
Digital Signal Processing 37 (2015) 65–74
Contents lists available at ScienceDirect

Digital Signal Processing

www.elsevier.com/locate/dsp

Fast local image inpainting based on the Allen–Cahn model

Yibao Li a, Darae Jeong b, Jung-il Choi c, Seunggyu Lee b, Junseok Kim b,∗
a School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China
b Department of Mathematics, Korea University, Seoul 136-713, Republic of Korea
c Department of Computational Science and Engineering, Yonsei University, Seoul, 120-749, Republic of Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 5 December 2014

Keywords:
Image inpainting
Energy minimization
Allen–Cahn equation
Operator splitting
Unconditionally stable scheme

In this paper, we propose a fast local image inpainting algorithm based on the Allen–Cahn model. The 
proposed algorithm is applied only on the inpainting domain and has two features. The first feature is 
that the pixel values in the inpainting domain are obtained by curvature-driven diffusions and utilizing 
the image information from the outside of the inpainting region. The second feature is that the pixel 
values outside of the inpainting region are the same as those in the original input image since we 
do not compute the outside of the inpainting region. Thus the proposed method is computationally 
efficient. We split the governing equation into one linear equation and one nonlinear equation by using 
an operator splitting technique. The linear equation is discretized by using a fully implicit scheme and the 
nonlinear equation is solved analytically. We prove the unconditional stability of the proposed scheme. 
To demonstrate the robustness and accuracy of the proposed method, various numerical results on real 
and synthetic images are presented.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Image inpainting is the process of filling in missing or damaged 
parts of images based on information from surrounding areas [1]. 
Up to now, a large number of algorithms have been proposed to 
solve the image inpainting problem. For the recent survey of the 
theoretical foundations, the different categories of methods, and 
illustrations of the main applications about the image inpainting, 
see the review paper [2] and references therein. Qin et al. [3] pro-
posed an efficient image inpainting approach, which progressively 
propagates neighboring information into damaged region and can 
restore sharp edge successfully. In [4], the authors proposed a com-
pact and fast PDE-based inpainting method using anisotropic heat 
transfer model, which can propagate both the structure and texture 
information from surrounding region into damaged region simul-
taneously. Liu and Caselles [5] presented a novel formulation of 
exemplar-based inpainting [6–8] as a global energy optimization 
problem, written in terms of the offset map. They also proposed 
a multiscale graph cuts algorithm to efficiently solve the energy 
minimization problem. Recently, Ramamurthy et al. [9] regularized 
the sparse models with manifold projection for image inpainting 
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and Turek et al. [10] used the signal generation model for image 
inpainting.

Many inpainting algorithms are based on partial differential 
equations, in which the missing region is filled by diffusing the 
image information from the known region into the missing re-
gion at the pixel level [11–13]. Among them, one of widely applied 
methods is proposed by Chan and Shen [12]. They proposed a vari-
ational framework based on total variation to recover the missing 
information, which minimizes the following energy functional:

ETV(c) =
∫
Ω

|∇c|dx +
∫
Ω

λ(x)

2

(
f (x) − c

)2
dx, (1)

where x = (x, y), f (x) is a given image, and c is the gray scale im-
age in a domain Ω ⊂ R

2. ΩD ⊂ Ω is the inpainting domain, ∂ΩD

is the boundary of inpainting domain, and Ω\ΩD is the comple-
ment of ΩD in Ω (see Fig. 1). The fidelity term λ(x)( f (x) − c)2

was used to keep the solutions close to the given image in Ω\ΩD . 
For this purpose, λ(x) = 0 if x ∈ ΩD ; otherwise λ(x) = λ0.

The steepest descent equation for the energy functional (1) is 
given by

∂c

∂t
= ∇ ·

( ∇c

|∇c|
)

+ λ(x)
(

f (x) − c
)
. (2)
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Fig. 1. Schematic illustration of the inpainting domain.

Fig. 2. A double well-potential, F (c) = 0.25c2(1 − c)2.

Hence,

∂c

∂t
=

{∇ · ( ∇c
|∇c| ) if x ∈ ΩD ,

∇ · ( ∇c
|∇c| ) + λ0( f (x) − c) if x ∈ Ω\ΩD .

(3)

As can be observed, the pixel values in the solution are the same 
as the values in Ω\ΩD , i.e., c ≈ f (x). And in the inpainting do-
main, the pixel values are obtained by curvature-driven diffusions. 
In [14], Chan and Shen proposed a new inpainting model based on 
the curvature-driven diffusions to realize the connectivity princi-
ple.

