
J. KSIAM Vol.13, No.3, 225–236, 2009

FAST AND AUTOMATIC INPAINTING OF BINARY IMAGES USING A
PHASE-FIELD MODEL

DARAE JEONG1, YIBAO LI1, HYUN GEUN LEE1, AND JUNSEOK KIM1†

1DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY, SEOUL 136-701, REPUBLIC OF KOREA

E-mail address: cfdkim@korea.ac.kr

ABSTRACT. Image inpainting is the process of reconstructing lost or deteriorated parts of im-
ages using information from surrounding areas. We propose a computationally efficient and fast
phase-field method which uses automatic switching parameter, adaptive time step, and auto-
matic stopping of calculation. The algorithm is based on an energy functional. We demonstrate
the performance of our new method and compare it with a previous method.

1. INTRODUCTION

Image inpainting[4, 1, 6] is the process of reconstructing lost or deteriorated parts of images
using information from surrounding areas. Let f(x), where x = (x, y), be a given image in
a domain Ω. Let c(x, t) be a phase-field which is governed by the following modified Cahn-
Hilliard (CH) equation[5]:

ct = Δ¹+ ¸(x)(f(x)− c), (1.1)

¹ = F ′(c)− ²2Δc, (1.2)

where F (c) = 0.25c2(1−c)2. In the examples considered here, we use binary images in which
most of the pixels are either exactly black or white. Eqs. (1.1) and (1.2) are the modified CH
equation, due to the added fidelity term ¸(x)(f(x)−c) [2]. Image inpainting using phase-field
methods is recently investigated by authors in [2, 3]. It is a good starting point for using partial
differential equations in inpainting images, however, we found there are a couple of defects.
First of all, switching parameter ² and stopping the calculation are done by trial and error.
Furthermore, large time step Δt is more or less time step rescaling and it turns out that it is
equivalent to using smaller time step than usual usage. In this paper, we propose a phase-field
method which uses automatic varying ², adaptive time step, and a stopping criterion based on
energy functional.
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The outline of this paper is the following. In Sec. 2, the discrete equations for the governing
equations are presented. In Sec. 3, we present computational examples. We propose a new
automatic controlled algorithm in Sec. 4. Finally, in Sec. 5, conclusions are drawn.

2. DISCRETE EQUATIONS AND A NUMERICAL SOLUTION

In this section, we present fully discrete schemes for the CH equation in two dimensional
space, i.e., Ω = (a, b) × (c, d). Let Nx and Ny be positive even integers, ℎ = (b − a)/Nx be
the uniform mesh size, and Ωℎ = {(xi, yj) : xi = (i − 0.5)ℎ, yj = (j − 0.5)ℎ, 1 ≤ i ≤
Nx, 1 ≤ j ≤ Ny} be the set of cell-centers. Let cij and ºij be approximations of c(xi, yj) and
º(xi, yj). Then, a semi-implicit time and centered difference space discretization of Eqs. (1.1)
and (1.2) is

cn+1
ij − cnij

Δt
= Δd¹

n+ 1
2

ij + ¸ij(fij − cnij), (2.1)

¹
n+ 1

2
ij = '(cn+1

ij )− cn

4
− ²2Δd c

n+1
ij , (2.2)

where '(c) = F ′(c) +
c

4
.

We can rewrite Eqs. (2.1) and (2.2) as follows:

cn+1
ij − cnij

Δt
= Δdº

n+1
ij − 1

4
Δdc

n
ij + ¸ij(fij − cnij), (2.3)

ºn+1
ij = '(cn+1

ij )− ²2Δdc
n+1
ij . (2.4)

For completeness, the numerical solution using a nonlinear multigrid method is described. We
use nonlinear Full Approximation Storage (FAS) multigrid method to solve the nonlinear dis-
crete system (2.3) and (2.4) at the implicit time level. The nonlinearity is treated using one step
of Newton’s iteration and a pointwise Gauss-Seidel relaxation scheme is used as the smoother
in the multigrid method. See the reference text [10] for additional details and backgrounds.
The algorithm of the nonlinear multigrid method for solving the discrete CH system is :
First, let us rewrite Eqs. (2.3) and (2.4) as follows.

NSO(cn+1, ºn+1) = (Án, Ãn),

where

NSO(cn+1, ºn+1) =

(
cn+1

Δt
−Δdº

n+1, ºn+1 − '(cn+1) + ²2Δdc
n+1

)

and the source term is

(Án, Ãn) =

(
cn

Δt
+ ¸(f − cn)− 1

4
Δdc

n, 0

)
.

In the following description of one FAS cycle, we assume a sequence of grids Ωk (Ωk−1

is coarser than Ωk by factor 2). Given the number ¯ of pre- and post- smoothing relaxation
sweeps, an iteration step for the nonlinear multigrid method using the V-cycle is formally
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written as follows [10]:
FAS multigrid cycle

{cm+1
k , ºm+1

k } = FAScycle(k, cmk , ºmk , NSOk, Á
n
k , Ã

n
k , ¯).

