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a b s t r a c t 

Recently, air pollution such as the respirable particulate PM 10 results in negative impact on human health. 

We study the non-linear cross-correlations between respiratory diseases and haze in South Korea, using 

multifractal detrended cross-correlation analysis (MF-DCCA). The empirical tests indicate that there exists 

cross-correlations between the monthly average PM 10 /Bronchitis time series pair, and monthly average 

PM 10 /Rhinitis time series pair. Metrics such as Hurst exponents, scaling exponents, and multifractal spec- 

trums show that the multifractal characteristics of both the time series pairs are significant. In addition, 

we compare the degrees of multifractal spectrums and find that the cross-correlation of the time series 

pair PM 10 /Bronchitis is stronger than that of PM 10 /Rhinitis, which indicates that the monthly outpatient 

quantity of bronchitis is more sensitive to PM 10 concentration. Furthermore, to identify the main source 

of multifractality for two time series pairs, we phase-randomize and shuffle the original series. The com- 

putational results demonstrate that fat-tailed distribution contributes to the multifractality between res- 

piratory diseases and haze. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Recently, with the advent of modernization and urbanization,

nvironmental damage and air pollution have been caused at the

ame time of economic development. More and more evidence

as suggested that there exists impact of air pollution on human

ealth, especially for human respiratory system. Among numerous

ir pollutants, particulate matter (PM) has drawn great attention,

nd research showed that the PMs with aerodynamic diameter less

han 10 microns has a greater impact on human respiratory sys-

em. 

It was found that for every 10 μg/m 

3 of PM 10 increased, the

ortality of respiratory system increased by 0.58%, after investigat-

ng 29 European cities [1] . A recent review [2] showed that the de-

osition of PM 2.5 particles in the acinar area of the lung is uneven

y a high-resolution fluorescence imaging method, and the maxi-

um deposition rate in the acinar region is remarkably different

rom the prediction of the average deposition model, and the de-

osition of these particles in the lung is harmful to human health.

oreover, many studies have reported the effects of atmospheric

articles on mortality induced by respiratory diseases. Pope et al.
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3] investigated the relationship between long-term PMs exposure

nd mortality, and the relationship between PMs and mortality

atterns and specific sources of death. The results indicated that

ong-term PMs exposure was closely related to the mortality of is-

hemic heart disease. For these cardiovascular causes of death, an

ncrease of 10 μg/m 

3 in fine particles was associated with an in-

reased risk of mortality of 8% to 18%, the risk of smokers was

omparable or greater than that of non-smokers, and the corre-

ation between mortality and respiratory diseases was relatively

eak. Atkinson et al. [4] found that 10 μg/m 

3 increase in PM 2.5 was

ssociated with a 1.04% increase in the risk of death, and there are

ignificant regional differences (0.25%–2.08%) in worldwide. 

In South Korea, haze caused by atmospheric particles has re-

ently become more and more serious. In some previous works,

here have been studies on the relationship between air pollution

nd respiratory system in South Korea. Kwon et al. [5] studied the

ortality from PM 10 exposure in Seoul, and found the mortality

ncreased by 4.1% due to respiratory and cardiovascular causes. Ac-

ording to Jun et al. [6] , they suspected that when air quality de-

eriorates, people have a stronger incentive to adapt to it in be-

avior, and their results implied that in polluted areas, the possi-

ility of respiratory diseases decreases with the gradual increase

f air pollution, which can be interpreted by behavioral adapta-

ion to the environment, while in particularly polluted areas, the

ffectiveness of such adaptation seems limited. Kim et al. [7] es-

https://doi.org/10.1016/j.chaos.2020.109781
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.109781&domain=pdf
mailto:cfdkim@korea.ac.kr
http://math.korea.ac.kr/~cfdkim/
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timated the impact of PM 10 on health in Seoul, South Korea, be-

tween 2014 and 2015, and found a significant correlation between

the MODerate-resolution Imaging Spectroradiometer Aerosol Opti-

cal Depth (MODIS AOD) and PM 10 concentration, in particular, dur-

ing winter season. 