∂c

∂t
= ∇ ·

(
G
(
x, |κ |) ∇c

|∇c|
)

+ λ
(

f (x) − c
)
. (4)

Here,

G
(
x, |κ |) =

{ |κ |p if x ∈ ΩD ,

1 if x ∈ Ω\ΩD ,
(5)

where p ≥ 1 and κ is the curvature, which is given by ∇ ·
(∇c/|∇c|). In [13], Esedoḡlu and Shen introduced the Mumford–
Shah–Euler model, which is based on the Mumford–Shah image 
segmentation model [15], to solve the image inpainting problems. 
Ballester et al. [16] adapted a joint interpolation of vector fields 
and gray-levels to incorporate the principle of continuity in a varia-
tional framework. Li et al. [17] proposed a fast scheme to solve the 
Chan and Shen’s inpainting model [12] with an operator splitting 
method. Another well-known method was introduced by Bertozzi 
et al. [18,19], where they proposed an inpainting model which is 
the modified Cahn–Hilliard (CH) equation

EB(c) = EB1(c) + EB2(c)

=
∫
Ω

(
F (c)

ε2
+ |∇c|2

2

)
dx +

∫
Ω

λ

2

(
f (x) − c

)2
dx, (6)

where F (c) = 0.25c2(1 − c)2 is the Helmholtz free energy density 
(see Fig. 2). The term F (c) is a force that makes c to be approxi-
mately 0 or 1. |∇c|2 is a gradient energy, ε is the gradient energy 
coefficient related to the interfacial energy.

By a superposition of gradient descent with respect to H−1 in-
ner product for the energy EB1 and gradient descent with respect 
to L2 inner product for the energy EB2, the authors in [18,19] pro-
posed the following model:
∂c

∂t
= �

(
F ′(c)

ε2
− �c

)
+ λ

(
f (x) − c

)
. (7)

We note that if λ = 0 in Eq. (7), then the equation becomes the 
classical CH equation [20], which has been used as a mathematical 
model to investigate the phase separation of binary mixture under 
quenching below a critical temperature. For physical, mathemati-
cal, and numerical derivations of the CH equation, see the recent 
review paper [21].

In this paper, we propose a new effective and accurate im-
age inpainting method which is based on the local Allen–Cahn 
equation [22]. The equation has been used in solving problems 
in image processing [23–27]. By using the Allen–Cahn equation, 
we can perform fast image inpaintings, because its fast and ac-
curate hybrid numerical solver is available [28]. It should be 
pointed that our model is the extension of Chan and Shen’s 
model [12], since Allen–Cahn equation describes the motion of 
mean curvature flow. Compared to Cahn–Hilliard equation [18,19], 
we choose to use the Allen–Cahn equation, since its numerical 
treatment is simpler than that of the Cahn–Hilliard type, which 
involves fourth-order differential operators. The outline of this pa-
per is the following. In Section 2, the governing equations for 
the image inpainting are presented. In Section 3, we describe the 
proposed operator splitting algorithm and give a detailed proof 
for its unconditional stability. In Section 4, we present compu-
tational examples to demonstrate the efficiency and robustness 
of our proposed method. Finally, conclusions are drawn in Sec-
tion 5.

2. Description of the proposed model

The inpainting algorithms can be summarized as: First, the 
missing region is filled by diffusing the image information from 
the known region into the missing region at the pixel level. Sec-
ond, the image information in the known region should be close 
to the given image. To reduce the computational cost and keep 
the accuracy of the inpainting algorithm, we propose the following 
equations:

∂c

∂t
(x, t) =

{
−F ′(c(x, t))/ε2 + �c(x, t) if x ∈ ΩD ,

0 otherwise.
(8)

c(x,0) =
{

0.5 if x ∈ ΩD ,
f (x)− fmin
fmax− fmin

otherwise.
(9)

n · ∇c(x, t) = 0, x ∈ ∂Ω, (10)

where fmax and fmin are the maximum and the minimum values 
of the given image, respectively, and n is the unit normal vector 
to ∂Ω . Thus, we have the normalized image data c(x, 0) ∈ [0, 1]. 
Eq. (8) is also called as the Allen–Cahn equation [22], which is 
widely applied in image processing due to the motion by mean 
curvature. We choose the AC equation because it has intrinsic 
smoothing effect on interfacial transition layers and its fast and 
accurate hybrid numerical solver is available [28].

For the initial condition, we can choose different initial guesses 
for the inpainting domain ΩD because the solution of missing re-
gions will be defined by the information of the known region at 
the equilibrium solution. In this work, to reduce the numerical it-
erations, we set c(x, 0) = 0.5 in the inpainting domain.

