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COMPARISON OF NUMERICAL METHODS FOR TERNARY FLUID FLOWS:
IMMERSED BOUNDARY, LEVEL-SET, AND PHASE-FIELD METHODS

SEUNGGYU LEE1, DARAE JEONG1, YONGHO CHOI1, AND JUNSEOK KIM1,†
1DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY, SEOUL 136-713, KOREA

ABSTRACT. This paper reviews and compares three different methods for modeling incom-
pressible and immiscible ternary fluid flows: the immersed boundary, level set, and phase-field
methods. The immersed boundary method represents the moving interface by tracking the La-
grangian particles. In the level set method, an interface is defined implicitly by using the signed
distance function, and its evolution is governed by a transport equation. In the phase-field
method, the advective Cahn–Hilliard equation is used as the evolution equation, and its order
parameter also implicitly defines an interface. Each method has its merits and demerits. We
perform the several simulations under different conditions to examine the merits and demerits
of each method. Based on the results, we determine the most suitable method depending on the
specific modeling needs of different situations.

1. INTRODUCTION

A double emulsion, or compound droplet, is a specific case of a ternary fluid mixture. It has a
smaller drop or drops inside a larger drop and has a high level of potential for many applications
that use liquid membranes for selective mass transport, such as drug delivery and controlled
drug release, because of its three phases: a small inner drop, the surrounding medium, and
a third fluid [1]. However, modeling or simulating the interfaces of ternary fluid flows is a
challenging problem since the diffusion phenomenon is more complex than two-component
mixtures [2]. Figure 1 presents a schematic of the coaxial microcapillary fluidic device and the
geometry of the double emulsion that it generates [3].
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FIGURE 1. Schematic of the coaxial microcapillary fluidic device and the ge-
ometry of the double emulsion that is generates. The image is reprinted from
[3]. Copyright c⃝Science 2005. Reprinted with permission. All rights re-
served.

There are two major approaches to simulating multi-phase or multi-component flows to char-
acterize moving interfaces: the interface tracking method and the interface capturing method.
The interface tracking method uses computational mesh to track interfaces and a velocity field
is generated by adjusting the position of nodes. Examples of the interface tracking method
include the volume of fluid, front tracking, and immersed boundary method (IBM). In contrast,
interface capturing methods implicitly define an interface by using the contours of particular
scalar functions. Examples include the level set method (LSM) and phase-field method (PFM).
In this paper, we review three methods, IBM, LSM, and PFM, to simulate ternary fluid flows
with a double emulsion case and describe the basic techniques of each method in detail.

IBM was originally developed to model the blood flow in the heart by Peskin [4]; this method
has been applied to various biological or industrial modeling problems. IBM has been used to
research the hydrodynamics of a compound drop for application to leukocyte modeling [5, 6].
IBM has been applied not only to biological modeling problems as originally developed but
also to fluid dynamics modeling problems [7, 8, 9]. The dynamics of a compound droplet in
shear flow was researched in [10]. See the articles [11, 12, 13] to refer to the treatment of the
multiple junction case with a foam model.

LSM uses a level set function to capture moving interfaces and has become popular in many
disciplines since its development by Osher and Sethian in the 1980s [14]. More detailed re-
views of classical LSM are given by [15, 17]. There have been developments to capture the
fluid flow interfaces of ternary or even more phases by using LSM. Merrian et al. [18] rep-
resented each phase by using an individual level set function. The projection method, which
uses only (n− 1)-level set functions to represent the interfaces of n-phases, was developed to
resolve the triple junction problem by Smith et al. [19].

PFM is a popular method for modeling the dynamics of multi-phase fluids coupled with
the Navier–Stokes equation [20]. It has a diffused interface with a finite but small width be-
tween distinct phases and characterizes physical quantities such as the density and viscosity
by using an order parameter governed by the modified Cahn–Hilliard (CH) equation. The CH
equation was first introduced by Cahn and Hilliard [21] to describe the initial stage of spinodal
decomposition. It is often used to model interface dynamics, including surface minimization
and sharp topological changes like pinch-off and phase separation. See [22] and the references
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therein for detailed review of the method. The multi-component system was first generalized
in the literature by de Fontaini [23] and Eyre studied its differences with the binary case and
its dynamics [24]. Numerical studies of ternary CH systems have been vigorously pursued
[25, 26, 27, 28, 29, 30].

The main goal of this paper is to review and compare three different methods. By comparing
fundamental weakness and strength, it is expected to give an advice about a choice of the
methods for the beginners in ternary fluid flows problem. Moreover, this paper could be helpful
also to experts of this field developing a hybrid method as in the research of Hou et al.[31] by
understanding unfamiliar methods to them.

This paper is organized as follows. In Section 2, we present the governing equations for
IBM, LSM, and PFM. We summarize the formulas for the surface tension force in Section 3.
In Section 4, we present the numerical method to solve the discrete Navier–Stokes equations
and the respective equations for the interface. The numerical results are presented in Section
5. Finally, the conclusions are drawn in Section 6.

