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Abstract

We consider a conservative nonlinear multigrid method for the Cahn—Hilliard equation with a variable mobility of a
model for phase separation in a binary mixture. The method uses the standard finite difference approximation in spatial
discretization and the Crank—Nicholson semi-implicit scheme in temporal discretization. And the resulting discretized
equations are solved by an efficient nonlinear multigrid method. The continuous problem has the conservation of mass
and the decrease of the total energy. It is proved that these properties hold for the discrete problem. Also, we show the
proposed scheme has a second-order convergence in space and time numerically. For numerical experiments, we investi-
gate the effects of a variable mobility.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider an efficient and accurate finite difference multigrid approximation of the Cahn—
Hilliard (CH) equation with a variable mobility. The quantity c¢(x,?) is defined to be the mass concentration
(volumic mass) of one of the components. The following equation was introduced to model spinodal decom-
position and coarsening phenomena in binary alloys [2,6]:

% =V - [M(c(x,0))Vu(e(x,t))], xe€Q, 0<t<T, (1)
(e (x, t)) = F/(C(X, t)) - GZAC(Xv 1), (2)
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where Q ¢ R? (d = 1,2,3). This equation arises from the Ginzburg-Landau free energy

8(c) = /Q (F(c) +%2|Vc|2> dx

where F(c¢) is the Helmholtz free energy and e is a positive constant. In this paper, we use the free energy in the
form of [10]

F(c) = %cz(l — o)
To obtain the CH equation with a variable mobility one introduces a chemical potential u as the variational
derivative of &,
o0&
oc
and defines the flux, # := —M(c)Vu, where M(c) = 0 is a diffusional mobility. We take a mobility of the form

M(c) := ¢(1 — ¢), which is a thermodynamically reasonable choice [8]. This mobility significantly lowers the
long-range diffusion across bulk regions. As a consequence of mass conservation, we have

=F'(c) — éAc

o=

oc
& =-V. f7
which is the CH equation with a variable mobility. The natural and no-flux boundary conditions are
0 .
a_c = -n=0 on 0Q, where n is normal to 0€. (3)
n
We differentiate the energy & and the total mass [,, cdx to get

dtg( ) = /Q(F’(c)c, + *Ve - Ve, )dx = / uc, dx = /Q,uV (M (c)Vu)dx
_ —ds—/w V)dx = —/QM(c)Wu\zdx @)

/cdx_/c,dx—/v wdx—/M Ok 45—, (5)
7’1

where we used the no flux boundary condition (3). Therefore, the total energy is non-increasing in time and the
total mass is conserved.

The CH equation with a constant mobility has been intensively studied with numerical methods (e.g., [1,3—
5,9,11,14], and the references therein). However, only a few authors (e.g., [12,15]) studied the CH equation
with concentration dependent mobility numerically, although it appeared in the original derivation of the
equation, see [7]. And also, compared to a large number of numerical methods (e.g., a successive overrelax-
ation iteration method (SOR) [3], a generalized Newton’s method [4], and a fast Fourier transformation
(FFT) [5)) in solving the CH equation, there is no numerical results by nonlinear multigrid methods to our
knowledge, But multigrid methods are generally accepted as among the fastest numerical methods for solving
this type of partial differential equations [13]. We use a nonlinear multigrid method to solve resulting equa-
tions accurately and efficiently.

This paper is organized as follows. In Section 2, we describe the discrete scheme and its properties. We pres-
ent the nonlinear multigrid method for the fully discrete system in Section 3. In Section 4, a local Fourier anal-
ysis of the scheme is performed. The numerical results showing the effects of a variable mobility are described
in Section 5. A discussion is presented in Section 6.

2. Numerical analysis

In this section, we present fully discrete schemes for the CH equation. In addition, we prove discrete ver-
sions of mass conservation and energy dissipation, which immediately imply the stability of the numerical
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scheme. We shall first discretize the CH equation (1) and (2) in two-dimensional space, i.e., Q = (a,b) X (¢, d).
One- and three-dimensional discretizations are analogously defined. Let N, and N, be positive even integers,
h=(b—a)/N, be the uniform mesh size, and Q, = {(x3y):x;=({—0.5)h, y;=( —0.5h, 1<i<N,,
1 <j< N,} be the set of cell-centers.

