non-uniform grid generation process with the Peclet condition. The
adaptive grid generation process aims to creat a grid with a uniform fine grid
around the strike price K and an increasingly large grid size as we move toward
the far-field boundary. To do this, we propose a grid generating function h(x)
based on the Peclet condition

h(x) =

{

p(x−K − (m− 0.5)h̄)d + h̄ if x ≥ K + (m− 0.5)h̄,
p(x−K + (m− 0.5)h̄)d + h̄ if x ≤ K − (m− 0.5)h̄,

where p, d and h̄ are real positive numbers and m is a natural number. First,
we allocate 2m grid points around the strike price K with a grid size of h̄, see
Fig. 2. Then, we start at xi = K+(m−0.5)h̄ and define xi+1 = xi+h(xi). We
continue this procedure until we reach the point where xNx−1 ≤ Smax < xNx

,
at this stage we reset hNx−1 = hNx−2. Similarly, for the grid generation of left
side, we start at xi = K−(m−0.5)h̄ and define xi−1 = xi−h(xi). We continue
this process until we reach the point where x0 ≤ 0 < x1. If x0 < 0, then we
redefine x0 = 0. This procedure is described schematically in Fig. 2. Note that
we also show an illustration of initial and later solutions on the adaptive grid.

Now, for numerical solutions which are free of spurious oscillations, the space
step size must satisfy the following Peclet condition [26]:

hi <
σ2

r
xi.(10)

The derivation of this condition (10) is given in Appendix B. In this paper, we
will choose a piecewise linear grid function h(x) whose slope is less than σ2/r
to obtain non-oscillatory solutions. We will use the parameter p = 0.05σ2/r
and d = 1 for numerical examples.

3. Computational results

In this section, we perform numerical experiments to test the accuracy and
efficiency of the proposed method. The main focus of these tests is on the
performance of the proposed adaptive grid technique compared to the standard
uniform grid method. As the benchmark problems, we consider the European
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K Smax0

m mx0x1 x2 x3· · · x
Nx

x
Nx−1

x
Nx−2· · ·

x

h

Initial

T = 1.5

Figure 2. Construction of the adaptive grid using the func-
tion h(x).

option problems for numerical examples. These problems are of great interest
to academicians in the finance literature and often used to show the accuracy
of a given numerical scheme [5, 8, 9].

3.1. Far-field position

We study the effect of the relation between the domain size L and expiry
date T using the European vanilla call option. The computational domain is
Ω = (0, L) with a uniform grid. The parameters σ = 0.35, r = 0.05 and h = 1
are used. For each case, we ran the calculation up to time T with a time step
of ∆τ = 0.01. The initial condition is u(x, 0) = max(x −K, 0) with the strike
price K = 100.

For this European call option, the closed form solution of the Black–Scholes
equation is

u(x, τ) = xN(d1)−Ke−rτN(d2), ∀x ∈ [0, L], ∀τ ∈ [0, T ]

d1 =
ln (x/K) +

(

r + 1
2σ

2
)

τ

σ
√
τ

, d2 = d1 − σ
√
τ ,
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(a) L = 150 and T = 1
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(c) L = 200 and T = 5

Figure 3. Initial profiles, numerical results and exact solu-
tions with different domain sizes and times.

where

N(d) =
1√
2π

∫ d

−∞

exp

(

−x2

2

)

dx

is the cumulative distribution function for the standard normal distribution [2].
Figures 3(a), (b) and (c) show the initial profile, numerical and exact solu-

tions. When L = 150 and T = 1, we can observe that there is a large difference
between the numerical and exact solutions (see Fig. 3(a)). With increased do-
main size L = 200, we get a good result in Fig. 3(b). However, when we increase
the time to T = 5, Fig. 3(c) shows a large difference between the numerical
and exact solutions. This result implies that we need a large enough domain
size in relation to the size of T .

3.2. Comparison of uniform and adaptive grid methods

To demonstrate the performance of the proposed adaptive grid technique
with a far-field boundary and Peclet conditions, we compare the numerical
results of both the uniform and adaptive grid methods. For the comparison
study, we set σ = 0.35, r = 0.05, ∆τ = 0.001, p = 0.05σ2/r and d = 1. Also,
the far-field boundary position Smax is set to achieve an accuracy of K/A = 0.1
according to the conditions (8) and (9) for each case. To compare numerical
results on uniform and adaptive grids, we use the relative root mean square
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error (RMSE) on [0.95K, 1.05K]. Here, the relative RMSE is defined as

Relative RMSE =

√

√

√

√

1

N

N
∑

i=1

(

ui − u(xi)

u(xi)

)2

,

where N is the total number of points on [0.95K, 1.05K], ui and u(xi) are
numerical and exact solutions, respectively.