2. GOVERNING EQUATIONS AND INTERFACE REPRESENTATION

We consider incompressible and immiscible ternary fluids in a two-dimensional domain
Ω for simplicity. Its extension to a three-dimensional problem is straightforward. For more
details, refer to [10] for IBM, [32, 33, 34] for on LSM, and [28, 35] for on PFM. The motion
of fluid flows is generally described by the modified Navier–Stokes (NS) equations with the
surface tension force:

ρ

(
∂u

∂t
+ u · ∇u

)
=−∇p+∇ · [η(∇u+∇uT )] + SF in Ω, (2.1)

∇ · u =0 in Ω, (2.2)

where ρ(x, t) is the density, u(x, t) = (u(x, t), v(x, t)) is the velocity, p(x, t) is the pressure,
η(x, t) is the viscosity, x = (x, y) is the Cartesian coordinate, t is the time variable, and SF
is the surface tension force density. We assumed that ρ and η are constant for simplicity. A
schematic of the three-phase domain Ω = Ω1 ∪ Ω2 ∪ Ω3 is shown in Fig. 2. Γk represents the
interface between the fluids k and k + 1.

We can rewrite (2.1) and (2.2) by using dimensionless parameters as follows:

∂u

∂t
+ u · ∇u =−∇p+

1

Re
∆u+ SF in Ω, (2.3)

∇ · u =0 in Ω. (2.4)

Here, Re = ρU∗L∗/η is the Reynolds number. where U∗ is the characteristic velocity, and L∗

is the characteristic length
Now, we briefly describe how IBM, LSM, and PFM represent the interfaces of multi-phase

fluids by using a Lagrangian variable, level set function, and phase-field function, respectively.
The governing equations of the interface evolution are also introduced in each section.
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FIGURE 2. Schematic of a three-phase domain.

2.1. IBM. In IBM, the interfaces Γ1 and Γ2 are described by the Lagrangian variables X1(s1, t)
and X2(s2, t), respectively. Here, 0 ≤ sk ≤ Lk(t) and Lk(t) are the lengths of interfaces at
time t for k = 1, 2. The evolution of the interface is governed by

∂Xk(sk, t)

∂t
=Uk(sk, t), (2.5)

Uk(sk, t) =

∫
Ω
u(x, t)δ2(x−Xk(sk, t))dx, for k = 1, 2, (2.6)

where Uk(sk, t) is the velocity of the Lagrangian variable xk(sk, t)k, u(x, t) is the velocity
field on a Cartesian grid, δ2(x) is the two-dimensional Dirac-delta function defined by the
product of the one-dimensional Dirac-delta functions, δ2(x) = δ(x)δ(y). Figure 3 shows the
Lagrangian variables representing interfaces on the domain Ω.

Ω1

Ω2

Ω3

Γ1

Γ2

X1

X2

FIGURE 3. Lagrangian variables representing interfaces in the domain.
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The principal advantage of IBM compared to the other two methods is that it can use a
large number of interfacial marker points to handle the interface geometry for high accuracy.
The major drawback is the difficulty of representing topological changes without additional
work. Moreover, area conservation does not hold in general because the interfaces between
each fluids move discretely [10].

2.2. LSM. In LSM, the interfaces of each two phases are defined implicitly with the level set
functions ϕk(x, t), k = 1, 2. Here, ϕ1 and ϕ2 are the signed distances that satisfy |∇ϕk| = 1
from the interfaces Γ1 and Γ2, respectively. Note that the values of ϕk become zero at the
interfaces, i.e., the zero contours of ϕk represent the interfaces. Figure 4 shows the zero contour
of the signed distance function and surface plots with zero contours. In addition, note that ϕk

has the opposite sign in each phase (see Fig. 4).

Γ1 : {φ1 = 0}

Γ2 : {φ2 = 0}

φ1 > 0,

φ2 > 0

φ1 < 0, φ2 > 0

φ1, φ2 < 0

(a)

−0.5

0

0.5

φ1

(b)

−0.5

0

0.5

φ2

(c)

FIGURE 4. (a) Zero contours of the signed distance functions ϕ1 and ϕ2, and
surface plots with zero contours of (b) ϕ1 and (c) ϕ2.

The evolution equation of ϕk is governed by the transport equation:

(ϕk)t + u · ∇ϕk = 0. (2.7)

During the process of interface evolution, ϕk tends to deviate from the signed distance function.
However, we maintained ϕk as the signed distance function because the density and surface
tension depend on ϕk [36]. The reinitialization step makes ϕk recover to the signed distance
function without changing its zero contour and is given as follows:

∂dk
∂τ

(x, t) =S(ϕk(x, t))(1− |∇dk(x, t)|), (2.8)

dk(x, 0) =ϕk(x, t), (2.9)

where τ is the pseudo-time and S(ϕk) is the sign function. In numerical implementations,

we can use the smoothed sign function Sβ(ϕk) = ϕk/
√

ϕ2
k + β2 where β is one or two grid

lengths. dk(x, τs) replaces ϕk(x, t) after the function is solved up to the steady-state where τs
is the steady-state pseudo-time. A more detailed description is given in [15].
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The advantages of LSM include a simple implementation, ability to automatically capture
the merging and break-up of interfaces, and flexibility to describe the complex interface geom-
etry. Whereas, the major disadvantage is the lack of mass (area) conservation and the hybrid
methods have been proposed until nowadays to overcome this [16].

