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We present a new phase-field method for modeling surface tension effects on multi-component immis-
cible fluid flows. Interfaces between fluids having different properties are represented as transition
regions of finite thickness across which the phase-field varies continuously. At each point in the transi-
tion region, we define a force density which is proportional to the curvature of the interface times a
smoothed Dirac delta function. We consider a vector valued phase-field, the velocity, and pressure fields
which are governed by multi-component advective Cahn–Hilliard and modified Navier–Stokes equations.
The new formulation makes it possible to model any combination of interfaces without any additional
decision criteria. It is general, therefore it can be applied to any number of fluid components. We give
computational results for the four component fluid flows to illustrate the properties of the method.
The capabilities of the method are computationally demonstrated with phase separations via a spinodal
decomposition in a four-component mixture, pressure field distribution for three stationary drops, and
the dynamics of two droplets inside another drop embedded in the ambient liquid.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The interfacial hydrodynamics of a mixture of different fluids
plays an increasingly important role in many current scientific
and bio-medical engineering applications [15,25,27]. Examples in-
clude extractors, separators, reactors, sprays, polymer blends, and
microfluidic technology [26,27]. A fluid–fluid interface is in a state
of tension, as though interfaces have an elastic skin, because fluid
molecules at or near the interface experience uneven molecular
forces of attraction [28]. Due to the inherent nonlinearities, topo-
logical changes, and the complexity of dealing with the unknown,
active, and moving surfaces, multiphase flows are challenging.
Much effort has been put into studying such flows through analy-
sis, asymptotics, and numerical simulation.

There are many ways to characterize and model moving inter-
faces. The two main approaches to simulating multiphase and mul-
ticomponent flows are interface tracking and interface capturing.
In interface tracking methods (examples include volume-of-fluid
[14,31], which tracks the volume of the fluid in each cell; front-
tracking [38], immersed boundary [39], and immersed interface
[24]), Lagrangian (or semi-Lagrangian) particles are used to track
the interfaces. In interface capturing methods such as level-set
[5,29,34,35] and phase-field methods [6,18,40], the interface is
ll rights reserved.
implicitly captured by a contour of a particular scalar function
(for example, a signed distance function in a level-set method
and mass concentration in a phase-field method). Readers can re-
view a recent review paper [22] for details of the two-phase flow
models.

However, compared to the large body of research on two-phase
[2,5,6,11,14,32,33,37] and three-phase [3,19,21,36] fluid flows,
there have been few theoretical and numerical studies of flows
containing four (or more) liquid components with a surface tension
effect. The basic idea underlying all continuum surface tension
models is the representation of surface tension as a continuous
force per unit volume that acts in a neighborhood of the interface.
Previous methods have suffered, however, from difficulties in mod-
eling more than three component fluid flows with surface tension.
One of the greatest difficulties in modeling four immiscible fluid
flows is modeling surface tension effects.

In three component fluids [3,19,21,36], the phase specific
decomposition surface forces are used. We decompose the given
physical surface tension coefficients, rij, of the interface Cij be-
tween fluid iðXiÞ and fluid jðXjÞ (see Fig. 1a) into the phase specific
surface tension coefficients r1;r2, and r3 such that:

r12 ¼ r1 þ r2; r13 ¼ r1 þ r3; r23 ¼ r2 þ r3: ð1Þ

The decomposition is uniquely defined as r1 ¼ ðr12 � r23 þ r13Þ=2;
r2 ¼ ðr12 þ r23 � r13Þ=2, and r3 ¼ ð�r12 þ r23 þ r13Þ=2 (see
Fig. 1b–d). Then the continuous surface tension force is defined as
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Fig. 1. Schematic of domain. (a) rij denotes the surface tension coefficient of the interface Cij of fluids Xi and Xj . (b) Phase specific surface tension coefficient, r1, on interfaces,
C12 and C13. (c) and (d) are similarly defined.
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SF ¼
X3

k¼1

SFk ¼
X3

k¼1

rkjðckÞnðckÞdðckÞ; ð2Þ

where jðckÞ ¼ r � ðrck=jrckjÞ;nðckÞ, and dðckÞ are the mean curva-
ture, the unit normal vector, and the smoothed Dirac delta function
of the k-th fluid interface, respectively. ck is the phase variable to be
defined.