3. Numerical solution algorithm

3.1. Proposed operator splitting algorithm

In this section, we propose an operator splitting method to get 
an unconditionally stable numerical method for solving the pro-
posed algorithm. Let the computational domain Ω be [1, Nx] ×
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[1, N y], h be the uniform grid size, and Ωh = {(xi, y j)|xi = (i −
0.5)h, y j = ( j − 0.5)h, 1 ≤ i ≤ Nx, 1 ≤ j ≤ N y}. Let cn

i j be approx-
imations of c(xi, y j, n�t), where �t = T /Nt is the time step, T is 
the final time, and Nt is the total number of time steps. Here, the 
superscript n denotes an evaluation at time level n. We split the 
original problem (8) into a sequence of simpler problems as

ct = �c, (11)

ct = − F ′(c)

ε2
. (12)

As the first step, we solve Eq. (11) by applying the fully implicit 
method with an initial condition cn , that is,

c
n+ 1

2
i j − cn

i j

�t
= �dc

n+ 1
2

i j , (13)

where �d is the 9-point discrete Laplacian operator, i.e.,

�dc
n+ 1

2
i j = c

n+ 1
2

i+1, j+1 + c
n+ 1

2
i+1, j−1 + c

n+ 1
2

i−1, j+1 + c
n+ 1

2
i−1, j−1

6h2

+ 2(c
n+ 1

2
i, j−1 + c

n+ 1
2

i, j+1 + c
n+ 1

2
i+1, j + c

n+ 1
2

i−1, j) − 10c
n+ 1

2
i j

3h2
.

The resulting implicit discrete Eq. (13) can be solved by the Gauss–
Seidel method. Next, Eq. (12) is solved by the method of separation 
of variables [28–31] as

cn+1 = 1

2
+ cn+ 1

2 − 0.5√
e

−�t
2ε2 + (2cn+ 1

2 − 1)2(1 − e
−�t
2ε2 )

. (14)

For more details, we refer to [28] and note that in the previous nu-
merical solution of Eq. (11), the authors used the Crank–Nicolson 
scheme, which is prone to oscillations when a large time step is 
used. However, in this paper, we do not have oscillations because 
we use the fully implicit scheme.

To solve Eqs. (11) and (12) in ΩD , we introduce a control func-
tion g , which is defined as

gij =
{

1 if (xi, y j) ∈ ΩD ,

0 otherwise.
(15)

The schematic diagram is shown in Fig. 3. cn+1 is updated from 
cn by solving Eqs. (13) and (14) only when gij = 1. We note that 
the closest neighboring exterior cells to the boundary of ΩD play 
a role as the Dirichlet boundary condition. Therefore, cn

i j can have 
values between zero and one depending on the neighboring image 
values.

In summary, our discrete solution algorithm is described as fol-
lowing:

Step 1. Find the inpainting domain ΩD using various methods: 
for example, either by inspection or by image segmentation meth-
ods [29,32].

Step 2. Define the control function g and initialize c0 as

gij =
{

1 if (xi, y j) ∈ ΩD ,

0 otherwise.
and

c0
i j =

{
0.5 if (xi, y j) ∈ ΩD ,

f i j− fmin
fmax− fmin

otherwise.

Step 3. Update cn+1 from cn by solving Eqs. (13) and (14).
Fig. 3. Schematic illustration of the function g . The value of g is 1 (white circle, ◦) 
on the inpainting domain ΩD and 0 (black circle, •) on the other domain.

An efficient preconditioned conjugate gradient (PCG) scheme is 
used to solve imaging problems [33].

3.2. Stability of the proposed method

Our proposed hybrid splitting method, Eqs. (13) and (14), is an 
unconditionally stable scheme. To confirm the unconditional sta-
bility of Eq. (13), we apply the von Neumann analysis. Let cn

i j and 

cn+1/2
i j be decomposed into Fourier series as

cn
i j =

Nx∑
α=−Nx

N y∑
β=−N y

γ n
αβek(αi+β j)πh and

cn+1/2
i j =

Nx∑
α=−Nx

N y∑
β=−N y

γ n+1
αβ ek(αi+β j)πh,

respectively. Here, we denote n on γ as a power and k as the 
imaginary unit, i.e., k = √−1. Let c̃n

i j = γ nek(αi+β j)πh and c̃n+1/2
i j =

γ n+1ek(αi+β j)πh denote one summand of the series, respectively, 
where we drop the summand index in γ n and γ n+1. These formu-
las are now substituted into Eq. (13) and we obtain

γ = 3h2

3h2 + 2�t(sin2 (α+β)πh
2 + sin2 (α−β)πh

2 + 4 sin2 απh
2 + 4 sin2 βπh

2 )
.