3.2.1. Call option on a maximum of one asset. The initial state is given by
u(x, 0) = max(x −K, 0) where K = 100. Table 1 shows computational results
such as RMSE in [0.95K, 1.05K], relative CPU time and grid points Nx at time
T = 1 with adaptive and uniform grids. In this numerical test, we use different
space steps: h̄ = 2/2m, where m = 0, 1, 2, . . . , 9. As shown in Table 1, the CPU
times taken from the uniform grids are larger than those of the adaptive grid
method. Also, the total number of grid points Nx on the adaptive grid is much
smaller than on the uniform grid. Overall, the adaptive grid outperforms the
uniform grid.

Table 1. Comparison of relative CPU time and grid points
Nx on adaptive and uniform grids at time T = 1 with call
option on the maximum of one asset.

Case RMSE
CPU time Nx

Adaptive Uniform Adaptive Uniform

h̄ = 2 1.179E-4 1 1 88 185
h̄ = 1 1.179E-4 1 1.5 149 368

h̄ = 1/2 1.179E-4 1 4.5 259 736
h̄ = 1/22 1.179E-4 1 5.75 461 1470
h̄ = 1/23 1.179E-4 1 14.50 851 2939
h̄ = 1/24 1.179E-4 1 24.73 1619 5877
h̄ = 1/25 1.179E-4 1 34.61 3137 11754
h̄ = 1/26 1.179E-4 1 44.45 6165 23506
h̄ = 1/27 1.179E-4 1 58.99 12207 47011
h̄ = 1/28 1.179E-4 1 78.99 24301 94022

Figure 4 shows the result of the RMSE on [0.95K, 1.05K] with different Nx

at time T = 1. In Fig. 4, ‘◦’ and ‘✸’ show the results using h̄ = 1 and 0.25,
respectively and ‘•’ and ‘�’ represent h̄ = 1 and 0.25 on the uniform mesh,
respectively. From these results, we see the convergence of the relative RMSE
of the adaptive grid as the number of grid points around the strike price K
increases.
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Figure 4. Relative RMSE on [0.95K, 1.05K] with different
Nx at T = 1. Lines with symbols, ‘◦’ and ‘✸’ represent h̄ = 1
and 0.25 on the adaptive mesh, respectively. Also, symbols,
‘•’ and ‘�’ represent h̄ = 1 and 0.25 on the uniform mesh,
respectively.

3.2.2. Cash-or-nothing option. Next, we perform the same comparison study
using a cash-or-nothing option. The initial state is given by

u(x, 0) =

{

Cash if x ≤ K
0 otherwise.

For this test, we use Cash = 100. Table 2 shows computational results such
as relative CPU time, RMSE on [0.95K, 1.05K] and grid points Nx at time
T = 1 on adaptive and uniform grids with different space step size h = 2/2m,
where m = 0, 1, 2, . . . , 9. We can see that the adaptive grid technique is more
efficient than uniform grid.

Figure 5 shows the result of the RMSE on [0.95K, 1.05K] with different Nx

at time T = 1. In Fig. 5, ‘◦’ and ‘✸’ show the results of h̄ = 1 and 0.25 on the
adaptive mesh, respectively. And symbols, ‘•’ and ‘�’ represent h̄ = 1 and 0.25
on the uniform mesh, respectively. From these results, we see the convergence
of the relative RMSE of the adaptive grid as the number of grid points around
the strike price K increases.

4. Conclusions

An accurate and efficient numerical method for solving the Black–Scholes
equation was derived in this article. The method uses an adaptive technique
which is based on a far-field boundary position of the BS equation and the
Peclet condition for non-oscillatory solutions. Furthermore, since the proposed
adaptive grid method is based on a far-field boundary position and the Peclet
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Table 2. Comparison of relative CPU time and grid points,
Nx on adaptive and uniform grids at time T = 1 for a given
relative RMSE tolerance with a cash-or-nothing option payoff.

Case RMSE
CPU time Nx

Adaptive Uniform Adaptive Uniform

h̄ = 2 3.548E-5 1 1.36 88 185
h̄ = 1 3.548E-5 1 1.5 155 368

h̄ = 1/2 2.760E-5 1 4.0 232 736
h̄ = 1/22 2.760E-5 1 6.0 394 1470
h̄ = 1/23 2.760E-5 1 18.88 710 2939
h̄ = 1/24 2.760E-5 1 45.15 1332 5877
h̄ = 1/25 2.760E-5 1 47.59 2564 11754
h̄ = 1/26 2.760E-5 1 54.10 5014 23506
h̄ = 1/27 2.760E-5 1 71.31 9904 47011
h̄ = 1/28 2.760E-5 1 108.02 19672 94022