Let ¢; and pu; be approximations of ¢(x;,y;) and u(x;,y;). We first implement the zero Neumann boundary
condition (3) by requiring that

Dxcf%,j = DXCNX+1 = D VCi. = D VCiN, = 0,
where the discrete differentiation operators are
Cit1j — Cij
h )
And we use the notation V,c; = (Dxci 115y Dyey +1) to represent the discrete gradient of ¢ at cell-edges.

_ Cij+1 — Gy

D Cz+— = zJ+1 - /’l

D,c;

Correspondingly, the divergence at cell-centers, using values from cell-edges, is V.- (g', gz)i], =
(gl_l T gl__J + glJ - gij_%) / h. We then define the discrete Laplacian by A,c; =V, V,c; and the discrete
I, inner product by

(e;d), =h’ Z Zc,,-d,,-, (6)

N Ny
(Vac,Vad), = h2< Dyc;yyiDod, 5+ Z Z ¢j+Dy le,) (7)
i=0 j=1
We also define discrete norms as ||c[|? = (¢, ¢), and |c|; = (Vqe, Vo),

2.1. Discretization and properties of the proposed scheme

We present a semi-implicit time (Crank—Nicholson) and centered difference space discretization of Egs. (1)
and (2).

czr‘l'+1 _c;‘l' L il

]th = vd ’ [M(C)ijfzvdﬂijﬁ»z} 9 (8)
e 1 1 n 62 n+1 n

Hij = 5 (f( ¥ ) +f( ”)> B EAd(cij+ + Cij)a (9)

where fic) = F'(¢)and V,; - |M(c )szdul + is described at (17) in detail. Mass conservation and stability esti-
mate of a ldiscrete energy functional are established in the following theorem and for simplicity, let
M = M(c)"".

Theorem 1. If {c", ,u'”%} is the solution of (8) and (9) and if we define the discrete energy functional by

() = (F(). 1), + 5 e’ (10)

then ("', 1), = (¢", 1), and

En(d™) = E4(c") < —(N Ty > (Mvd,“”%, Vd#"+%) .

Proof. The first assertion follows using discrete summation by parts. We have
(@1, 1), = (", 1), + At(Vd : (Mvdu"%), 1)h = (1), — At(Mvdw%, le) = (", 1),.

n+1

It remains to prove the second assertion. Multiplying w2 and "' — ¢ to (8) and (9), respectively and sum-

ming by parts, we obtain the following two identities:
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(Cn+1 _ Cn“un%)h + At(MVd,u"*%, vdun+%>e =0, (11)
1 e
(cn+1 _ Cn7'un+%)h — 5( n+1 _ >f< n+l) +f( ))h _5(cn+l _ Cn,AdC’1+l + Adcn)h
_ 1 n+1 n+1 2 n+12 n
= (e = e (@), + 5 (1 = 1) (12)
Next, using our scheme (8) and (9), we also have the following estimate:
2
ch+1 _ cn||2 CA? HMvd ntt (13)

where C depends on the dimension of domain of Q and denotes the generic constant. Indeed, multiplying

" — " to (8) and using the Holder inequality, we obtain

=P < MMV [ = (14)

ch+1

On the other hand, the following inequality can be easily verified

|Cn+l _ cn| h2 ||Cn+1 Vl||2. (15)

Combining the above inequalities (14) and (15), we get the estimate (13). Using the identities (11) and (12)

above, we obtain

€
En(c™) = En(c") = (F(") = F("),1), + \”“2 5 le"li

_ (F(C"H) —F(C"), 1);, _ At(Mvdﬂn+iavdﬂn+%)e _%(f(anrl) +f(C’7),Cn+l _Cn)h' (16)

Since F is differentiable, the first term in right-hand side (16) is estimated as follows:
n+1 n
F(cn+1) —F(Cn) :f<c 2+ C >(Cn+l _ cn) + O((CIH»I _ Cn)2>'

Therefore, using the above identities and estimates we have

F(cn+l) —F(C”) f(cn+l) —l-f(C”) | |
n+1 2 n n+1 n n n+s
Ep(c™) = &) < ( o 7 M —c h—At(MVd,u Y2,V *-)e

n+1 n n+1 n
_ (f(c 2+C ) 7,}(‘(0 )2+f(c )+O(Cn+l 76‘”),6‘”4—1 Cn) —At(MVdu"Jr%,Vd,u”Jr%)

h e
_ (O(Cn+l _cn)7cn+1 _Cn) —At(MVdu”+%,Vdu”+%)

CAt2 CAF
—At(MVdu + Vdu"”) < ( PR

A

At) (Mvdw%, vdw%)e.