2.3. PFM. In PFM, the order parameters ck(x, t) are used, where k = 1, 2, 3 which are mea-
sures of the relative composition or the volume fraction of the three components. The functions
ck are distributed continuously on thin interfacial layers and uniformly in the bulk phases. Here,
the order parameter is defined by ck ≈ 1 in one fluid and ck ≈ 0 in the other fluid, while the
interfaces Γk are defined by ck = 0.5. The sharp fluid interfaces are replaced by thin (but
nonzero) thickness transition regions. Figure 5 shows the numerical interfaces of the order
parameters and surface plots with interfaces.

Γ1 : {c1 = c2 = 0.5}

Γ2 : {c2 = c3 = 0.5}

c1≈1

c2≈1

c3 = 1 − c1 − c2≈1

(a)

0

0.5

1
c1

(b)

0

0.5

1
c2

(c)

0

0.5

1
c3

(d)

FIGURE 5. (a) Numerical interfaces of the order parameters c1 and c2, and
surface plots with the interfaces of (b) c1, (c) c2, and (d) c3 = 1− c1 − c2.

The evolution equations of the phase-field function c = (c1, c2, c3) are governed by the
advective multi-component CH as follows:

∂ck
∂t

+ u · ∇ck =
1

Pe
∆µk, k = 1, 2, 3 (2.10)

µk =
∂F (c1, c2, c3)

∂ck
− C∆ck + γ(c1, c2, c3), (2.11)
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where Pe is the Peclet number, defined by L∗U∗/(Mµ∗), M is the constant mobility, µ∗ is
the characteristic value of the chemical potentials, µk is the chemical potential, F (c1, c2, c3) =

0.25
∑3

k=1 c
2
k(1 − ck)

2 is the bulk energy density, C is the Cahn number, defined by ϵ2/µ∗,
ϵ is the measure of the interface thickness and γ(c1, c2, c3) = −

∑3
k=1 ∂F/(3∂ck) is the La-

grangian multiplier which makes the sum of chemical potential µk zero. See [37] for a detailed
derivation of γ. Here, we only need to solve c1 and c2 because the sum of the mole fractions
is unity (c1 + c2 + c3 = 1) from the definition of the order parameter. We can use the zero
Neumann boundary condition for the CH systems:

∇ck · n = ∇µk · n = 0 on ∂Ω, (2.12)

where n is the unit normal vector to ∂Ω. The boundary condition (2.12) is natural and conserves
the total mass in Ω.

As shown in Fig. 6, the concentration field varies from 0.05 to 0.95 over a distance about
ξ = 2

√
2ϵ tanh−1(0.9) from the equilibrium profile c(x) = 0.5 + 0.5 tanh(x/(

√
2ϵ)) in the

infinite domain [38].

−0.1 −0.05 0 0.05 0.1
0

0.2

0.4

0.6

0.8

1

ξ

FIGURE 6. Phase transition of the equilibrium profile c(x) = 0.5 + 0.5 tanh(x/(
√
2ϵ)).

The advantages of LSM given above also apply PFM. Moreover, physical meanings of the
order parameters can be applied to many physical phase states such as miscible, immiscible,
and partially miscible. However, PFM needs a relatively large number of grid points near the
interface because the phase-field function changes quickly near the interface. Moreover, it is
important to choose appropriate ϵ values for accurate calculations. An excessively large ϵ can
produce nonphysical solutions, whereas an excessively small ϵ can cause numerical difficulties
[39].
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3. SURFACE TENSION FORCE

The singular surface tension force SF is represented by the continuum surface force (CSF)
model [40]:

SF = −σκδΓn

We
, (3.1)

where κ is the mean curvature of the interface and δΓ is the surface delta function, We =
ρ(U∗)2L∗/σ is the Weber number, and σ is the surface tension coefficient. Instead of δΓ, a
smoothed delta function is usually used to adapt the CSF framework to spread the interfacial
force to the nearby grid points in numerical implementations.

We describe how to define the surface tension force for each method in the remainder of this
section.