0 100 200 300
0

2

4

6

8

x 10
−4

R
el

at
iv

e 
R

M
S

E

Nx

 

 

Adaptive mesh
Uniform mesh

(a) h̄ = 1

0 500 1000 1500
0

1

2

3

4

5

6

x 10
−4

R
el

at
iv

e 
R

M
S

E

Nx

 

 

Adaptive mesh
Uniform mesh

(b) h̄ = 0.25

Figure 5. Relative RMSE on [0.95K, 1.05K] with different
Nx at T = 1. Lines with symbols, ‘◦’ and ‘✸’ represent h̄ = 1
and 0.25 on the adaptive mesh, respectively. Also, symbols,
‘•’ and ‘�’ represent h̄ = 1 and 0.25 on the uniform mesh,
respectively.

condition for non-oscillatory solutions, we get efficient and accurate numerical
solutions.

In this paper, to demonstrate the accuracy and efficiency of our proposed
method, numerical tests were performed. Test results show that the computa-
tional time on the adaptive grid was reduced substantially when compared to
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the uniform grid. From these numerical results, we confirmed the effectiveness
of the proposed adaptive grid method.

Appendix A. Far field boundary condition

Let u and w be classical solutions of Eqs.(2) and (3) on an infinite domain
(0,∞)×(0, T ] and a finite domain (0, Smax)×(0, T ], respectively. Assume that,
for some positive constant ν0, ν1, κ0 and κ1, the payoff function p(x) is satisfied
as

−ν0 + ν1x ≤ p(x) ≤ κ0 + κ1x(11)

for x ∈ (0, ∞). Then

−ν0e
−rτ + ν1x ≤ u(x, τ) ≤ κ0e

−rτ + κ1x(12)

for (x, τ) ∈ (0, ∞) × (0, T ). Then, at every point (x, τ) ∈ (0, Smax) × (0, T ]
satisfying

ln
Smax

x
≥ −(σ2 − 2r)τ,(13)

we have

|u(x, τ) − w(x, τ)|

≤ ‖u− w‖L∞(Smax×(0,τ))e
− ln

Smax
K (ln Smax

K
+min{0,σ2−2r}τ)

2σ2τ .(14)

Please refer to [11] for more details about the far-field boundary conditions for
the Black–Scholes equations.

Appendix B. Stability condition

In this Appendix, we will derive the conditions under which the implicit
scheme for Eq.(2) will not make spurious oscillations by using the idea in ref-
erence [26]. For simplicity, we define as ki = 1

2σ
2x2

i and ai = rxi, then we
rewrite Eq.(5) as

(aihi − ki)∆τ

hi−1(hi−1 + hi)
un+1
i−1 +

(ki − ai(hi − hi−1))∆τ + (1 + r∆τ)hi−1hi

hi−1hi
un+1
i

− (ki + aihi−1)∆τ

hi(hi−1 + hi)
un+1
i+1 = un

i .(15)

Next, we substitute un+1
i = βn+1

i /(1 + r∆τ)n into Eq.(15), where the super-
script n for (1 + r∆τ) represents an exponent. Then, we obtain

(ki − ai(hi − hi−1))∆τ + (1 + r∆τ)hi−1hi

hi−1hi
βn+1
i(16)

= (1 + r∆τ) βn
i +

(ki − aihi)∆τ

hi−1(hi−1 + hi)
βn+1
i−1 +

(ki + aihi−1)∆τ

hi(hi−1 + hi)
βn+1
i+1 .
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In order for all coefficients of βn
i in Eq.(16) to be positive, ki −hiai > 0 should

be satisfied. That is, we have the Peclet condition [26]:

1

hi
>

r

σ2xi
.

Now, if the Peclet condition is satisfied, then all the coefficients of β in Eq.(16)
are positive. Let βmax

i = max(βn
i , β

n+1
i−1 , β

n+1
i+1 ), then Eq.(16) can be written as

(ki − ai(hi − hi−1))∆τ + (1 + r∆τ)hi−1hi

hi−1hi
βn+1
i

≤ (1 + r∆τ) βmax
i +

(ki − aihi)∆τ

hi−1(hi−1 + hi)
βmax
i +

(ki + aihi−1)∆τ

hi(hi−1 + hi)
βmax
i .

Therefore,

βn+1
i ≤ βmax

i .(17)

And by a similar argument we obtain

βn+1
i ≥ βmin

i ,(18)

where βmin
i = min(βn

i , β
n+1
i−1 , β

n+1
i+1 ). By Eqs. (17) and (18), new local maxima

or minima of the numerical solution for βn+1
i can not occur. Since un+1

i =

βn+1
i /(1 + r∆τ)n, the numerical solution un+1

i does not contain oscillations if
conditions (17) and (18) are satisfied.
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