This completes the theorem. [

3. Numerical solution — a nonlinear multigrid method

In this section, we develop a nonlinear full approximation storage (FAS) multigrid method to solve the
nonlinear discrete system (8) and (9) at the implicit time level. The nonlinearity is treated using one step of
Newton’s iteration and a pointwise Gauss—Seidel relaxation scheme is used as the smoother in the multigrid
method. See the reference text [13] for additional details and background. The algorithm of the nonlinear
multigrid method for solving the discrete CH system is as follows.

First, let us rewrite Egs. (8) and (9) as

NSO(!, i) = (¢.y"),
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where
n+l  nt+d c[’_}ffl ”J% ”+% n+l n+1
NSO (C , W 2) = A V- (M(C);j vd:uij )7/"’1/ - _f( ) + A Cij

and the source term is
(" 9" = (c;;./m,o.sf(c;;) - 0.562Adc;;).

In the following description of one FAS cycle, we assume a sequence of grids Q (Q,_; is coarser than Q; by
factor 2). Given the number v of pre- and post-smoothing relaxation sweeps, an iteration step for the nonlinear
multigrid method using the V-cycle is formally written as follows [13]:

3.1. FAS multigrid cycle

m+1 m—1 n n
{CZHrl”uk +2} = FASCka:(ka CZ,CZI,,uk Z>Nsoka ¢k7 ‘/jkv V).

n+1

ml . .
That is, {c,’:’, U 2} and { AT } are the approximations of ¢*" ' (x;, ;) and w2 (x;, »,) before and after an

FAS cycle. Now, define the FAS cycle.
(1) Presmoothing:
(e 1} = SMOOTH (¢f, ¢ i/, NSOy, 1, 07,

wh1ch means performing v smoothing steps with the initial approx1mat10ns e,y %, ¢}, source terms

., V7, and SMOOTH relaxation operator to get the approximations ¢;’, fi, *. One SMOOTH relaxation
operator step consists of solving the system (19) and (20) given below by 2 x 2 matrix inversion for each i
and j. Here, we derive the smoothing operator in two dimensions. Rewriting Eq. (8), we get

+ + pas nl n ol + o ont + ol

ap MM i e i e
At n? v * '

(17)
Since ”“ is nonlinear with respect to c’“rl we linearize ”“ at ¢, i.e.,

ij
df(cf)
f(Clj+1) Nf(cij) + T] (clj+1 Cij)'
After substitution of this into (9), we get
262 df(c:'/’) n l ”+ df(C:’;) m 62 n+1 n+1 n+1 n+1

_<?+ Zdé cij+ ’ ‘pu + f< u) 2dé Cij — W02 ( l++1] +C,+1,J ‘*“71;1 +Ci,;r—l)' (18)

Next, welz replace ¢}, and ,uk, 2 1n Egs. (17) and (18) with & and f,; ifk <iand /<, otherwise with ¢}
and 1, °, ie.,
m— 1

m—1 m—1

E:r; Mz+ 73 +M 2 +Mt_|+21 +Ml,] 3 _m-1 n Ml+—2] l+1J +Ml —Zj'ul 1J +Mt]+l'ulJ+1 +MIJ 2% ldjl 19
E + hz Hij ¢U h2 ’ ( )
m—l . .
where M) = (( (R ARE S et S e J) / 4) and the other terms are similarly defined.
L
262 df( :n) —m df(C;”) m 62 m —m m —m
B <? " 2de )le =3 ) - g - e (gt e ) (20)

(2) Compute the defect:

_ mel
(A day) = (@.07) — NSO (e, ™). (1)
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1
(3) Restrict the defect and {EZ’, ,HZ 2}:
— — — — 1 1
k—1 = - k—1
(@) =17 @d ), (e ) =10 (e ™).