3.1. IBM. The surface tension force in IBM is given by

SF(x, t) =
2∑

k=1

∫
Γk

1

Wek
Fk(sk, t)δ

2(x−Xk(sk, t))ds, (3.2)

Fk(sk, t) =σk
∂2Xk(sk, t)

∂s2k
, (3.3)

where Fk(s, t) is the boundary force defined for each particle of the k-th interface and Wek is
the Weber number with the k-th interface’s surface tension coefficient σk. The smoothed delta
function δ(x) is defined as [41] :

δ(x) =


0.125

(
3− 2|x|+

√
1 + 4|x| − 4x2

)
, if |x| ≤ 1,

0.125
(
5− 2|x| −

√
−7 + 12|x| − 4x2

)
, if 1 < |x| ≤ 2,

0, otherwise.

(3.4)

We usually call (3.4) a four-point delta function. The schematics of the smoothed delta function
δ(x) and its two-dimensional version δ2(x) = δ(x)δ(y) are shown in Figs. 7 (a) and (b),
respectively.

Note that ∂2Xk(sk, t)/∂s
2 accounts for the interface curvature κ. Because the marker points

of the moving interfaces and the grid points of the velocity field do not coincide directly, the
interpolation is performed by using (3.4) to spread the surface tension force into the underlying
grid points.

3.2. LSM. The surface tension force using the level set functions ϕk(x, t) is given by

SF(x, t) = −
2∑

k=1

1

Wek,k+1
∇ ·
(

∇ϕk

|∇ϕk|

)
δα(ϕk)

∇ϕk

|∇ϕk|
, (3.5)

where Wek,k+1 is the Weber number with the physical surface tension coefficient σk,k+1 be-
tween the fluids k and k+1, which satisfies σk,k+1 = σk +σk+1 for the phase specific surface
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FIGURE 7. Schematics of (a) the smoothed delta function δ(x) and (b) its
two-dimensional version δ2(x) = δ(x)δ(y).

tension coefficient σk (see [19]). Recall that σ3,1 would not be defined in our compound droplet
case. In addition, the smoothed delta function δα as follows [36] :

δα(ϕ) =

{
1

2α
+

1

2α
cos
(πx
α

)
, if |ϕ| ≤ α,

0, otherwise.
(3.6)

Note that the interface curvature κ is calculated by ∇ · (∇ϕk/|∇ϕk|) and that the unit normal
vector n is represented by −∇ϕk/|∇ϕk|.

Here, we only consider the physical surface tension coefficient for k = 1, 2 because our
focus is on the compound droplet case. Meanwhile, the phase specific surface tension coeffi-
cient σk is uniquely defined as σ1 = (σ12 − σ23 + σ13)/2, σ2 = (σ12 + σ23 − σ13)/2, and
σ3 = (−σ12 + σ23 + σ13)/2 by the relation between physical surface tension coefficients.

3.3. PFM. The surface tension force using the phase-field functions ck(x, t) is written in the
form

SF(x, t) = − αϵ

Wek
∇ ·
(

∇ck
|∇ck|

)
|∇ck|∇k2, (3.7)

where α is the variable to match the surface tension of the sharped interface model and satisfies∫ ∞

−∞
αϵ
∣∣∇ceqk (x, y)

∣∣2 dx = 1. (3.8)

Here, ceqk (x, y) = 0.5[1 + tanh(x/(2
√
2ϵ))] is an equilibrium profile in the infinite domain

(−∞,∞) × (−∞,∞) with c3 ≡ 0 [42]. Therefore, we get α = 6
√
2 from Eq. (3.8). Here,

we only consider the case of k = 2 because our focus is on the compound droplet case.

4. NUMERICAL SOLUTION

In this section, we briefly describe the numerical solutions for the dimensionless NS equa-
tions (2.3) and (2.4), evolution equations (2.5) and (2.6), (2.7), (2.10) and (2.11) for IBM, LSM,
and PFM in the two-dimensional domain.
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4.1. Discretization. We first discretize the computational domain Ω = (a, b) × (c, d) before
solving the governing equations numerically. In Cartesian geometry, we consider h = (b −
a)/Nx = (d − c)/Ny to be a uniform spatial step size where Nx and Ny are the numbers
of cells in the x- and y-directions, respectively. This implies that xij = (xi, yj) is located
at the cell center where xi = a + (i − 0.5)h and yj = c + (j − 0.5)h for i = 1, · · · , Nx

and j = 1, · · · , Ny. We denote u(xi, yj , n∆t) as unij where ∆t is a temporal step size in the
discretized domain. The discrete gradient operator ∇h is defined with the forward difference
as ∇hϕ

n
ij =

(
(ϕn

i+1,j − ϕn
ij)/h, (ϕ

n
i,j+1 − ϕn

ij)/h
)

. The discrete Laplacian operator ∆h is

defined with the central difference as ∆hϕ
n
ij = (ϕn

i+1,j + ϕn
i−1,j + ϕn

i,j+1 + ϕn
i,j−1 − 4ϕn

ij)/h
2

in Cartesian coordinates. We can use a staggered marker-and-cell (MAC) mesh that stores the
pressure value pij at a cell center and the velocity values ui+1/2,j and vi,j+1/2 at the cell edges
in the x- and y-directions, respectively (see Fig. 8). The level set function, phase-field function,
and surface tension values ϕn

k,ij , c
n
k,ij , and SFn

ij are also stored in the cell centers as pressure
values.

pijui−1/2,j ui+1/2,j

ui−1/2,j+1 ui+1/2,j+1

vi,j−1/2 vi,j+1/2

vi+1,j−1/2 vi+1,j+1/2

x

y

FIGURE 8. MAC mesh that stores pressure value pij at a cell center and the
velocity values ui+1/2,j and vi,j+1/2 at the cell edges in the x- and y-directions,
respectively.