We can see that the above γ satisfies the property |γ | ≤ 1 for 
any α and β . Hence, the numerical scheme Eq. (13) is uncondition-

ally stable. Furthermore, the inequality inf (cn) ≤ cn+ 1
2 ≤ sup (cn) is 

satisfied by the discrete minimum and maximum principles for the 
heat equation [34]. Thus from Eq. (13), we get 0 ≤ cn+ 1

2 ≤ 1 and 
this result induces 0 ≤ cn+1 ≤ 1 from Eq. (14). Therefore our pro-
posed scheme, Eqs. (13) and (14), is unconditionally stable for any 
time step.

4. Numerical tests

In this section, we present numerical results which are ob-
tained by using the proposed numerical algorithm on various syn-
thetic and real images. Unless otherwise specified, we use uniform 
grid size h = 1 and time step �t = 2. The ε value is given as 
εm = hm/[4√

2 tanh−1(0.9)] [35], where hm is approximately the 
transition length of c from 0.05 to 0.95. We also will present the 
CPU times in seconds of our calculations which are performed in 
C++ on a 3 GHz with 3 G RAM.

We stop the numerical computations when the difference be-
tween the (n + 1)th and nth time step energies becomes less than 
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Fig. 4. Evolution of inpainting an image. Top row: image plots. Bottom row: mesh plots. The times are shown below each figure.

Fig. 5. Inpainting results with different ε parameter values. The top row shows the final inpainting results at time T = 1000. The bottom row shows mesh plots of the final 
inpainting results.
a given tolerance, tol. In this paper, we set tol = 0.1. The termina-
tion criterion algorithm is listed as follows:

Set a maximum iteration number N , a tolerance tol, and k = 1.
While (k ≤ N) do Steps 1–2

Step 1 Compute φn+1 from φn by solving Eqs. (13) and 
(14).

Step 2 If |EB1(φ
n+1) − EB1(φ

n)| < tol, then stop the calcu-
lation.
Else k = k + 1.

4.1. Basic mechanism of the algorithm

We start with an example which illustrates the basic mech-
anism of the algorithm, Eqs. (8)–(10). Let us consider a syn-
thetic image as shown in Fig. 4(a) on the computational domain 
Ω = [1, 128] × [1, 128]. Here, white regions are close to 1 and 
black regions are close to 0. Gray region is an inpainting domain 
and is close to 0.5. Interfacial energy coefficient ε3 is used. The 
top and bottom rows in Fig. 4 show the evolution of the gray 
region and mesh plots of the numerical solutions, respectively. 
The evolution times are shown below each figure. The inpaint-
ing region evolves according to neighboring values, i.e., either 0 
or 1.
4.2. Effect of parameter ε

We perform a parameter ε sensitivity analysis for the model. 
The role of ε is interface thickness of a transition layer of the sep-
arated region which represents two different states. We take the 
same initial condition except for different interface parameter val-
ues ε1, ε3, and ε6. From the results shown in Fig. 5, we can observe 
that when ε is too small, interfacial transition is too sharp. On the 
other hand, if ε is too large, the inpainting result is blurry in ap-
pearance.

To show the relation of the parameter ε and the time step �t , 
we perform the same test as the above with different time steps, 
�t = 0.1ε2, 2ε2, and 10ε2. Here, ε = ε3 is used. From Fig. 6, we 
can see that when the time step is larger, the interfacial transition 
is getting sharper. Therefore, too large time step is not good for 
getting smooth results.

4.3. Sensitivity to initial conditions

Fig. 7 shows the evolution of inpainting an image with respect 
to three different initial conditions on Ω = [1, 128] ×[1, 128]. Here, 
ε3 is employed. As shown in Fig. 7(a), we set c(x, y, 0) = 1 for 
(x, y) ∈ ΩD . Even though F (c) = 0 and |∇c|2/2 = 0 for (x, y) ∈ ΩD , 
our method also works well because of n · ∇c �= 0 on ∂ΩD . The 
inpainting result is obtained after 340 iterations. Another initial 
condition is with random perturbations on ΩD , i.e., c(x, y, 0) =
rand(x, y), where rand(x, y) is a random number between 0 and 1. 
The numerical solutions obtained from 200 iterations are shown in 
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Fig. 6. Inpainting results with different time steps. (a) �t = 0.1ε2, (b) �t = 2ε2, and (c) �t = 10ε2.