The restriction operator /5~ maps k-level functions to (k — 1)-level functions.

_ 1
di(xi,y;) = I ' di(xi, ) = 1 |:dk (x,;%,y,;%) +di (x,-,%,yﬂ%) +dy (x,-+%,yj,%) +dy <xi+%ayj+%):| .
(4) Compute the right-hand side:
_ _ ml
(d)Z—l?lpZ—l) = (dlzl—lvde—l) + NSO (EZ—NE;{”—laﬂk—lz)'
(5) Compute an approximate solution {ck LR } of the coarse grid equation on Q,_j, i.e.,

NSO l(ck 1 Cre 17#2171_) = (</5Z_1,¢Z_1)~ (22)

If k =1, we explicitly invert a 2 X 2 matrix to obtain the solution. If k > 1, we solve (22) by performing a
FAS k- grld cycle using {¢” |, [, ;¢ as an initial approximation:

(e i3} = FASeyele (k= 1e} ey i NSO 1, 6y, Wy, v).

(6) Compute the coarse grid correction (CGC):
mfé m—L mfl
Vot = Gy — Gl Uyt = gy — By
am—3 m—1 .

(7) Interpolate the correction: %, = 1% & |, iy, > = IF_, b5, °. Here, the coarse values are simply transferred
to the four nearby fine grid points, i.e., v;(x;, ;) = I{_ 041 (x;, ;) = iy Xi11, Y. ) for i and j odd-num-
bered integers.

(8) Compute the corrected approximation on €

m,after CGC m—1%.after CGC 1—% m—%
Ch =c +o = Uy .

(9) Post-smoothing:
m+1 m,after m—4after noon
{CZlJrl » My +2} - SMOOTH» <CZ7 Cr f CGC7 Hy 2t CGC7 NSOka ¢k’ l/jk) .

This completes the description of a nonlinear FAS cycle.

4. Local Fourier analysis

To analyze the behavior of the multigrid method, we linearize the nonlinear scheme and perform a local
Fourier analysis (e.g., see [13]). In particular, we analyze the smoother since the performance of the multigrid
method depends strongly on the smoother. We “freeze” the coefficient, M(c), at a representative value
M:= M(¢), for some 0 < ¢ < 1. After linearizing the nonlinear term 3 1f(c "j“) around an average concentra-
tion ¢, by § c"+1 + B, where o = f'(¢,,) and f§ is a constant and substituting ,u,j 2 into (8), the scheme becomes

Lycl™ =}, where

n+1

Cii o
n+l . n+1 nt+l n+l n+1 n+1
Lycy™ = AtM T2 (Ci—u +Ciiy 4 +Cio T /+1)

n+1 n+1 n+1 n+1 n+1
+2h4|:12]+cl+2]+c 2+clj+2+2(ci71,j+l+c

(el + e el + et ) +200 (23)

n+1 n+1
in1j=1 T Cif1 1 +ci+1,j—l)

and 57 =LA, f(ch) — S A2l + ot

d ij AtM;.’
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For Gauss—Seidel iteration with a lexicographic ordering of the grid points applied to the above equation
(23), we have the following operator decomposition:

n+1

C; o
+ o+l Y n+1 n+1 n+1
Lh ¢ AIM 2h2 ( Ci_ 1,j +Cz] 1 _4cij+ )
2
€
T 2h4 |: 1n+21,_| +Cn+12 +2( ;1+11J+1 + czﬁL]lJ ]) _ 8( ln+11—l 24J+11> +2ocn+1:|
7}11,_ o n+1 n+1 n+1 n+1 n+1 n+1 n+1 n+1
Lycy™ =— 02 ( z++1,1 + ‘71;1) +ﬁ [ z++2j + Cutrz + 2(Ci++1,j+1 + cirl,j—l) - 8( lirlj + Czr«u)}
Therefore, this relaxation method can be written locally as
Lz + Lz, =5, (24)

where z;, corresponds to the old approximation of ¢, (approximation before the relaxation step) and z, to the
new approximation (after the step). Subtracting (24) from the discrete equation L,c,=f;, and letting
o, = ¢, — z, and v, = ¢, — zj,, wWe obtain the equation