In contrast, IBM uses a set of Lagrangian points, whose coordinates do not depend on the
MAC mesh grid, to discretize the immersed boundary. There are M1 Lagrangian points Xn

1,l =

(Xn
1,l, Y

n
1,l) for l = 1, · · · ,M1 to represent the inner droplet boundary and M2 Lagrangian

points Xn
2,l = (Xn

2,l, Y
n
2,l) for l = 1, · · · ,M2 to represent the outer droplet boundary.

4.2. Fluid solution. The temporal discretization of (2.3) and (2.4) is as follows:

un+1 − un

∆t
=−∇hp

n+1 +
1

Re
∆hu

n + SFn − (u · ∇hu)
n, (4.1)

∇h · un+1 =0. (4.2)
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Here, the discrete surface tension force SFn is calculated from the variable Xn, ϕn
k , or cnk .

These represent the interfaces for each method, as discussed in the previous section 4.3. At
each time step, (4.1) and (4.2) are solved to find un+1 and pn+1 from the given un. We can
apply the projection method, which was developed by Chorin [43]. Here, we present the outline
of the main procedures of the method.

First, we consider the intermediate velocity ũ and split the discrete equation (4.1) as follows:
ũ− un

∆t
=

1

Re
∆hu

n + SFn − (u · ∇hu)
n, (4.3)

un+1 − ũ

∆t
=−∇hp

n+1. (4.4)

By applying ∇h to both sides of (4.4) and the divergence free condition (4.2), we get the
discrete Poisson equation for the pressure field:

∆hp
n+1 =

1

∆t
(∇h · ũ) . (4.5)

We can solve (4.5) by using a multigrid method-specifically, V-cycles with a Gauss–Seidel
relaxation.

In summary, we first update the intermediate velocity ũ from (4.3). Next, we update the
pressure field by solving (4.5). Finally, the velocity un+1 is calculated from (4.4).

4.3. Surface tension force. In this section, we present how to derive the discrete surface ten-
sion forces by using interface variables for each method. We store values of the force at cell-
centers as the pressure values, i.e., SFn

ij is defined in this section. However, the interpolated
values (SF x

i+ 1
2
,j
, SF y

i,j+ 1
2

) at the cell-edges are used in the fluid equations (4.3) and (4.4) to

match the stencils of the velocities.

4.3.1. IBM. By discretizing (3.2) and (3.3), we get the discrete surface tension force for IBM
as below:

SFn
ij =

2∑
k=1

Mk∑
l=1

1

Wek
Fn
k,lδ

2(xij −Xn
k,l)∆sk,l, (4.6)

Fn
k,l =σk

(
Xn

k,l+1 −Xn
k,l

∆sk,l
−

Xn
k,l −Xn

k,l−1

∆sk,l−1

)/
∆sk,l +∆sk,l−1

2
, (4.7)

where ∆sk,l = sk,l+1 − sk,l is a line segment of each interface. Note that (4.7) is a multiple of
the mean curvature and the normal vector at Xn

k,l. Refer to [44] for a more detailed description
and calculation of (4.7).

4.3.2. LSM. In LSM, the discrete surface tension force is derived from (3.5), and the force is
given as

SFn
ij = −

2∑
k=1

1

Wek,k+1
∇h ·

(
∇hϕ

n
k,ij

|∇hϕ
n
k,ij |

)
δα(ϕ

n
k,ij)

∇hϕ
n
k,ij

|∇hϕ
n
k,ij |

. (4.8)
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Note that α is usually taken as h or 2h. Here, we select 2h.

4.3.3. PFM. With PFM, the discrete surface tension force can be derived similarly to the LSM
case. The force is formulated as follows:

SFn
ij = −6

√
2ϵ

We2
∇h ·

(
∇hc

n
2,ij

|∇hc
n
2,ij |

)
|∇hc

n
2,ij |∇hc

n
2,ij . (4.9)

Because the interfaces are already diffused when using PFM, a delta function is not required to
represent the surface tension force in (4.9).

4.4. Governing equations of interfaces. In this section, we discretize the governing equa-
tions of interfaces for each method and present their numerical solutions.