That is, {cmk , ºmk } and {cm+1
k , ºm+1

k } are the approximations of cn+1(xi, yj) and ºn+1(xi, yj)
before and after a FAScycle. Now, define the FAScycle.
1) Presmoothing

{c̄mk , º̄mk } = SMOOTH¯(cmk , ºmk , NSOk, Á
n
k , Ã

n
k ),

which means performing ¯ smoothing steps with the initial approximations cmk , ºmk , source
terms Án

k , Ã
n
k , and SMOOTH relaxation operator to get the approximations c̄mk , º̄mk . One

SMOOTH relaxation operator step consists of solving the system (??) and (??) given below
by 2 × 2 matrix inversion for each i and j. Here, we derive the smoothing operator in two
dimensions. Rewriting Eq. (2.3), we get

cn+1
ij

Δt
+

4ºn+1
ij

ℎ2
= Án

ij +
ºn+1
i+1,j + ºn+1

i−1,j + ºn+1
i,j+1 + ºn+1

i,j−1

ℎ2
. (2.5)

Since '(cn+1
ij ) is nonlinear with respect to cn+1

ij , we linearize '(cn+1
ij ) at cmij , i.e.,

'(cn+1
ij ) ≈ '(cmij ) +

d'(cmij )

dc
(cn+1

ij − cmij ).

After substitution of this into (2.4), we get

−
(
d'(cmij )

dc
+

4²2

ℎ2

)
cn+1
ij + ºn+1

ij = Ãn
ij + '(cmij )−

d'(cmij )

dc
cmij (2.6)

− ²2

ℎ2
(cn+1

i+1,j + cn+1
i−1,j + cn+1

i,j+1 + cn+1
i,j−1).

Next, we replace cn+1
kl and ºn+1

kl in the Eqs. (2.5) and (2.6) with c̄mkl and º̄mkl if k ≤ i and l ≤ j,
otherwise with cmkl and ºmkl , i.e.,

c̄mij
Δt

+
4º̄mij
ℎ2

= Án
ij +

ºmi+1,j + º̄mi−1,j + ºmi,j+1 + º̄mi,j−1

ℎ2
,

−
(
d'(cmij )

dc
+

4²2

ℎ2

)
c̄mij + º̄mij = Ãn

ij + '(cmij )−
d'(cmij )

dc
cmij

− ²2

ℎ2
(cmi+1,j + c̄mi−1,j + cmi,j+1 + c̄mi,j−1).

2) Compute the defect

(d̄m1 k, d̄
m
2 k) = (Án

k , Ã
n
k )−NSOk(c̄

m
k , º̄mk ).

3) Restrict the defect and {c̄mk , º̄mk }
(d̄1

m
k−1, d̄2

m
k−1) = Ik−1

k (d̄1
m
k , d̄2

m
k ), (c̄mk−1, º̄

m
k−1) = Ik−1

k (c̄mk , º̄mk ).
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The restriction operator Ik−1
k maps k-level functions to (k − 1)-level functions.

dk−1(xi, yj) = Ik−1
k dk(xi, yj) =

1

4
[dk(xi− 1

2
, yj− 1

2
) + dk(xi− 1

2
, yj+ 1

2
)

+dk(xi+ 1
2
, yj− 1

2
) + dk(xi+ 1

2
, yj+ 1

2
)].

4) Compute the right-hand side

(Án
k−1, Ã

n
k−1) = (d̄m1 k−1, d̄

m
2 k−1) +NSOk−1(c̄

m
k−1, º̄

m
k−1).

5) Compute an approximate solution {ĉmk−1, º̂
m
k−1} of the coarse grid equation on Ωk−1, i.e.

NSOk−1(c
m
k−1, º

m
k−1) = (Án

k−1, Ã
n
k−1). (2.7)

If k = 1, we apply the smoothing procedure in (1) to obtain the approximate solution. If
k > 1, we solve (2.7) by performing a FAS k-grid cycle using {c̄mk−1, º̄

m
k−1} as an initial

approximation:

{ĉmk−1, º̂
m
k−1} = FAScycle(k − 1, c̄mk−1, º̄

m
k−1, NSOk−1, Á

n
k−1, Ã

n
k−1, ¯).

6) Compute the coarse grid correction (CGC):

v̂m1k−1 = ĉmk−1 − c̄mk−1, v̂
m
2k−1 = º̂mk−1 − º̄mk−1.

7) Interpolate the correction: v̂m1k = Ikk−1v̂
m
1k−1, v̂

m
2k = Ikk−1v̂

m
2k−1.