However, no researchers have used the method of multifrac-

tal detrended cross-correlation analysis (MF-DCCA) to discuss the

cross-correlation between PM 10 exposure and the number of out-

patients with respiratory diseases. In this study, in order to ex-

plore the impact of PM 10 concentration on people’s health in South

Korea, and to provide scientific basis for taking positive response

strategies and interventions, we study the relationship between

PM 10 in air pollutants in South Korea and the number of outpa-

tients with respiratory diseases in hospitals, using MF-DCCA, which

has been proved to be an effective tool for analyzing the correla-

tions between two time series, and it was first proposed by Zhou

[8] . Afterwards, MF-DCCA has been used in many fields such as fi-

nancial markets [9–11] , traffic flow [12] , and the cross-correlations

between PM 2.5 and meteorological factors [13] . Recently, Wang

et al. [14] used MF-DCCA to investigate the cross-correlations be-

tween meteorological factors and bacterial foodborne diseases. 

In this paper, we adopted three parameter variables, such as the

monthly average concentration of PM 10 , the monthly average out-

patient quantity of bronchitis, and the monthly average outpatient

quantity of rhinitis, in the whole South Korea from January 2010

to March 2019. 

The paper is organized in the following manner.

Section 2 briefly introduces the method. Section 3 describes

the data sources. Section 4 presents computational results. Con-

clusions are provided in the last section. 

2. Principles and methodology 

2.1. Multifractal detrended cross-correlation analysis 

The multifractal detrended fluctuation analysis (MF-DFA) has

been proved to be an effective way that can measure the multi-

fractal properties of non-stationary time series [15–22] . To inves-

tigate the correlations of two non-stationary time series, Podobnik

et al. [23] proposed DCCA method. MF-DCCA method was proposed

to study the multifractal characteristics of two non-stationary time

series by Zhou [8] . In this work, we check the correlations between

PM 10 concentration and outpatient quantity of respiratory diseases

time series using MF-DCCA. The process of MF-DCCA is generally

described as follows. 

I. Given two time series { x t , y t , t = 1 , 2 , . . . , N} , N is the length

of time series. Next, create the cumulative deviation series. 

X (t) = 

t ∑ 

k =1 

(x k − x̄ ) , t = 1 , 2 , . . . , N, (1)

 (t) = 

t ∑ 

k =1 

(y k − ȳ ) , t = 1 , 2 , . . . , N, (2)

where x̄ and ȳ denote the mean of the time series x t and y t . 

II. Divide the cumulative deviation series X and Y into N s =
int( N s ) non-overlapping segments, where s is the time scale. If N

is not an integral multiple of s , some information will be left at

the end of the series. To include all the information of the time se-

ries, the same procedure is repeated from the end to the start. Via

taking this step, then 2 N s non-overlapping segments are obtained. 

III. For each subsegment v , we use least squares method to ac-

quire the local trends with an k th-order polynomial fit. 

x v (i ) = a 1 i 
k + a 2 i 

k −1 + · · · + a k i + a k +1 , 

i = 1 , 2 , . . . , s ; k = 1 , 2 , . . . (3)
 v (i ) = b 1 i 
k + b 2 i 

k −1 + · · · + b k i + b k +1 , 

i = 1 , 2 , . . . , s ; k = 1 , 2 , . . . (4)

IV. Calculate the detrended covariance F 2 ( s, v ). When v =
 , 2 , . . . , N s , 

 

2 (s, v ) = 

1 

s 

s ∑ 

i =1 

{| X [(v − 1) s + i ] − x v (i ) || Y [(v − 1) s + i ] − y v (i ) |} .

(5)

hen v = N s + 1 , N s + 2 , . . . , 2 N s , 

 

2 (s, v ) = 

1 

s 

s ∑ 

i =1 

{| X [ N − (v − N s ) s + i ] 

−x v (i ) || Y [ N − (v − N s ) s + i ] − y v (i ) |} . (6)

. Averaging the detrended covariances to obtain the q th-order

ave function as 

 q (s ) = 

{ 

1 

2 N s 

2 N s ∑ 

v =1 

[ F 2 (s, v )] 
q 
2 

} 

1 
q 

. (7)

hen q = 0 , according to Lopida’s law, 

 q (s ) = exp 

( 

1 

2 N s 

2 N s ∑ 

v =1 

ln [ F 2 (s, v )] 

) 

. (8)

f scaling behavior do exist, then the power-law correlations sat-

sfy F q (s ) ∝ s h xy (q ) . h xy ( q ) is the generalized Hurst exponent ver-

us q , the extent of multifractality can be derived by calculating

he range of h xy ( q ), a larger �H xy = h xy (q min ) − h xy (q max ) means

tronger multifractal feature. 