Lo, + L, v, =0, or, equivalently ,, = S,vy,

where S), = —(L;)flL,j is the resulting smoothing operator. Applying L, and L, to the formal eigenfunctions
eif3/hgihy/h e obtain

i0x 0y ~, i0px 0y i0)x i0yy ~  i0px i0y
+
Leheh:Leheh, Lyeeh =L, enei,

where L; 4 and L; are the formal eigenvalues of the operators L, and L, , respectively:

1 o . .
0 0 —i0; —i0y _ 4
( 15 2) AtM 2h2 (e +e )
2
+26h4 [ ~2ify y o-2i0 +2( ~i(01-02) 4 o~ 91+02)) . 8(e*i9‘ + e—iez) + 2()],
2
~ o . . € . .
L, (6,60,) = _ﬁ(elel +6192) +2h4 [ 20, | 20 +2( (0140:) 4 (01— 9,)) _ 8(616' _1_6102)]
The amplification factor of the relaxation scheme is §h(91, 0,) := —%
L, (01,0

Define the smoothing factor: p,.(S,) := sup{|S,(6;,6,)| : 2<04],102] < m}.
We define a convergence factor as an average of the quantity ||d)"'||/||d} |, where d} (m = 1,2,...) are the

defects (21). The convergence factor is estimated numerically using our nonlinear code with the parameters
e = 0.01, the mesh-dependent time step A7 = 0.1 h, and most unstable initial conditions

(x,y) = 0.5+ 0.01 cos(0.5mx/h) cos(0.5my/h).

We measure the V(m,n)-convergence factors, where m and n are the numbers of pre-smoothing and post-
smoothing. We focus on m = 1 and n = 1 as this yields the most efficient algorithms. In addition, we consider
o = —0.25 which corresponds to linearization in an unstable region. Table 1 shows p.(S;) factors with

=0.25 and measured /¥ (1, 1)-cycle convergence factors with different mesh sizes. Note /7 (1, 1)-cycle
means the square root of V(1, 1) cycle convergence factor. /¥ (1, 1)-cycle remains uniformly bounded below
1 with increasing resolutions and apparently converges to a number which is smaller than the theoretical esti-
mate uoo(S;) as # — 0. This is due to the fact that given a time step, the smoothing factors of coarser grids are

Table 1

Convergence factors for different mesh sizes. « = —0.25, 1 =1/N,, and At =0.1h

Case 16 x 16 32x32 64 x 64 128 x 128 256 x 256 512 % 512 1024 x 1024 2048 x 2048
Hioc 0.2324 0.6083 0.7295 0.6929 0.6763 0.6713 0.6700 0.6697

VV(1,1)-cycle 0.1792 0.4299 0.3691 0.3730 0.4104 0.4408 0.4387 0.4340
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much smaller than that of the finer one. Thus the number of V{1, 1)-cycles required to solve the full problem is
insensitive to the resolution.

This result for o = —0.25 suggests that the multigrid method using a V{1, 1)-cycle with time step Az ~ /i con-
verges uniformly with respect to increasing resolutions. Correspondingly, this would impose a first-order time
step constraint on our discrete scheme to solve the CH equation.

5. Numerical results

We consider numerical experiments highlighting the difference between the variable mobility M(c) =
¢(1 — ¢) and the constant mobility M(c) = 0.25 (the maximum value of the variable mobility M(c)). We check
the second-order convergence of the scheme, demonstrate the total energy dissipation and the mass conserva-
tion properties, and study the dynamics of bubbles in the one-, two-, and three-dimensional Cahn—Hilliard
equations numerically.

5.1. Convergence test

To obtain an estimate of the rate of convergence, we perform a number of simulations for a sample initial
problem on a set of increasingly finer grids. The initial state for this convergence test on a domain,
Q=(0,1)x(0,1), is

(x,y) = 0.5+ 0.17 cos(nx) cos(2my) + 0.2 cos(3mx) cos(my). (25)

The numerical solutions are computed on the uniform grids, 7 = 1/2" for n =5, 6, 7, 8, and 9. For each case,
the calculation is run to time 7 = 0.3 with the uniform time step, Az =0.1 h, and ¢ = 0.01.