It has been noted by several authors [3,21] that in the quater-
nary case, the use of phase specific decomposition cannot be used.
This is because the decomposition generates a system of over-
determined equations and a solution may not exist. In fact, in
[36], ‘‘n > 2” only means ‘‘n ¼ 3”. Here n represents the number
of fluid components. For example, if n ¼ 4, then given the physical
surface tension coefficients rij of the interface Cij between fluid i
and fluid j, we may consider a linear system of six equations to
determine the four unknowns r1;r2;r3, and r4:

r12 ¼ r1 þ r2; r13 ¼ r1 þ r3; r14 ¼ r1 þ r4;

r23 ¼ r2 þ r3; r24 ¼ r2 þ r4; r34 ¼ r3 þ r4: ð3Þ

But the above systems of equations are over-determined equations;
therefore, it is possible that there is no solution. In order that these
equations possess a unique solution, some restrictions must be im-
posed on rij. Note that, in general, for n component immiscible fluid
system there are nðn� 1Þ=2 possible interfaces and nðn� 1Þ=2 > n
for n P 4. This implies that we have more equations than the
unknowns.

To the author’s knowledge, there are no four (or more) compo-
nent fluid flow continuum models with surface tension effects. The
main objective of this work is to develop a generalized continuous
surface tension force (GCSF) formulation for phase-field models for
multi-component immiscible fluid flows, having no difficulty with
the over-determined system problem. Phase-field methods have
become popular tools for physical modeling of multiphase systems
B
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Fig. 2. (a) Gibbs tetrahedron. (b) A slice
(for a review of the development of diffuse-interface models, see
[1]). Generalizations of phase-field models to any number of com-
ponents without hydrodynamic surface tension effects have been
recently introduced and studied in [8,9,12,13,20]. Here, we view
the phase-field model as a computational method. The proposed
phase-field model is a hybrid method which combines a level set
type surface tension force formulation and a concentration relaxa-
tion by a phase-field model.

The outline of the paper is as follows. In Section 2, we propose a
phase-field model for four immiscible fluids. In Section 4, we per-
form some characteristic numerical experiments for quaternary
fluid flows. In Section 5, conclusions are drawn.

2. A phase-field model for the mixture of four component
immiscible fluids

2.1. Governing equations

The composition of a quaternary mixture (A, B, C, and D) can be
mapped onto an equilateral tetrahedron (the Gibbs simplex [30])
whose corners represent a 100% concentration of A, B, C, or D as
shown in Fig. 2a. Mixtures with components lying on planes paral-
lel to the triangle, DBCD, contain the same percentage of A; those
with planes parallel to the triangle, DCDA, have the same percent-
age of B concentration; analogously, for the C and the D concentra-
tions. In Fig. 2, the mixture at the position marked ‘�’ contains 20%
A, 24% B, 48%C and 8% D.

Let c ¼ ðc1; c2; c3; c4Þ be the phase variables (i.e. the mole frac-
tions of A;B;C, and D, respectively). Thus, admissible states will be-
long to the Gibbs tetrahedron

GT :¼ c 2 R4
X4

i¼1

ci ¼ 1; 0 6 ci 6 1

�����
)(
: ð4Þ
b

d

o

(b)

plane parallel to the BCD triangle.
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Without loss of generalities, we postulate that the free energy can
be written as follows

F ¼
Z

X
FðcÞ þ �

2

2

X4

i¼1

jrcij2
" #

dx;

where FðcÞ ¼ 0:25
P4

i¼1c2
i ð1� ciÞ2; � is a positive constant, and X is

an open bounded subset of Rnðn ¼ 2;3Þ occupied by the system.
The time evolution of c is governed by the gradient of the energy
with respect to the H�1 inner product under the additional con-
straint (4). This constraint has to hold everywhere at any time. In
order to ensure this last constraint, we use a variable Lagrangian
multiplier bðcÞ [12]. The time dependence of ci is given by the fol-
lowing advective Cahn–Hilliard equation for describing each phase
convection:

@ci

@t
þ u � rci ¼ MDli; i ¼ 1;2;3;4; ð5Þ

li ¼
@FðcÞ
@ci

� �2Dci þ bðcÞ; ð6Þ

where u is the fluid velocity and M is the mobility. To calculate bðcÞ,
we write an equation satisfied by S ¼ c1 þ c2 þ c3 þ c4 and we want
S � 1 to be a solution to the following equation