4.4.1. IBM. By using the updated fluid velocity un+1 in (4.3) and (4.4), we can evaluate the
immersed boundary velocity Un+1 and new boundary position Xn+1 according to the follow-
ing equations:

Un+1
k,l =

Nx∑
i=1

Ny∑
j=1

un+1
ij δ2(xijk −Xn+1

k,l h2), (4.10)

Xn+1
k,l =Xn

k,l +∆tUn+1
k,l , (4.11)

where k = 1, 2 and l = 1, · · · ,Mk. We can also apply the algorithms introduced by [44] and
[45] for the high-quality distribution of the interface points and the area conservation property,
respectively. See each reference for detailed descriptions of the properties.

4.4.2. LSM. The numerical solution of the evolution equation (2.7) is derived from the follow-
ing discrete transport equation:

ϕn+1
k,ij − ϕn

k,ij

∆t
=−

un
i+ 1

2
,j
(ϕn

k,i+1,j − ϕn
k,ij) + un

i− 1
2
,j
(ϕn

k,ij − ϕn
k,i−1,j)

2h

−
vn
i,j+ 1

2

(ϕn
k,i,j+1 − ϕn

k,ij) + vn
i,j− 1

2

(ϕn
k,ij − ϕn

k,i,j−1)

2h
. (4.12)

It is a very basic numerical solver and more accurate, stable, and conservative numerical meth-
ods such as a WENO-type difference and Godunov’s scheme can be founded in [15]. Next, the
discrete equations of the reinitialized steps (2.8) and (2.9) are given as

d̃k,ij = dk,ij +∆τ
ϕn
k,ij√

(ϕn
k,ij)

2 + β2

(
1−

√
(Dxdk,ij)2 + (Dydk,ij)2

)
(4.13)

where the initial condition of dk,ij is given as ϕn
k,ij . The operators Dx and Dy are discrete

differentiations in the WENO sense [36, 46] with respect to x and y, respectively. After a few
iterations, we can update ϕn

k,ij as the result of the final d̃k,ij .
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4.4.3. PFM. To discretize the CH equation, we consider the nonlinear splitting scheme over
time. If the variable Lagrangian multiplier γ(c1, c2, c3) is determined by cn1 , cn2 , and cn3 , i.e., γ
is treated explicitly, the solutions at the time level n + 1 have no relation to each other. This
implies that the ternary component CH system can be solved in a decoupled manner. Therefore,
we can discretize (2.10) and (2.11) for k = 1, 2 as follows:

cn+1
k,ij − cnk,ij

∆t
=

1

Pe
∆hµ

n+1
k,ij +∆h

(
γ(cn1,ij , c

n
2,ij , c

n
3,ij)− 0.25cnk,ij

)
−

un
i+ 1

2
,j
(cnk,i+1,j − cnk,ij) + un

i− 1
2
,j
(cnk,ij − cnk,i−1,j)

2h

−
vn
i,j+ 1

2

(cnk,i,j+1 − cnk,ij) + vn
i,j− 1

2

(cnk,ij − cnk,i,j−1)

2h
, (4.14)

µn+1
k,ij =f(cn+1

1,ij , c
n+1
2,ij , c

n+1
3,ij ) + 0.25cn+1

k,ij − C∆hc
n+1
k,ij . (4.15)

This means that we can solve the ternary CH system by solving the binary CH equation twice.
A nonlinear multigrid method can be used to solve (4.14) and (4.15). A detailed description is
given by[47].

5. NUMERICAL EXPERIMENTS

Before performing numerical experiments, we note that a relation between the ϵ value and
the width of the transition layer for PFM. As mentioned in section 2.3, the equilibrium state of
the concentration has a tangent hyperbolic profile. If we want to set ϵ value to be about m grid
points, the value is set as ϵm = hm/4

√
2 tanh−1(0.9) [48, 49]. Unless otherwise specified,

we use ϵ = ϵ4.

5.1. Pressure difference. The pressure gradient and surface tension force are balanced in the
absence of viscous, gravitational, and other external forces. The pressure difference can be
expressed by [p]Γ = σ/R with Laplace’s formula for a spherical liquid surrounded by an
ambient fluid in a two-dimensional space, where R is the radius of the droplet. Therefore, the
pressure jump of the compound droplet is defined by

[p]Γ = [p]Γ1 + [p]Γ2 =
σ1
R1

+
σ2
R2

. (5.1)

Here, circular droplets with R1 = 0.5 and R2 = 1 were taken as the initial conditions, and
σ1 = σ2 = 1 was used. Our numerical simulation was in the domain (0, 3) × (0, 3) with the
uniform grids h = 1/2n for n = 5, 6, 7, 8 and 9 for one time step. Table 1 lists the convergence
of the pressure jump for each method between the ambient fluids and inner droplets as we
refined the mesh size. Figures 9(b) and (c) show the pressure field on the xy-plane and along
the line y = 1.5, respectively, for the compound droplets.
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TABLE 1. Numerical pressure jump between the ambient fluids and inner
droplet as the mesh size was refined for each method. The theoretical pres-
sure jump was 3.