Fig. 7. Evolution of inpainting an image with three different initial conditions with (a) c(x, y, 0) = 1, (b) c(x, y, 0) = rand(x, y), and (c) c(x, y, 0) = 0.5 on ΩD . The first column 
shows the mesh plot of the initial condition. The other columns are the temporal evolutions with the given initial conditions. The computational times are listed below each 
figure.
Table 1
Comparison of our proposed method with the method from Bertozzi et al. [18] for 
the number of iterations and CPU time in seconds.

Case Image size Our proposed method Bertozzi et al.

Iterations CPU time Iterations CPU time

Fig. 8(a) 128 × 128 14 0.25 700 11.5
Fig. 8(b) 128 × 128 11 0.21 1000 15.6

Fig. 7(b). In the last test, we consider our proposed initialization al-
gorithm, i.e., c(x, y, 0) = 0.5. It takes only 11 iterations to solve the 
image inpainting problem. Note that, with the three different ini-
tial conditions, image inpaintings are successfully done as shown 
in the last column of Fig. 7.

4.4. Inpainting of a synthetic image

In this section, we show our proposed method can inpaint var-
ious synthetic images such as double stripes, crosses, and disks. 
In this simulation, ε4 is used. The initial configurations are shown 
in the first two columns of Fig. 8. The gray region in the initial 
configuration denotes the inpainting region. The inpainted results 
are shown in the last two columns. As shown in Fig. 8, our pro-
posed method works well. Note that Bertozzi et al. [18] have taken 
similar numerical tests for double stripes and crosses by using the 
Cahn–Hilliard equation with an adaptive ε . The comparisons with 
the results in [18] for iterations and CPU time are listed in Table 1. 
From the results, we can see that our proposed method is more 
efficient than theirs.

4.5. Gray-valued image inpainting

Figs. 9(a), (b), (c), (d), and (e) show an initial image, the in-
painting domain, and the recovered images by using the Chan and 
Shen’s method [12], the Li et al.’s method [17], and the proposed 
method, respectively. Interface parameter ε15 and time step �t = 5
are used. It took only 4 iterations, which is much faster than Li et 
al.’s method with 200 iterations and Chan and Shen’s method with 
5000 iterations for inpainting with Fig. 9(a).

Also, we conduct the inpainting of a zebra and a QR code im-
ages, which are considered by Bosch et al. [1]. In Ref. [1], the 
authors developed a fast solver using the Moreau–Yosida regular-
ization technique for the Cahn–Hilliard inpainting. The results by 
Bosch et al. [1] are presented in second column of Fig. 10. And 
we represent the our results in third column for comparison. As 
shown in Fig. 10, we obtain more clear recovered images of a ze-
bra and QR code with only 8 and 10 iterations than Bosch et al. 
[1], respectively. These facts imply that our numerical method is 
also performed well in gray valued inpainting images.

Figs. 11(a) and (b) show two removal of texts. Here, ε15 and 
�t = 5 are used. As shown in Fig. 11, image inpaintings are suc-
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Fig. 8. Inpainting of several synthetic images with a double stripe, cross, and disk deteriorated region. The first two columns are initial images and the last two are inpainted 
images. Note that the gray region respects inpainting domain.

Fig. 9. Inpainting of gray images. (a), (b), (c), (d), and (e) show an initial image, the inpainting domain, and the recovered images by using the Chan and Shen’s method [12], 
the Li et al.’s method [17], and the proposed method, respectively. The initial image is reprinted from F. Li et al. [17].
© 2011 Elsevier. Reprinted with permission. All rights reserved.

Fig. 10. Image inpainting of (a) zebra and (b) QR code. Inpainting and recovered images are reprinted from Bosch et al. [1].
© 2014 Society for Industrial and Applied Mathematics. Reprinted with permission.
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Fig. 11. Examples of (a) Lena and (b) texture images. The initial image of (b) is reprinted from T.F. Chan and J. Shen [12].
© 2002 Society for Industrial and Applied Mathematics. Reprinted with permission. All rights reserved.

Fig. 12. Examples of (a) bunny and (b) teacup in three-dimensional space. From left to right, they are original, damaged, and recovered surfaces, respectively.
cessfully done. We refer to [36] for an automatic image inpainting 
algorithm based on a fuzzy C-mean (FCM).