Here, the coarse values are simply transferred to the four nearby fine grid points, i.e. vk(xi, yj) =
Ikk−1vk−1(xi, yj) = vk−1(xi+ 1

2
, yj+ 1

2
) for i and j odd-numbered integers.

8) Compute the corrected approximation on Ωk

cm, after CGC
k = c̄mk + v̂1

m
k , ºm, after CGC

k = º̄mk + v̂2
m
k .

9) Postsmoothing

{cm+1
k , ºm+1

k } = SMOOTH¯(cm, after CGC
k , ºm, after CGC

k , NSOk, Á
n
k , Ã

n
k ).

This completes the description of a nonlinear FAScycle for the discrete modified CH equa-
tion. Let us define a maximum norm

∥cn∥∞ = max
1≤i≤Nx
1≤j≤Ny

∣cnij ∣.

3. COMPUTATIONAL EXAMPLES

In this section, we will compare the numerical scheme of the previous Bertozzi’s paper [2]
with our scheme. First we refer to the discrete Eq. (9) in the paper [2]

un+1 − un

Δt
+ "Δ2

du
n+1 − C1Δdu

n+1 + C2u
n+1 (3.1)

= Δd

(
1

"
W′(un)

)
+ ¸(x)(f(x)− un)− C1Δdu

n + C2u
n,
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where W (u) = u2(1− u)2 and the constants C1 and C2 are large enough so that the equation
is convex for the range of u in the simulation. Next, we rewrite Eq. (3.1) as follows:

un+1 − un

4Δt
"(C2Δt+1)

= Δd

(
1

4
W′(un)− "2

4
Δdu

n+1 +
"

4
C1(u

n+1 − un)

)
+

"

4
¸(x)(f(x)− un).

Table 1 shows that two schemes are equivalent.

TABLE 1. Equivalent forms of two schemes.

Bertozzi’s numerical scheme
un+1−un

4Δt
"(C2Δt+1)

= Δd(
1
4W

′(un)− "2

4 Δdu
n+1 + "

4C1(u
n+1 − un)) + "

4¸(x)(f(x)− un)

Our numerical scheme
cn+1−cn

Δt = Δd

(
F ′(cn)− ²2Δdc

n+1 + 1
4(c

n+1 − cn)
)
+ ¸(x)(f(x)− cn)

We perform two test problems such as inpaintings of a double stripe and of a cross to show
that two schemes are equivalent.

t = 0 t = 50 t = 700
(a)

t = 0 t = 0.0015 t = 1.7565
(b)

FIGURE 1. (a) Bertozzi’s result. (b) Our result. Left column is initial data,
middle column is results at iteration 50, and right column is results at iteration
700.

3.1. Inpainting of a double stripe. In this test problem, the computational domain Ω =
(0, 1.28) × (0, 1.28) and 128× 128 mesh size are taken. The initial configurations are shown
in the first column in Fig. 1. In the first and second rows, figures are results using the previous
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scheme and our proposed scheme, respectively. The gray region in the initial configuration de-
notes the inpainting region. In the previous scheme, we start calculations with a large ² = 0.8
value, then switch its value to ² = 0.01 after 50 iterations, and stop the calculation at 700 iter-
ations. We repeat the same calculations with equivalent values which are summarized in Table
2. The prime notations of the parameters are from previous method and right arrow implies
changing values when switching happens. By comparing two results, we see that our scheme
is equivalent to the previous Bertozzi’s scheme.

TABLE 2. Equivalent parameter values of two schemes.

Previous Value Current Value

Δt′ 1.0 Δt =
4Δt′

²′(C ′
2Δt′ + 1)

0.00003 → 0.0027

¸′ 50000 ¸ =
²′

4
¸′ 10000 → 125

²′ 0.8 → 0.01 ² =
²′

2
0.4 → 0.005

3.2. Inpainting of a cross. For the second test problem, the initial configuration is a cross
with an inpainting region as shown in the first column in Fig. 2. The computational domain
Ω = (0, 1.28) × (0, 1.28) and 128 × 128 mesh size are taken. In the first and second rows,
figures are results using the previous scheme and our proposed scheme, respectively. In the
previous scheme, we start calculations with a large ² = 0.8 value, switch its value to ² = 0.01
after 300 iterations, and stop the calculation at 1000 iterations. We repeat the same calculations
with equivalent values which are summarized in Table 3. By comparing two results, we see
that our scheme is equivalent to the previous Bertozzi’s scheme.

TABLE 3. Equivalent parameter values of two schemes.