If q = 2 , the MF-DCCA becomes the DCCA, if h xy (2) = 0 . 5 , it in-

icates the two time series have no cross-correlations with each

ther, when h xy (2) > 0.5, the cross-correlations are positive persis-

ent, when h xy (2) < 0.5, the cross-correlations are anti-persistent. 

.2. Mass exponent and multifractal spectrum 

Let us define the mass exponent spectrum τ xy ( q ) as 

xy (q ) = qh xy (q ) − 1 , (9)

here h xy ( q ) is obtained from MF-DCCA. The singularity strength

xy , which describes the singular degree of each segment in a

omplex system; and the singularity spectrum f xy ( α), which de-

cribes fractal dimension of αxy are obtained from 

= h xy (q ) + qh 

′ 
xy (q ) , (10)

f xy (α) = q [ αxy − h xy (q )] + 1 . (11)

he range of the singularity strength �αxy = αxy max 
− αxy min 

de-

ermine the strength of multifractality. According to [24] , a larger

αxy indicates a more intense data fluctuation. 

. Data collection 

We use monthly average time series of PM 10 (μg/m 

3 ) concen-

ration, outpatient quantity of bronchitis, and outpatient quantity

f rhinitis data to study the cross-correlation between air pollu-

ion and respiratory diseases. The experimental samples for bron-

hitis data and rhinitis data are downloaded from “Health In-

urance Review and Assessment Service”, please refer to web-

ite: http://opendata.hira.or.kr/op/opc/olapMfrnIntrsIlnsInfo.do . The

ource data of PM 10 concentrations are obtained from “Korea Envi-

onment Corporation”, and specific data are provided by the mon-

toring station of Jung gu, Seoul. The detailed information can be

http://opendata.hira.or.kr/op/opc/olapMfrnIntrsIlnsInfo.do
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Table 1 

Descriptive statistics. 

Category Minimum Maximum Mean Standard deviation Skewness Kurtosis 

PM 10 19 85 44.4685 13.6833 0.3238 2.6767 

Bronchitis 73 2760 823 548 1.1175 3.7775 

Rhinitis 32,081 116,621 74,267 21,078 −0.1656 2.1553 

Fig. 1. Monthly average time series of (a) PM 10 concentration, (b) outpatient quan- 

tity of bronchitis, and (c) outpatient quantity of rhinitis. 
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Table 2 

Multifractality of PM 10 , bronchitis, and rhinitis 

time series. 

h(2) �H(q) �α

PM 10 1.2936 1.1083 1.4315 

Bronchitis 1.1087 0.8466 1.1058 

Rhinitis 0.6960 0.8873 1.2091 
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ownloaded from website: https://www.airkorea.or.kr . The selec-

ion of time interval is from January 2010 to March 2019, and each

ategory includes 111 samples. The descriptive statistics for each

ime series are listed in Table 1 . 

The time series charts for the changing trend of PM 10 concen-

ration, outpatient quantity of bronchitis, and outpatient quantity

f rhinitis data are shown in Fig. 1 . From Fig. 1 (b) and (c), we

an observe clearly that there are more outpatient quantity of both

ronchitis and rhinitis during winter than during summer months.

. Experiment results 

For the empirical research, the first step is to select appropriate

arameters, then conduct the tests for each single time series using

F-DFA. Then cross-correlation test function and DCCA coefficient

re applied to test the correlations between PM 10 concentration

nd outpatient quantity of respiratory diseases. At last, we adopt

F-DCCA to study the cross-correlations from the perspective of

uantity. Meanwhile, we investigate the main causes of multifrac-

ality of each series pair. It is suggested by [25] that polynomial or-

er k can be selected from 1 to 3. In this article, we take k = 2 to

revent polynomial over-fitting or under-fitting. By [26,27] , when

tudying the multifractality of PM 10 , the segment size can be con-

iderably stay from 4 to the value of 1/4 of the sample size. In this

tudy, the minimum and maximum segment scales are selected as

 min = 10 and s max = 20 , respectively. Lashermes et al. [28] sug-

ests that q can be chosen from −10 to 10. 
.1. Preliminary test on multifractality 

We first apply MF-DFA to investigate the multifractality of three

eparate time series. We depict the logâlog fluctuation function

 q ( s ) versus fractal order q based on a varied s for PM 10 , bronchitis,

nd rhinitis in Fig. 2 . We observe that for each series, lines from

 = −10 to q = 10 can fit the curve of fluctuation functions well,

ndicating the power-law behavior and long-range correlations ex-

st for each series, from the bottom to the top are q = −10 , q = −6 ,

 = −2 , q = 2 , q = 6 , and q = 10 , respectively. The decreasing slope

ith the increasing of q indicates that all the time series display a

ultifractal behavior. 