4.6. Three-dimensional inpainting

In this section, we perform an image inpainting in three-
dimensional space with our numerical method. It should be noted 
that in order to use more information from the original image, we 
use the 27-point discrete Laplacian operator in three-dimensional 
space [37], i.e.,

�dci jk = [
14(ci+1, j,k + ci−1, j,k + ci, j+1,k + ci, j−1,k + ci, j,k+1

+ ci, j,k−1) + 3(ci+1, j+1,k + ci+1, j−1,k + ci+1, j,k+1

+ ci+1, j,k−1 + ci−1, j+1,k + ci−1, j−1,k + ci−1, j,k+1

+ ci−1, j,k−1 + ci, j+1,k+1 + ci, j−1,k−1 + ci, j+1,k−1

+ ci, j−1,k+1) + ci−1, j+1,k+1 + ci−1, j−1,k−1

+ ci−1, j+1,k−1 + ci−1, j−1,k+1 + ci+1, j+1,k+1
+ ci+1, j−1,k−1 + ci+1, j+1,k−1 + ci+1, j−1,k+1

− 128ci jk
]
/
(
30h2).

Figs. 12(a) and (b) show two 3D examples. From left to right, 
they are original, damaged, and recovered surfaces, respectively. 
Here, ε4 and �t = 2 are used. As can be seen, our proposed 
method performs well for inpainting in three-dimensional space.

4.7. Computational cost

Now, we show the performance of all test problems which were 
done in previous sections. Table 2 shows the image size (N), the 
inpainting domain size (Nis), the number of iterations, and the CPU 
time in each test. The result indicates that our proposed method 
is robust and efficient. It should be noted that since our proposed 
model is defined in the inpainting domain, the computational cost 
is not O (N log N) but O (Nis log Nis). To demonstrate it, in Fig. 13, 
we plot the average CPU time (total CPU time over total iterations) 
and O (Nis log Nis), which are summarized in Table 2. Here, the lin-
ear fitting is done using the MATLAB function “polyfit”. We define 
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the error as the difference between the average CPU time and the 
linear fit result. In this test, the l2 error is 0.89%. Therefore the re-
sults suggest that the convergence rate of the computational cost 
is linear with respect to Nis log Nis . To show the effect and accu-
racy of our proposed method, we will compute PSNR (Peak Signal 
to Noise Ratio) [38–41], which is commonly used to measure the 
quality of reconstruction of image inpainting. Here, PSNR is defined 
as

PSNR = −10 log10

(
1

NxN y

Nx∑
i=1

N y∑
j=1

[
cn

i j − ( f i j − fmin)

/( fmax − fmin)
]2

)
.

Fig. 13. Experimental data and linear fitting average CPU time versus Nis log Nis .

Table 2
Performance of our proposed method in image inpainting for several cases. Note 
that Nis means the number of pixels which are on the inpainting domain ΩD .

Case Image size (N) Nis Iterations CPU time (s) PSNR

Fig. 8(a) 128 × 128 3016 14 0.25 43.29
Fig. 8(b) 128 × 128 2704 11 0.21 35.52
Fig. 8(c) 128 × 128 1444 11 0.16 35.43
Fig. 9 231 × 229 5614 4 0.35
Fig. 10(a) 256 × 256 12,223 8 1.41
Fig. 10(b) 294 × 293 20,321 10 3.01
Fig. 11(a) 240 × 256 8952 4 0.22 32.93
Fig. 11(b) 256 × 256 4152 4 0.16
Fig. 12(a) 254 × 250 × 200 819,200 9 116.89 44.21
Fig. 12(b) 277 × 183 × 147 1,371,951 11 163.54 37.39
Since the pixel values in the inpainting domain are obtained by 
curvature-driven diffusions and the pixel values outside the in-
painting region are the same as those in the original input image, 
we can expect the higher PSNR obtained by our proposed method.

4.8. Disconnected stripe image with large gap

In this section, we test a disconnected stripe image with large 
inpainting region as the benchmark example [42]. First, we recover 
the example (see Fig. 14(a)) by using the modified Cahn–Hilliard 
equation. For this test, we use λ = 1, �t = 1, and h = 1. Numeri-
cal results with ε = 10 and 100 are shown in Figs. 14(b) and (c), 
respectively.

From these results, we know that the inpainting problem with 
large gap is difficult to recover with the modified CH equation. 
In order to resolve this problem which is arising in Cahn–Hilliard 
model, authors in [18,19,42] proposed the two-step method. This 
method is first performed with a large ε , then used with small ε
to regulate the diffuse-interface motion. For more details about the 
two-step method, see the reference [18,19,42].

Also, we conduct the test with new method proposed in this 
paper. In this test, we use �t = 0.01 and h = 1. And we do test 
with three different values of ε . Figs. 14(d)–(f) show the numeri-
cal results with ε = 0.01, 0.1, and 1 at steady states, respectively. 
Here, we define the steady state as ‖EB1(φ

n+1) −EB1(φ
n)‖ < 10−5. 