@S
@t
þ u � rS ¼ MD

X4

i¼1

@F
@ci
� �2DSþ 4bðcÞ

 !
;

where we got this from the summation of Eq. (5) from i ¼ 1 to i ¼ 4.
Therefore, bðcÞ ¼ �0:25

P4
i¼1@F=@ci. For the sake of simplicity, we

consider a system of four immiscible fluids where the densities of
all fluids are taken to be equal. The variable density can be defined
as qðcÞ ¼

P4
i¼1ci=qi

� ��1
and qi is the i-th fluid density [21]. The flu-

ids are incompressible and are governed by the Navier–Stokes–
Cahn–Hilliard equations [2,3,6,17–19,21,22].

q
@u
@t
þ u � ru

� �
¼ �rpþr � ½gðcÞðruþruTÞ� þ SF; ð7Þ

r � u ¼ 0; ð8Þ
@c
@t
þ u � rc ¼ MDl; ð9Þ

l ¼ fðcÞ � �2Dc; ð10Þ

where p is the pressure, gðcÞ ¼
P4

i¼1ci=gi

� ��1
is the variable viscos-

ity, SF is the surface tension force, and fðcÞ ¼ ð@F=@c1 þ bðcÞ;
@F=@c2 þ bðcÞ; @F=@c3 þ bðcÞ; @F=@c4 þ bðcÞÞ.

To avoid the solvability problem imposed by the over-deter-
mined system (3), we propose a generalized continuous surface
tension force formulation:
y
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Fig. 3. (a) The initial configuration. (b) Ver
SFðcÞ ¼ r12

2
½sfðc1Þ þ sfðc2Þ�dðc1; c2Þ þ

r13

2
½sfðc1Þ

þ sfðc3Þ�dðc1; c3Þ þ
r14

2
½sfðc1Þ þ sfðc4Þ�dðc1; c4Þ þ

r23

2

� ½sfðc2Þ þ sfðc3Þ�dðc2; c3Þ þ
r24

2
½sfðc2Þ

þ sfðc4Þ�dðc2; c4Þ þ
r34

2
½sfðc3Þ þ sfðc4Þ�dðc3; c4Þ;

ð11Þ

where sfðciÞ ¼ �a�r � ðrci=jrcijÞjrcijrci and dðci; cjÞ ¼ 5cicj. The
critical feature in the proposed surface tension force is incorporat-
ing a dðci; cjÞ function, which is the simplest form and combines
two different fluids. Since we are using the chemical potential form,
Eq. (6), we have ci � 1� cj at the interface, Cij. For example, let us
consider an initial configuration as shown in the Fig. 3a. From the
darkest to the lightest region, the values of c1; c2; c3, and c4 are
one, respectively. The Fig. 3b shows the vertical cutline of phase
fields at y ¼ 0:5 when the system reaches an equilibrium state. In
this figure, c1 � 1� c2; c2 � 1� c3, and c3 � 1� c4 at the interfaces,
C12;C23, and C34, respectively.

To match the surface tension of the sharp interface model, a
must satisfyZ 1

�1
�ajceq

x j
2dx ¼ 1; ð12Þ

where ceqðx; yÞ ¼ 1þ tanh x= 2
ffiffiffi
2
p
�

� �� �h i
=2 is an equilibrium com-

position profile in the infinite domain when the chemical potential
is given as Eq. (6) [17] and it is a good approximation in the finite
domain. By using basic calculus, we getZ 1

�1
�ajceq

x j
2dx ¼

Z 1

�1

a
32�

sech4 x

2
ffiffiffi
2
p
�

dx ¼ a
6
ffiffiffi
2
p : ð13Þ

Therefore from Eqs. (12) and (13), we get a ¼ 6
ffiffiffi
2
p

. For example, for
two component immiscible fluids, c3 ¼ c4 ¼ 0 and c2 ¼ 1� c1. Let
c1 ¼ c, then Eq. (11) reduces to SFðcÞ ¼ r12sfðcÞdðc;1� cÞ ¼
�r12r � ðrc=jrcjÞ½5a�cð1� cÞjrcj2�rc=jrcj. Now we can consider

the term, 5a�cð1� cÞjrcj2, as our new smoothed Dirac delta func-
tion, i.e.,Z 1

�1
5a�cð1� cÞjrcj2dx ¼ 1: ð14Þ

In Fig. 4, the dotted line is concentration field c ¼ 0:5 1þ tanh x=ðð
2
ffiffiffi
2
p
�

� �
ÞÞ, the dashed line is 5cð1� cÞ, the dash-dot line is the Dirac

delta function a�c2
x in [18], and the solid line is the new Dirac delta

function, 5a�cð1� cÞc2
x . We set � ¼ 0:1.