To compute the multifractality quantitatively, we first calculate

 ( q ) with q from −10 to 10. The Hurst exponents of h (q ) − q for

he three schemes are shown in Fig. 3 . 

As shown in Fig. 3 , we see that the generalized Hurst exponents

or three time series are not fixed values, and h ( q ) decrease with

he increase of q , which shows that the time series of PM 10 , bron-

hitis, and rhinitis exist multifractal properties. We note that when

 = 2 , h (2) of all the time series are greater than 0.5, all the h (2)

alues are listed in Table 2 . In addition, the wavelet fluctuations of

ll the time series have significant persistence, since we observe

he value of h ( q ) decreases rapidly with the increasing of q when

 < 0. While q > 0, all the time series behave the minimum sus-

ainability of large fluctuations, as we can see h ( q ) stays slightly

hen q increases. From these Hurst exponents, let the degree of

ultifractality be defined by 

H(q ) = h (q min ) − h (q max ) . (12) 

he values of �H for each single time series are shown in Table 2 .

Research [29] showed that curvature of scaling exponent can

easure the multifractality. The scaling exponents τ ( q ) are esti-

ated by Eq. (9) . In Fig. 4 , the scaling exponents of three time

eries are non-linearly dependent on q , which shows another evi-

ence of multifractality. 

Then, we calculate multifractal spectrum. From Fig. 5 , the

idths of multifractal spectra for series pairs are significantly

onzero, indicating that all the series are multifractal. We notice

he �α of all the time series, and find the �α of PM 10 is the

argest, which implies the multifractal nature is the strongest. The

aximum multifractal strength value for metrics �H ( q ) and �α
re highlighted in bold in Table 2 . 

.2. Cross-correlation test 

Qualitative tests of the cross-correlations between two time se-

ies are essential for this study. We first show the correlations be-

ween PM 10 concentration and respiratory diseases time series. As-

uming that there exists two time series, X t and Y t , t = 1 , 2 , . . . T ,

https://www.airkorea.or.kr
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Fig. 2. Loglog plots of fluctuation function F q ( s ) of (a) PM 10 , (b) bronchitis, and (c) rhinitis. 

Fig. 3. Generalized Hurst exponents of (a) PM 10 , (b) bronchitis, and (c) rhinitis. 
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Fig. 4. Scaling exponents of (a) PM 10 , (b) bronchitis, and (c) rhinitis. 

Fig. 5. Multifractal spectrums of (a) PM 10 , (b) bronchitis, and (c) rhinitis. 
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Fig. 6. Cross-correlation test versus log ( m ). A color version of the figure is available 

in the web version of the article. 

C  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. DCCA coefficients for three time series pairs. A color version of the figure is 

available in the web version of the article. 
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the cross-correlation test function is given by 

 i = 

∑ T 
k = i +1 X k Y k −i √ ∑ T 

k =1 X 

2 
k 

∑ T 
k =1 Y 

2 
k 

. (13)

Then, we get the test statistic as follows. 

Q cc (m ) = T 2 
m ∑ 

t=1 

C 2 
i 

T − 1 

. (14)

In this study, the degree of freedom m varying from 1 to 110, and

the critical value is set for X 

2 (m ) distribution at 5% level of signif-

icance. 

As the cross-correlation statistics for two pairs of indices

( PM 10 /Bronchitis and PM 10 /Rhinitis) shown in Fig. 6 , the Q cc ( m ) for

two time series pairs always go above the critical values as m in-

creases, implying the statistically significant of long-range cross-

correlations between PM 10 concentration and respiratory diseases

time series. In Fig. 6 , the critical value of the cross-correlation

statistics is represented by the blue line. The red line denotes the

cross-correlation statistic Q cc ( m ) of the pair of PM 10 /Bronchitis and

the green line represents the pair of PM 10 /Rhinitis, respectively. 