When we use ε = 0.1, we get the good numerical result as the one 
in [42].

5. Conclusion

In this paper, we proposed a new unconditionally stable hy-
brid numerical method for image inpainting. The model is based 
on the local Allen–Cahn equation and an operator splitting tech-
nique was used to solve the model numerically. We proved the 
unconditional stability of the proposed scheme. Various numerical 
results on real and synthetic images were presented to demon-
strate the efficiency and robustness of the proposed method. Since 
our proposed model is defined in the inpainting domain, the com-
putational cost is not O (N log N) but O (Nis log Nis). This indicates 
that our proposed method is very fast for image inpainting process. 
Through the computational cost comparisons with three models in 
[12,17,18], we confirmed that our proposed model is much faster 
than the other existing models.
Fig. 14. Disconnected stripe image with large gap inpainting region. (a) Initial condition and (b)–(f) numerical results by modified CH model and AC model with respect to ε .
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[24] T. Chan, S. Esedoḡlu, M. Nikolova, Algorithms for finding global minimizers of 
image segmentation and denoising models, SIAM J. Appl. Math. 66 (5) (2006) 
1632–1648.
[25] S. Esedoḡlu, Y.-H.R. Tsai, Threshold dynamics for the piecewise constant 
Mumford–Shah functional, J. Comput. Phys. 211 (1) (2006) 367–384.

[26] J. Lie, M. Lysaker, X.C. Tai, A binary level set model and some applications to 
Mumford–Shah image segmentation, IEEE Trans. Image Process. 15 (5) (2006) 
1171–1181.

[27] L. Blanc-Feraud, G. Aubert, J. Zerubia, A variational model for image classifi-
cation and restoration, IEEE Trans. Pattern Anal. Mach. Intell. 22 (5) (2000) 
460–472.

[28] Y. Li, H.G. Lee, D. Jeong, J. Kim, An unconditionally stable hybrid numeri-
cal method for solving the Allen–Cahn equation, Comput. Math. Appl. 60 (6) 
(2010) 1591–1606.

[29] Y. Li, J. Kim, Multiphase image segmentation with a phase-field model, Comput. 
Math. Appl. 62 (2) (2011) 737–745.

[30] A. Stuart, A.R. Humphries, in: Dynamical System and Numerical Analysis, Cam-
bridge University Press, Cambridge, UK, 1998.

[31] Y. Li, H.G. Lee, J. Kim, A fast, robust, and accurate operator splitting method 
for phase-field simulations of crystal growth, J. Cryst. Growth 321 (1) (2011) 
176–182.

[32] Y. Li, J. Kim, A fast and accurate numerical method for medical image segmen-
tation, J. Korea SIAM. 14 (4) (2010) 201–210.

[33] B. Zhang, S. Makram-Ebeid, R. Prevost, G. Pizaine, Fast solver for some compu-
tational imaging problems: a regularized wighted least-squares approach, Digit. 
Signal Process. 27 (2014) 107–118.

[34] K.W. Morton, D.E. Mayers, in: Numerical Solution of Partial Differential Equa-
tions, Cambridge University Press, Cambridge, UK, 1996.

[35] J. Kim, Phase-field models for multi-component fluid flows, Commun. Comput. 
Phys. 12 (3) (2012) 613–661.

[36] J. Liu, H. Liu, S. Qiao, G. Yue, An automatic image inpainting algorithm based 
on FCM, Sci. World J. 2014 (2014) 201704.

[37] W.F. Spotz, G.F. Carey, A high-order compact formulation for the 3D Poisson
equation, Numer. Methods Partial Differ. Equ. 12 (1996) 235–243.

[38] P.A. Hernandez-Avalos, C. Feregrino-Uribe, R. Cumplido, Watermarking us-
ing similarities based on fractal codification, Digit. Signal Process. 22 (2013) 
324–336.

[39] A. Pizurica, W. Philips, Estimating the probability of the presence of a signal of 
interest in multiresolution single- and multibrand image denoising, IEEE Trans. 
Image Process. 15 (3) (2006) 654–665.

[40] C. Qin, C.-C. Chang, Y.-P. Chiu, A novel joint data-hiding and compression 
scheme based on SMVQ and image inpainting, IEEE Trans. Image Process. 23 (3) 
(2014) 969–978.

[41] M. Yan, Restoration of images corrupted by impulse noise and mixed Gaus-
sian impulse noise using blind inpainting, SIAM J. Imaging Sci. 6 (3) (2013) 
1227–1245.