We note that the new smoothed Dirac delta function,
5a�cð1� cÞjrcj2, allows us to model any number of multi-compo-
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Fig. 4. The dotted line represents concentration field c ¼ 0:5ð1þ tanhðx=ð2
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p
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the dashed line is 5cð1� cÞ; the dash-dot line is the Dirac delta function a�c2
x in

[18]; and the solid line is the new Dirac delta function, 5a�cð1� cÞc2
x . We took

a ¼ 6
ffiffiffi
2
p

and � ¼ 0:1.
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nent (more than three) fluid flows. In general, for the interface be-
tween fluid i and fluid j, we haveZ 1

�1
15

ffiffiffi
2
p
�cicjðjrcij2 þ jrcjj2Þdx ¼ 1; ð15Þ

where the integration is taken across the interface.

2.2. Nondimensional governing equations

To make the governing equations dimensionless, we choose the
following definitions

x0 ¼ 1
L

x; u0 ¼ 1
U

u; t0 ¼ U
L

t; q0 ¼ q
q1
; p0 ¼ p

q1U2 ; g0 ¼ g
g1
;

where the primed quantities are dimensionless and L;U;q1; and g1

are, respectively, the characteristic length, characteristic velocity,
the density of fluid 1, and the dynamic viscosity of fluid 1. Substitut-
ing the above into Eqs. (7)–(10), and dropping the primes, we have
the following nondimensional system:

@u
@t
þ u � ru ¼ �rpþ 1

Re
r � ½gðcÞðruþruTÞ� þ SF; ð16Þ

r � u ¼ 0; ð17Þ
@c
@t
þ u � rc ¼ 1

Pe
Dl; ð18Þ

l ¼ fðcÞ � �2Dc; ð19Þ

where fðcÞ and � are redefined according to the scaling and

SFðcÞ ¼
X3

i¼1

X4

j¼iþ1

dðci; cjÞ
2Weij

½sfðciÞ þ sfðcjÞ�
 !

: ð20Þ

The dimensionless parameters are the Reynolds number,
Re ¼ q1UL=g1, the Weber number, Weij ¼ q1LU2=rij, and the diffu-
sional Peclet number, Pe ¼ LU=ðMl	Þ. Here l	 denotes a character-
istic scale involving both an anti-diffusive Laplacian and a diffusive
bi-Laplacian in l.

3. Numerical solution

A staggered marker-and-cell (MAC) mesh of Harlow and Welch
[16] is used in which pressure and phase fields are stored at cell
centers and velocities at cell interfaces. Let h be a mesh size. The
center of each cell, Xij, is located at ðxi; yjÞ ¼ ðði� 0:5Þh; ðj� 0:5ÞhÞ
for i ¼ 1; . . . ;M and j ¼ 1; . . . ;N. M and N are the numbers of cells
in x and y-directions, respectively. The cell vertices are located at

xiþ1
2
; yjþ1

2

� �
¼ ðih; jhÞ. At the beginning of each time step, given

un; and cn, we want to find unþ1; cnþ1, and pnþ1 which solve the fol-
lowing temporal discretization of the Eqs. (16)–(19) of motion:

unþ1 � un

Dt
¼ �rdpnþ1 þ 1

Re
rd � gðcnÞ½rdun þ ðrdunÞT � þ SFn

� ðu � rduÞn; ð21Þ

rd � unþ1 ¼ 0; ð22Þ

cnþ1 � cn

Dt
¼ 1

Pe
Ddl

nþ1
2 � ðu � rdcÞn; ð23Þ

lnþ1
2 ¼ 1

2
½fðcnÞ þ fðcnþ1Þ� � 1

2
�2Ddðcn þ cnþ1Þ: ð24Þ

For details of the numerical solution using a projection method and
a nonlinear multigrid method, we refer to [19].

4. Computational verification of the model

We now present the numerical results for several standard
problems with four component mixtures to illustrate the robust-
ness and to test accuracy of the new phase-field model for multi-
component immiscible fluid flows. The numerical experiments
are the phase separations via spinodal decomposition in a quater-
nary mixture with different average compositions, the pressure
field distribution, and the dynamics of two droplets inside another
drop embedded in the ambient liquid.