Mesh size (h) Method 1/32 1/64 1/128 1/256
LSM 3.0350 3.0216 3.0097 3.0066

[p]Γ1 + [p]Γ2 PFM 2.5435 2.8875 2.9728 2.9854
IBM 3.0027 3.0015 3.0017 3.0018
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FIGURE 9. (a) Schematic illustration of a drop-in-drop surrounded by ambient
fluid. (b) Pressure field for compound drop. (c) Slice of the pressure field at
y = 1.5 (dotted line in (a)) for each method.
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FIGURE 10. Schematic of a compound drop in the ambient fluid under a sim-
ple shear flow.

5.2. Deformation of compound droplet under shear flow. The imposed flow was a simple
shear flow given by U = γ̇y and v = 0, where γ̇ is the shear rate. Figure 10 presents a
schematic of a compound drop in the ambient fluid under a simple shear flow.
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We first introduce the Taylor deformation number D, defined as D = (L − B)/(L + B),
where L and B are the major and minor semiaxes of the droplet (See Fig. 10). D is usually
used to measure the magnitude of the droplet deformation.

We confirm the effect of parameters such as the numbers of Lagrangian particles M1 and
M2 in IBM, the number of repetitions of the reinitialization process in LSM, and Pe in PFM.
The simulations are performed on a squared domain Ωh = (−2, 2)× (−2, 2) with a 128× 128
meshgrid for 12500 iterations unless otherwise stated. The radii of the inner and outer droplets
are R1 = 0.5 and R2 = 1, respectively. We used the parameters ∆t = 0.1h2Re, Pe = 1,
We = 0.2, and γ̇ = 0.5, i.e., the velocity on the top of the domain is 1.

Figure 11 represents the shapes of the compound droplet with different numbers of immersed
boundary points with 64×64 meshgrid. The values in the legend mean initial distances of each
Lagrangian particle, for example, about 4 particles are in the one mesh grid of the 4h case. For
each case, (M1,M2) are (101, 51), (51, 26), and (26, 13) from top to bottom. It is convergent
enough when there are at least one particle in one mesh grid as shown in the Fig. 11 and we
will set the distance between each particle as about h/4.
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FIGURE 11. Shapes of the compound droplet with different number of im-
mersed boundary points. The values in the legend mean initial distances of
each Lagrangian particle.

We also compare the effect of nτ which is the number of repetition of reinitialization process.
Figure 12 shows deformed shape of the compound droplet using the contour line at −2h, 0,
and 2h level, respectively. As shown in Fig. 12, the results with nτ = 0 which mean that the
reinitialization process has not taken place, have the difference with the numerical results when
nτ = 1 or 5. The result is compatible with the suggestion, in the reference [36].

Before checking the effect of Pe, we first confirm that the choice of ϵ4 is suitable enough.
In Fig. 13, changes of deformation number D is presented varying time until T = 0.2941. The
result shows that ϵ4 and ϵ6 cases have a better consistency with LSM and IBM than ϵ2.
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FIGURE 12. Shapes of the compound droplet with different number of repe-
tition of reinitialization process.
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FIGURE 13. Changes of deformation number D is presented varying time
until T = 0.2941.

Next, the simulations are performed to compare the effect of Pe in PFM. Figure 14 repre-
sents the deformed shapes of compound droplet with different Pe values. The top and bottom
rows represent contour lines at 0.1, 0.5, and 0.9 levels of ϕ1 and ϕ2, respectively. The Pe
values are 0.01/ϵ, 1/ϵ, and 100/ϵ in Fig. 14(a), (b), and (c), respectively. The result shows that
degree of deformation could be too tenuous in the smallest Pe case (Fig. 14(a)) and thickness
of the contour lines is not uniform in the biggest Pe case (Fig. 14(c)). Moreover, we compare
shapes of compound droplets using LSM and PFM with different Pe values in Fig. 15. The
results shows that the case using Pe = 1/ϵ is the most consistent with LSM case. Therefore,
We use Pe = 1/ϵ in the later simulations unless otherwise stated.
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FIGURE 14. Shapes of compound droplet with different Pe values. The top
and bottom rows represent contour lines at 0.1, 0.5, and 0.9 levels of ϕ1 and
ϕ2, respectively. The Pe values are (a) 0.01/ϵ, (b) 1/ϵ, and (c) 100/ϵ, respec-
tively.
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FIGURE 15. shapes of compound droplets using LSM and PFM with different
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5.3. Comparison with each method in specific cases.

5.3.1. Multiple compound droplets case. We perform the simulations of specific cases which
are suitable to distinguish advantages and disadvantages for each method.

At first, the multiple compound droplets case like in the right side of Fig. 1 is chosen.
We only consider two couples of emulsion for simplicity. The initial radii are R1 = 0.5
and R2 = 1 for each emulsion whose centers are located at (−0.74,−0.74) and (0.74, 0.74)
on (−2, 2) × (−2, 2). The other parameters, except γ̇ = 0, have same values used in the
simulations of section 5.2. If there is no flow outside of the droplets, emulsions do not collide
or merge each other even though their distance is comparatively near in vivo.