4.3. DCCA coefficient 

DCCA coefficient has been an efficient metric to evaluate the

highly non-stationary processes since it was proposed by Zebende

[30] . DCCA coefficient was also proved to be able to quantify the

significance of the correlation between different time series in

[31] . In the investigation of agricultural futures market in China

and the United States, DCCA coefficient was also used by Li et al.

[32] to test the cross-correlations between the series. In this study,

we use this method to further test the cross-correlations between

PM 10 /Bronchitis series pair and PM 10 /Rhinitis series pair. The DCCA

coefficient function is defined as follows. 

ρDCCA = 

F DCCA 
2 
ab (s ) 

F DF A a (s ) F DF A b (s ) 
. (15)

F DCCA 
2 
ab (s ) is the detrended covariance’s fluctuation function of time

series pair, F DFA a ( s ) and F DFA b ( s ) represent each single detrended

fluctuation function. The value of ρDCCA ranges from −1 to 1.

A closer value to 1 means the series pair has a higher cross-

correlation. When ρDCCA = 0 , there exists no cross-correlation. A

closer value to −1 means the cross-correlation of the series pair

is more anti-persistent. We plot the DCCA coefficient versus win-

dow sizes s in Fig. 7 , where s varied from 10 to 20. 

The red curve denotes the DCCA coefficient between monthly

average time series of PM concentration and outpatient quan-
10 
ity of bronchitis while the blue curve represents the DCCA co-

fficient between monthly average time series of PM 10 concentra-

ion and outpatient quantity of rhinitis, and black curve form the

CCA coefficient of Bronchitis/Rhinitis series pair. We note that all

he values are within the interval of 0 to 1, indicating the cross-

orrelations exist in PM 10 /Bronchitis, PM 10 /Rhinitis, and Bronchi-

is/Rhinitis series pairs. From Fig. 7 , we observe that the corre-

ations between bronchitis and rhinitis is the largest, then the

M 10 /Bronchitis series pair, PM 10 /Rhinitis is the lowest. 

.4. MF-DCCA analysis 

As the cross-correlation statistics Q cc ( m ) and DCCA coefficient

how the existence of cross-correlations for two time series pairs,

o study the cross-correlations quantificationally, we apply MF-

CCA to further estimate the cross-correlations for time series

airs ( PM 10 /Bronchitis and PM 10 /Rhinitis). Firstly, we show the log-

og plots of F q ( s ). As shown in Fig. 8 , the fluctuation values of both

M 10 /Bronchitis and PM 10 /Rhinitis series pairs increase with seg-

ent s , implying both the two series pairs have long-range correla-

ions. From the bottom to the top are q = −10 , q = −6 , q = −2 , q =
 , q = 6 , and q = 10 , respectively. The decreasing slope with the

ncreasing of q indicates that both the series pairs display a strong

ultifractal behavior, which refers that both the two monthly out-

atient volume of respiratory diseases are sensitive to PM 10 con-

entration, they have strong cross-correlations. 

Furthermore, as shown in Table 3 and Fig. 9 , the cross-

orrelation generalized Hurst exponents h xy ( q ) of PM 10 /Bronchitis

nd PM 10 /Rhinitis series pairs decline with the increase of q ,

ndicating each series pair possess multifractal property. In ad-

ition, when q = 2 , the cross-correlation exponents for both

M 10 /Bronchitis and PM 10 /Rhinitis series pairs are larger than 0.5,

howing both time series pairs have persistence. We list the values

f h xy (2) for two indices in Tables 3 and 4 . Moreover, the h xy (2)

alue of PM 10 /Bronchitis is larger than PM 10 /Rhinitis, indicating the

ross-correlation of PM 10 /Bronchitis series pair is more persistent

han PM 10 /Rhinitis series pair. 

In Fig. 9 , we also see that the wavelet fluctuations of all the

ime series pairs have significant positive persistence, since we ob-

erve the value of h xy ( q ) decreases rapidly with the increasing of

 when q < 0. While q > 0, both the time series pairs behave the

inimum sustainability of large fluctuations, as we can see h xy ( q )

tays slightly when q increases. Then, let the degree of multifrac-

ality be given by 

H xy (q ) = h xy (q min ) − h xy (q max ) . (16)
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Fig. 8. Loglog plots of fluctuation function F q ( s ) of (a) PM 10 /Bronchitis, and (b) PM 10 /Rhinitis. 