4.1. Spinodal decomposition – phase separation of a four-component
mixture

We began the numerical experiments with an example of the
spinodal decomposition of a quaternary mixture with components
A;B;C, and D of the local mass fractions c1; c2; c3, and c4, respec-
tively. We used the quaternary Cahn–Hilliard system, (9) and
(10) with the zero velocity, u ¼ 0. In this experiment, we ignore
the hydrodynamic effects. In the simulations, the initial conditions
were random perturbations of the maximum amplitude 0.05 of the
uniform state cave :¼ 1

jXj
R

X c1dx; 1
jXj
R

X c2dx; 1
jXj
R

X c3dx
� �

. We took
� ¼ 0:008. A 256� 256 mesh was used on the square domain
X ¼ ½0;8� � ½0;8� for the spatial discretization and a time step,
Dt ¼ 0:1=256 was employed for the time integration.

In the first experiment, the initial conditions were random per-
turbations of the uniform state cave ¼ ð1=4;1=4;1=4Þ. The morpho-
logical evolution predicted from the numerical simulation is
exhibited in Fig. 5a. The area shown by white indicates the D phase
region, while the gray, dark gray, and black color regions stand for
A-rich, B-rich and C-rich domains, respectively. Since the composi-
tion is completely symmetric with respect to the four components,
all four phases have similar morphologies and evolution dynamics
[7].

In the second experiment with cave ¼ ð1=5;1=5;1=5Þ, Fig. 5b
shows the time evolution of the quaternary mixture system. We
observed four phases in the early stages of spinodal decomposition.
As shown for time t ¼ 0:0977; c1 þ c2 þ c3, and c4 phases appear as
interconnected at the initial stages of decomposition which is very
similar to that observed in binary systems. In the third experiment
with cave ¼ ð1=6;1=6;1=6Þ (Fig. 5c), initially, we see four phases,
one of them dominated by c4. The evolution of the system is in
the direction c1 þ c2 þ c3 and c4.



(a)

(b)

(c)

Fig. 5. Temporal evolution of morphologies during a spinodal phase separation of a quaternary mixture system with three different values of the average composition (a)
cave ¼ ð1=4;1=4;1=4Þ; (b) cave ¼ ð1=5;1=5;1=5Þ, and (c) cave ¼ ð1=6;1=6;1=6Þ, respectively. The times are t ¼ 0:0977;0:3418;0:7324; and 1.9531 (left to right). Phase A is
represented by the gray region, phase B by the dark gray region, phase C by the black region, and phase D by the white region.

Fig. 6. (a) A schematic of two-dimensional three drops. (b) The sum of the concentration fields – c1 þ c2 þ c3. (c) The pressure field. (d) A slice plot of the pressure field on
y ¼ x (dotted line in (a)).
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4.2. The pressure field distribution for three stationary drops

To demonstrate the ability to calculate the pressure field di-
rectly from the governing equations using the present model, we
considered the equilibrium of three drops placed within another
fluid. In the absence of viscous, gravitational, and other external
forces, surface tension caused a static liquid drop to become spher-
ical. The Laplace formula [4,23] for an infinite cylinder surrounded
by a background fluid at zero pressure gives

pdrop ¼ rijj ¼
rij

R
; ð25Þ

where pdrop is the pressure of a droplet of radius R;rij is the surface
tension coefficient between fluid i and fluid j, and j is the mean cur-
vature. The initial conditions (see Fig. 6a and b) were
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Fig. 8. Temporal evolution. Fluid X1 is represented by the gray region; fluid X2 by the
c1ðx;y;0Þ¼0:5 1�tanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�1:6Þ2þðy�1:6Þ2

q
�0:5

� ��
2
ffiffiffi
2
p
�

	 
� �

c2ðx;y;0Þ¼0:5 1�tanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�4Þ2þðy�4Þ2

q
�0:5

� ��
2
ffiffiffi
2
p
�

	 
� �
;

c3ðx;y;0Þ¼0:5 1�tanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�6:4Þ2þðy�6:4Þ2

q
�0:5

� ��
2
ffiffiffi
2
p
�Þ

	 ��
:

We solved the following Eq. (26) on the computational domain,
X ¼ ½0;8� � ½0;8� with a uniform grid of 512� 512. The drop radius
R ¼ 0:5;r14 ¼ 1;r24 ¼ 4;r34 ¼ 2, and r12 ¼ r13 ¼ r23 ¼ 1.