[42] A. Gillette, Image inpainting using a modified Cahn-Hilliard equation, doctoral 
dissertation, University of California Los Angeles, 2006.

Yibao Li received the M.S. and Ph.D. degrees in Applied Mathematics 
from Korea University, Korea, in 2011 and 2013, respectively. He held a re-
search position in Department of Computational Science and Engineering, 
Yonsei University, Korea (2013–2014). Currently he is an assistant profes-
sor at the School of Mathematics and Statistics of Xi’an Jiaotong University, 
China. His research interests include image processing, phase field model, 
computational fluid dynamics, and scientific computing.

Darae Jeong received her Ph.D. in Applied Mathematics from Korea 
University, Korea, in 2013. And she is received his M.S. degree in Applied 
Mathematics and his B.S. degree in Mathematics from Korea University in 
2011 and Dongguk University in 2008, respectively. She is currently work-
ing as a post-doctoral research fellow at the Department of Mathematics, 
Korea University, Korea. Her research interests include computational fi-
nance, computational fluid dynamics, and scientific computation.

Jung-il Choi received the B.Sc, M.Sc. and Ph.D. in mechanical engineer-
ing from KAIST in 1994, 1996, and 2002, respectively. He is currently an 
associate professor at the Department of Computational Science and Engi-
neering, Yonsei University, Korea. His research interests lie in the field of 
computational fluid dynamics and its application to various thermo-fluid 
engineering problems.

Seunggyu Lee received the B.S. degree in mathematical sciences in 
2011 from KAIST. Now, he is a Ph.D. candidate in the Department of Math-
ematics, Korea University. His research interests include numerical analysis 
and scientific computing in fluid dynamics, bioscience, and image process-
ing.

http://refhub.elsevier.com/S1051-2004(14)00341-8/bib424B5357s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib424B5357s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib474Ds1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib474Ds1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib51435As1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib51435As1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib51575As1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib51575As1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib51575As1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C43s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C43s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib5053s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib5053s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib574C504842s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib574C504842s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib574C504842s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4748504B41s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4748504B41s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4748504B41s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib525453s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib525453s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib545945s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib545945s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib424843s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib424843s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4353s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4353s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4553s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4553s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib435332s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib435332s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4D53s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4D53s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4D53s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib424243s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib424243s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib424243s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C534Cs1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C534Cs1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C534Cs1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib415341s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib415341s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib424547s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib424547s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4348s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4348s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C484A53594Bs1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C484A53594Bs1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C484A53594Bs1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4143s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4143s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4143s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C4B41s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C4B41s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib43454Es1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib43454Es1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib43454Es1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4554s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4554s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C4C54s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C4C54s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C4C54s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib534653415As1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib534653415As1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib534653415As1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C4Bs1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C4Bs1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C4Bs1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C4B32s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C4B32s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib5348s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib5348s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C4B33s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C4B33s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C4B33s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C4B31s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C4B31s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib5A4D5050s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib5A4D5050s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib5A4D5050s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4D4Ds1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4D4Ds1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4B696Ds1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4B696Ds1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C4C5159s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib4C4C5159s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib5343s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib5343s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib484643s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib484643s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib484643s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib5050s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib5050s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib5050s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib514343s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib514343s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib514343s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib59s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib59s1
http://refhub.elsevier.com/S1051-2004(14)00341-8/bib59s1


74 Y. Li et al. / Digital Signal Processing 37 (2015) 65–74
Junseok Kim received the received his Ph.D. in Applied Mathematics 
from the University of Minnesota, U.S.A. in 2002. He also received his 
B.S. degree from the Department of Mathematics Education, Korea Uni-
versity, Korea in 1995. He joined the faculty of Korea University, Korea in 
2008 where he is currently an associate professor at the Department of 
Mathematics. His research interests are in image processing and scientific 
computation.


	Fast local image inpainting based on the Allen-Cahn model
	1 Introduction
	2 Description of the proposed model
	3 Numerical solution algorithm
	3.1 Proposed operator splitting algorithm
	3.2 Stability of the proposed method

	4 Numerical tests
	4.1 Basic mechanism of the algorithm
	4.2 Effect of parameter ε
	4.3 Sensitivity to initial conditions
	4.4 Inpainting of a synthetic image
	4.5 Gray-valued image inpainting
	4.6 Three-dimensional inpainting
	4.7 Computational cost
	4.8 Disconnected stripe image with large gap

	5 Conclusion
	Conﬂict of interest statement
	Acknowledgments
	References