Table 3 

Generalized Hurst exponents h xy ( q ) of two 

time series pairs. 

q PM 10 /Bronchitis PM 10 /Rhinitis 

−10 1.7982 1.5814 

−9 1.7779 1.5592 

−8 1.7532 1.5322 

−7 1.7229 1.4993 

−6 1.6860 1.4587 

−5 1.6415 1.4088 

−4 1.5901 1.3480 

−3 1.5345 1.2764 

−2 1.4781 1.1970 

−1 1.4219 1.1163 

0 1.3628 1.0421 

1 1.2960 0.9790 

2 1.2187 0.9278 

3 1.1335 0.8869 

4 1.0474 0.8543 

5 0.9672 0.8281 

6 0.8976 0.8067 

7 0.8397 0.7889 

8 0.7928 0.7741 

9 0.7553 0.7614 

10 0.7254 0.7505 

Table 4 

Multifractality for two series pairs of PM 10 /Bronchitis 

and PM 10 /Rhinitis. 

h xy (2) �H xy (q) �αxy 

PM 10 /Bronchitis 1.2187 1.0728 1.5156 

PM 10 /Rhinitis 0.9278 0.8309 1.1401 

T  

W  
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Fig. 9. Generalized Hurst exponents of PM 10 /Bronchitis, and PM 10 /Rhinitis. A color 

version of the figure is available in the web version of the article. 

Fig. 10. Scaling exponents of PM 10 /Bronchitis, and PM 10 /Rhinitis. A color version of 

the figure is available in the web version of the article. 

t  

T  

�

4

 

t  
he values of �H xy for each time series pair are shown in Table 4 .

e observe that with the increasing of q , the range of h xy ( q )

uctuation of the time series pair of PM 10 / Bronchitis is greater,

mplying the multifractal feature is greater, that is to say, the

onthly outpatient volume of bronchitis is more sensitive to PM 10 

oncentration than that of rhinitis, and the cross-correlation of

M 10 / Bronchitis is greater. 

In Fig. 10 , the scaling exponents τ xy ( q ) of two time series pairs

re non-linearly dependent on q , which shows another evidence of

ultifractality for both two time series pairs. 

At last, we use multifractal strength and spectrums to exam-

ne PM 10 /Bronchitis and PM 10 /Rhinitis time series pairs. As shown

n Fig. 11 and Table 4 , the widths of multifractal spectra for se-

ies pairs are significantly nonzero, indicating that all the series are

ultifractal. We notice the �αxy of both two time series pairs, and

nd the �α of PM 10 /Rhinitis is narrower, which implies the mul-

ifractal nature of PM /Rhinitis is weaker and the monthly outpa-
10 
ient volume of bronchitis is more relevance to PM 10 concentration.

he maximum multifractal strength value for metrics �H xy ( q ) and

αxy are highlighted in bold in Table 4 . 

.5. The sources of multifractal features 

According to the former studies [8,15,33] , generally, there are

wo causes of multifractality: (1) long-range correlations, and (2)
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Fig. 11. Multifractal spectrums of PM 10 /Bronchitis, and PM 10 /Rhinitis. A color ver- 

sion of the figure is available in the web version of the article. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Multifractality of original, shuffled, and phase-randomized series 

for two series pairs of PM 10 /Bronchitis, and (b) PM 10 /Rhinitis. 

h(2) �α
Original 1.2187 1.5156 

PM 10 /Bronchitis Shuffled 0.4786 0.8753 

Phase-randomized 0.3913 0.7764 

Original 0.9278 1.1401 

PM 10 /Rhinitis Shuffled 0.5562 0.3501 

Phase-randomized 0.4285 0.3424 
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fat-tail distributions. Now, we construct phase-randomized and

shuffled time series to explore the main cause of multifractality

for each time series pair. The shuffled series can be randomly gen-

erated as follows. For a time series with length N , creating (a, b) of

random integers with a, b ≤ N , then change the value in a-th order

with b-th order, and repeat the above process for sufficient times.

Moreover, for the phase-randomized time series, we first create a

series of random numbers with the Gaussian distribution, then re-

arrange the series with the same order. 