Dp ¼ r � SF: ð26Þ

In Fig. 6c, the pressure field is shown for three drops. Fig. 6d shows
that the pressure jumps along the line, x ¼ y, calculated from our
model obeying Laplace law.
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4.3. Topological transition and the dynamics of droplets

We consider the dynamics of two droplets inside other elliptical
drops embedded in the ambient liquid. The initial condition is that
of two droplets, X2 and X3, enclosed by elliptical drops, X1, which
are also in the ambient fluid, X4 (see Fig. 7a). The initial velocity is
zero, i.e.,

c1ðx; y;0Þ ¼ 1� 1
2

tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ðx� 1:28Þ2 þ ðy� 2Þ2

q
� 1:5

2
ffiffiffi
2
p
�

� 1
2

� tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ðx� 2:72Þ2 þ ðy� 2Þ2

q
� 1:5

2
ffiffiffi
2
p
�

� c2ðx; y; 0Þ

� c3ðx; y;0Þ;

c2ðx; y;0Þ ¼
1
2

1� tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1:28Þ2 þ ðy� 2Þ2

q
� r

2
ffiffiffi
2
p
�

0
@

1
A;

c3ðx; y;0Þ ¼
1
2

1� tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 2:72Þ2 þ ðy� 2Þ2

q
� r

2
ffiffiffi
2
p
�

0
@

1
A;

uðx; y;0Þ ¼ vðx; y;0Þ ¼ 0;

where r ¼ 0:4 is the radius of the drops. We solved Eqs. (16)–(19) on
the computational domain, X ¼ ½0;4� � ½0;4� with a uniform grid of
256� 256, time step, Dt ¼ 0:05=256, and � ¼ 0:015. Periodic
boundary conditions for both directions are applied. We take the
viscosities of the components to be matched and the following
parameters.
We14 ¼We23 ¼We24 ¼We34 ¼ 5;We12 ¼ 10;We13 ¼ 20;Re ¼ 5, and
Pe ¼ 1=�.

We show in Fig. 8a–f the temporal evolution of the dynamics of
two droplets inside other elliptical drops embedded in the ambient
liquid. The driving force for the flow is surface tension. Fluid X1 is
represented by the gray region; fluid X2, by the dark gray region;
fluid X3 by the black region; and fluid X4, by the white region. Ini-
tially the elliptical drops deform to reduce the higher curvature;
then, coalescence occurs around t ¼ 3:91. Eventually, at later
times, all interface shapes became an equilibrium circular shape
(see Fig. 8f), Fig. 7b shows the pressure distribution at y ¼ 2.
According to Laplace formula, (25), the theoretical drop pressure
jumps across the circles:.

½p�C12
¼ 1

rWe12
¼ 0:25;

½p�C13
¼ 1

rWe13
¼ 0:125;

½p�C14
¼ 1

RWe14
¼ 0:1416;

where R ¼ 1:4127 is the measured radius of the largest circle in
Fig. 8f. The numerical values of the pressure jump across the drops
are ½p�num

C12
¼ 0:248; ½p�num

C13
¼ 0:126, and ½p�num

C14
¼ 0:135. These values

show how well the pressure field fulfilled Laplace law, (25).

5. Conclusions

We proposed the generalized continuous surface tension force
(GCSF) model for surface tension for multi-component fluid flow.
In the GCSF model, a surface force was formulated to model
numerically the surface tension effects at fluid interfaces having fi-
nite thickness. The method is ideally suited for multi-component
fluid flows. We overcame previous shortcomings on the extension
to multi-component (more than three) fluid flows. The GCSF model
has been validated successfully on both static and dynamic inter-
faces having surface tension. An important aspect of the GCSF is
its generality with respect to the number of the fluid components.
In general, for N component fluids, the surface tension force formu-
lation is

SFðcÞ ¼
XN�1

i¼1

XN

j¼iþ1

rij

2
½sfðciÞ þ sfðcjÞ�dðci; cjÞ

 !
:

Although this generalized surface tension force formulation was de-
scribed in the context of the phase-field method, we expect that it
can be useful in other methods such as the level set method. Further
topics of our future research related to the presented GCSF include
higher order numerical treatments and sophisticated formula to
accurately recover the interfacial angles at triple points where three
fluids are in contact. Also, to speed up the calculations, we will
investigate an adaptive time stepping algorithm as in [10].
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