Previous Value Current Value

Δt′ 1.0 Δt =
4Δt′

²′(C ′
2Δt′ + 1)

0.000017 → 0.0013

¸′ 100000 ¸ =
²′

4
¸′ 20000 → 250

²′ 0.8 → 0.01 ² =
²′

2
0.4 → 0.005

From these two test problems, we can conclude that two schemes are equivalent. However,
in the previous algorithm, when to switch the parameters and when to stop the calculation are
from trial and error. Therefore, it is our main purpose to propose an automatic switching and
stopping algorithm based on an energy functional.
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t = 0 t = 300 t = 1000
(a)

t = 0 t = 0.0051 t = 0.9151
(b)

FIGURE 2. (a) Bertozzi’s result. (b) Our result. Left column is initial data,
middle column is results at iteration 300, and right column is results at iteration
1000.

4. PROPOSED ALGORITHM FOR AUTOMATIC CONTROL

In this section, we propose an automatic switching and stopping algorithm based on an
energy functional. Let us reconsider the first test problem which is the inpainting of a double
stripe. Fig. 3 shows the temporal evolution of contour plots of the phase-field. Around the
switching time, we can observe the phase separation which means that the inpainting region
separates into white and dark regions. Then we switched the ² parameter. Next, let us take a
look at the time evolution of the energy functional. In Fig. 4, the energy is increased at the
initial stage and it is decreased. Similar phenomena in the second test problem which is the
inpainting of a cross are observed. See the Figs. 5 and 6. Therefore, it is natural to monitor the
energy functional for switching the parameter and stopping the calculation.

4.1. Inpainting of damaged images. Fig. 7(a) and (c) show the initial images of damaged
double stripes and cross and Fig. 7(b) and (d) show the results with our proposed automatic
algorithm to a double stripe and a cross inpainting problems. In the case of double stipes (see
Fig. 7(a) and (b)), it only requires 16 iterations to recover the damaged images. Also in the
other case (cross image, see Fig. 7(c) and (d)) we obtain the recovered image after 15 iterations.
We use Δt = 1/128, ² = 0.038424, ¸ = 3/Δt and when diff ,the difference of energies of
cn+1 and cn, is smaller than tol1(= 0.08) is equal to 3 times, that is, at the number of iteration
is 3 in both cases, we switch the parameter as Δt′ = 2.0Δt, ²′ = 0.0875², ¸′ = 1.8/Δt′.
When diff is smaller than prescribed tolerance, tol2 (= 1.0E − 6), we stop this algorithm.
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FIGURE 3. Temporal evolution of contour plots of the phase-field for the dou-
ble stripe inpainting.
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FIGURE 4. Temporal evolution of contour plots of the energy functional for
the double stripe inpainting.

4.2. Inpainting of obscured text. In order to recover obscured text (see Fig. 8(a)), we use
our inpainting algorithm. Fig. 8(a) shows the initial image which is obscured text by lines
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FIGURE 5. Temporal evolution of contour plots of the phase-field for the cross inpainting.
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FIGURE 6. Temporal evolution of contour plots of the energy functional for
the cross inpainting.

and Fig. 8(b) shows the recover result image. We use the parameter as Δt = 1/128, ² =
0.038424, ¸ = 3/Δt and diff is smaller than tol1 (= 0.08) is equal to 3 times, that is, at
the number of iteration is 4 in this case, we switch the parameter as Δt′ = 1.8Δt, ²′ =
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The proposed automatic switching and stopping algorithm is as follows.
Algorithm:
Given a maximum iteration number N , tolerances tol1 and tol2
∙ Set k = 1, flag = 0.
∙ While (k ≤ N) do Steps 1-4

Step 1 Compute cn+1 from cn by solving Eqs. (2.3) and (2.4).
Step 2 Check the difference of energies of cn and cn+1

diff = ∣ℰ(cn) − ℰ(cn+1)∣
If (flag < 3 and diff < tol1)

flag = flag + 1
End

Step 3 Switch parameters and reset data
If (flag = 3)

If (cn+1 > 0.5)
cn+1 = 1

Else
cn+1 = 0

End
Δt = 2Δt
do Step 1 twice
² = 0.0875²
¸ = 1.8/Δt

End
Step 4 Stop loop

If (diff < tol2 and flag = 3)
Stop loop

End
End

0.0875², ¸′ = 1.8/Δt′. Our automatic switching method of the modified CH equation is
faster than the previous model.

5. CONCLUSION

We have shown that our automatic switching algorithm achieves faster inpainting of binary
images than the previous trial and error algorithm. Therefore, inpainting region is reconstructed
more efficiently and faster than previous method. The developed automatic algorithm can
be applied to calculating option pricing such as the Black-Scholes equations accurately and
efficiently.
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(a) Initial (b) 16 iterations (c) Initial (d) 15 iterations

FIGURE 7. Recovery of damaged images. The computational domain is Ω =
(0, 1.28)× (0, 1.28) and mesh size is 128× 128.

(a) Initial (b) 47 iterations

FIGURE 8. Recovery of damaged text. The computational domain is Ω =
(0, 2.56)× (0, 1.28) and mesh size is 256× 128.
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