Figure 16 represents the shapes of droplets at initial condition and at T = 0.1221 solved
by IBM, LSM, and PFM. The result shows that only IBM maintains the topological phase. It
implies that IBM is the best in three methods when the densely distributed compound droplets
are stabilized, or prevented the coalescence between droplets by employing surfactants. On the
other hand, LSM or PFM is recommended to model the merged droplets without surfactants.

5.3.2. Different radius of smaller droplet. The coalescence can be happened between not only
different emulsions, but also between an inner droplet and an outer droplet in one emulsion.
Here, we consider another specific cases with different radii of smaller droplets to check
whether each method can be treated such conditions well or not. We fix R1 = 0.5, Re = 1,
We = 0.1, γ̇ = 0.5, Ω = (−2, 2)× (−2, 2), ∆t = 0.1h2Re and T = 22500∆t.

Figure 17 represents the shapes of droplets at T using each method with different R2. The
emulsions have the same shape using any methods in a shear flow in Fig. 17 (a) R2 = 0.7;
however, the inner droplet whose initial radius R2 is 0.8 is broken when only PFM is imple-
mented as shown in Fig. 17 (b). The brokenness stems from a numerical error when interfaces
of outer and inner droplets are too close since PFM uses a diffused-interface. From the result,
we suggest that applying IBM or LSM might draw a better result rather than using PFM when
sizes of outer and inner droplets in an emulsion are too similar to avoid merging each other.

5.3.3. Mass conservation. To compare mass conservation property in each method, we per-
form the simulation under the condition with a strong surface tension. The initial compound
droplets, whose radii are R1 = 0.5 and R2 = 1, are located at the center of the domain
Ω = (−2, 2)× (−2, 2). We choose We = 0.001 and other parameters are same as the simula-
tion in section 5.3.1.

Figure 18 represents the shapes of the droplets (a) at T = 0.4900 using IBM, (b) at T =
2.9591 using LSM, and (c) at T = 2.9591 using PFM (dotted line) with the initial condition
(solid line). Except PFM, the mass of droplets does not conserve and their area shrinks after
several iterations even though there are no external force without surface tension force. Other-
wise, the droplets solving PFM conserves its shape during longer or same temporal evolution
than other methods. Therefore, using PFM is recommended when the simulation is performed
with a strong surface tension from our result.
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FIGURE 16. Shapes of droplets at (a) initial condition and at T = 0.1221
solved by (b) IBM, (c) LSM, and (d) PFM.

5.3.4. Different shear rate. We checked the suitable or recommended cases using IBM or PFM
by previous simulations. In this section, we examine the merits of using LSM rather than other
two methods. Clearly, LSM has a better performance than IBM when there is any topological
changes for droplets. Furthermore, it could be confirmed that LSM has an advantage over PFM
of choosing compatible parameter values.

The initial radii, computational domain, and other parameters except the Peclet number Pe,
the final time T and shear rate γ̇ are same as the simulation in section 5.3.1. The simulations
with different γ̇ = 0.5 and 5 are performed with Pe = 0.1/ϵ until T = 0.2941. In Fig. 19,
the changes of the deformation number varying time for LSM, PFM, and IBM (upper row) and
the shapes of droplets at time T (lower row) are shown. As shown in Fig. 19, the evolution of
droplet shapes and deformation numbers are distinct with different shear rate. To resolve this
phenomenon, Pe should be differently chosen for different conditions, i.e., choosing suitable
Pe is quite important in PFM. However, LSM does not have this restriction and is independent
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FIGURE 17. Shapes of droplets at T using each method with (a) R2 = 0.7
and (b) R2 = 0.8.
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FIGURE 18. Shapes of the droplets (a) at T = 0.4900 using IBM, (b) at
T = 2.9591 using LSM, and (c) at T = 2.9591 using PFM (dotted line) with
the initial condition (solid line).

on this choice problem. We suggest that LSM is better method than other two methods when
comparison of different shear rate conditions is required.

6. CONCLUSION

The main goal of this paper was to review and compare three different methods such as
immersed boundary, level set, and phase-field methods for incompressible, immiscible ternary
fluid flows. We performed the simulations to investigate advantages and disadvantages of each
method. Immersed boundary method was good for defining multiple droplets closely located
each other and prevented from the coalescence. However, it was difficult to model topological
transition phenomena. Level set method can deal with merging and pinch-off of interfaces,
however it suffered from mass conservation. Phase-field method had a good property of mass
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FIGURE 19. Changes of the deformation number varying time for LSM, PFM,
and IBM (upper row) and shapes of droplets at time T (lower row)

conservation, however it had to choose an appropriate relaxation parameter such as mobility.
Therefore, depending on one’s need for modeling, we chose the most suitable method.
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