As same as above procedure, we first calculate the cross-

correlations generalized Hurst exponent h xy ( q ), then the τ xy ( q ), at

last the �αxy . From Figs. 12–14 , we note that all the series pairs

are strongly multifractal, and h xy (2) for all shuffled and phase-

randomized time series pairs of PM 10 /Bronchitis are less than 0.5,

showing that there existing negative persistent, and the negative

persistent property of phase-randomized is stronger than shuf-

fled time series pair. Besides, h xy (2) for shuffled time series pair

of PM 10 /Rhinitis is larger than 0.5, however, much less than the

original series pair, it implies that the shuffled series pair be-

come weaker persistent. Moreover, for phase-randomized time se-

ries pairs of PM 10 /Rhinitis, h xy (2) is less than 0.5, indicating the

series pair has negative persistent property. We list the values

of h xy (2) for original, shuffled, and phase-randomized time series

pairs in Table 5 . To obtain the robust results, we use the mean of

50 repeated values for shuffled, and phase-randomized time series.
Fig. 12. Generalized Hurst exponents of original, shuffled, and phase-randomized time s

available in the web version of the article. 
We measure the main causes of multifractality of two series

airs through the ranges of the multifractal spectra of original,

huffled, and phase-randomized series. As shown in Table 5 , we

ummarize the strength of multifractality for the original, shuf-

ed and phase-randomized series using MF-DCCA. The bold values

ndicate the significance of multifractality. The results show that

arge part of the multifractalities are removed by phase random-

zing the original series pairs. The results refer that the fat-tailed

istributions are the main causes of multifractal features for the

wo time series pairs. 

. Conclusions 

In this article, we investigated the relations between respirable

articulate PM 10 and human respiratory diseases. Firstly, cross-

orrelation test was conducted and the results show the long-range

ross-correlations between PM 10 concentration and respiratory dis-

ases time series. Then we applied DCCA coefficient test to further

onfirm the conclusion, we consisted series pairs from any two

ime series by PM 10 , bronchitis, and rhinitis time series. we found

he cross-correlations of Bronchitis/Rhinitis is the largest, then the

M 10 /Bronchitis, afterwards the PM 10 /Rhinitis. To study from the

erspective of multifractality and quantity, we used MF-DCCA to

nvestigate the multifractality of PM 10 /Bronchitis, and PM 10 /Rhinitis

ime series pairs. At first, three separate time series such as the

onthly average concentration of PM 10 , the monthly average out-

atient quantity of bronchitis, and the monthly average outpatient

uantity of rhinitis time series are analyzed by MF-DFA. We no-

iced the long-range correlations exist in all the three time se-

ies, and the multifractality of all the time series are strong. Then

e used MF-DCCA to investigate the cross-correlations between

espiratory diseases and PM 10 time series pairs. We found that

he multifractal properties are significant. Besides, by comparing

he degrees of multifractal spectrums, we observed that both the
eries of (a) PM 10 /Bronchitis, and (b) PM 10 /Rhinitis. A color version of the figure is 
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Fig. 13. Scaling exponents of original, shuffled, and phase-randomized time series of (a) PM 10 /Bronchitis, and (b) PM 10 /Rhinitis. A color version of the figure is available in 

the web version of the article. 

Fig. 14. Multifractal spectrums of original, shuffled, and phase-randomized time series of PM 10 /Bronchitis, and (b) PM 10 /Rhinitis. A color version of the figure is available in 

the web version of the article. 
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wo monthly outpatient volume of respiratory diseases are sen-

itive to PM 10 concentration. The multifractality of the time se-

ies pair PM 10 /Bronchitis is stronger than that of PM 10 /Rhinitis,

hich indicated that the monthly outpatient volume of bronchitis

s more relevance to PM 10 concentration. Besides, we shuffled and

hase-randomized the original series to explore the major source

f multifractality. The results from MF-DCCA algorithm showed

hat the fat-tailed distributions contribute to the multifractality for

ross-correlation between respiratory diseases and PM 10 time se-

ies pairs. In addition, we believe that our conclusions can provide

dvice for disease diagnosis and environmental governance. For

hysicians, they can diagnose the disease from many factors such

s congenital or air pollution factors or other causes. For the gov-

rnment, officials can formulate relevant measures such as atmo-

phere pollution prevention and control laws to reduce the emis-

ion of particulate matter, so as to reduce the incidence of respi-

atory diseases. However, as we know, there are many other pol-

utants in the atmosphere, such as PM 2.5 , sulfide, nitride, ozone,

tc. In the current study, we only investigated human respiratory

iseases with PM 10 , the effects of other factors on bronchitis and

hinitis also need to be studied, and these will be investigated in

ur future work. 
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