We define the error of a grid to be the discrete /,-norm of the difference between that grid and the average of
the next finer grid cells covering it:

def
e =cpi— i Ci i 4.
hf3;; hij (§2i,2j+ 12i-12) 52i42j—l+ 52,'—1,2,'—1)/ el
Eh/ﬁ
2

The rate of convergence is defined as the ratio of successive errors: log, T
23

The errors and rates of convergence are given in Table 2. The results suggest that the scheme is indeed sec-
ond-order accurate in space and time.

Next, we compare numerical equilibrium solutions with analytic ones. Fig. 1 shows evolutions of an initial
concentration (solid line) ¢° = 0.5 — 0.3tanh(5x) with three different ¢ = 0.01, 0.02, and 0.04 on a domain
Q= (-1,1). We take h = 1/128 and Az = 0.1h. We stop the numerical computations when the discrete /,-norm
of the difference between (1 + 1)th and nth time step solutions becomes less than 107°. That is ||¢""' — ¢"|| <
1076, Circles are the results of numerical simulations and “*’, “+’, and ‘-’ are analytic equilibrium solutions [10]

cjfl(x) = % {1 — tanh (2\%5)} on Q= (—o00,00) with € =0.01, 0.02, and 0.04, respectively. The numerical equi-

librium interface profiles match well with the analytical ones.

5.2. The decrease of the total energy
In Fig. 2, the time evolution of the non-dimensional discrete total energy &,(¢)/&,(0) (solid line) and the
average concentration (¢”, 1), (diamond line) of the numerical solutions with the initial state (26) are shown:
A(x,y) =0.3+0.1(1 —x — ) + 0.01rand(). (26)

We take the simulation parameters, ¢ =0.01, &1 =1/64, At =0.1h, and mesh size 64 x 64. The energy is
non-increasing and the average concentration is conserved. These numerical results agree well with the total

Table 2
Convergence results — concentration ¢
Case 32-64 Rate 64-128 Rate 128-256 Rate 256-512

b 2.90e—02 2.37 5.61e—03 2.03 1.38e—03 2.01 3.43e—-04
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* €£=0.01 -
+ €=0.02
e=0.04
= initial profile
O numerical results

-0.8 -0.6 -0.4 -0.2

Fig. 1. Circles are numerical equilibrium solutions of an initial concentration ¢°(x) = 0.5 — 0.3tanh(5x) with e = 0.01, 0.02, and 0.04. **’,

5
‘“+’, and *-’ are corresponding analytic equilibrium solutions ¢ (x) =1 {1 — tanh (7\;5( }

1 T T T T T T

—— total energy
09t { average concentration —

0.8 | 4

0.7 H 4

0.5

04r

0.3¢00000000000000 QOOOOCOOOQOODOCOOOQOOOOCOOOOOROOH

02

0.1 4

1 1 1 1 1
0 50 100 150 200 250 300
Time

Fig. 2. The non-dimensional discrete total energy &(¢)/&5(0) (solid line) and the average concentration (¢”, 1), (diamond line) of the
numerical solutions with the initial state (26).

energy dissipation property (4) and the conservation property (5). Also, the inscribed small figures are the con-
centration fields at the indicated times.

5.3. One space dimension
Now, we examine the evolution of a random distribution of initial concentration. We take ¢ = 0.009, 1 =

1/128, At = 0.2h, Q = (0, 1), and the initial state (dotted line) in Fig. 3 is taken to be ¢ = 0.3 + 0.01rand(). The
random number, rand(), is uniformly distributed between —1 and 1. Fig. 3 shows evolutions of the initial
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, < {= 000
\ ]
ook ; —t= 156 |
;Y| O t=15625 |4
\ | — t=234.38 a
0.8

0.7
0.6
0.5
0.4]
0.2

0.1

M(c) =0.25 M(c)=c(1l-¢)

Fig. 3. Evolution of initial concentration ¢°() = 0.3 + 0.01rand().

=27 t=164 =438 t=2540 t=2730

Fig. 4. Evolution of the concentration ¢(x, y, ) with a constant mobility M(c) = 0.25 (the top row) and a variable mobility M(c) = ¢(1 — ¢)
(the bottom row). The times are shown below each figure.

concentration ¢° with a constant mobility and a variable mobility from a random perturbation. Constant
mobility case has only one big component, but the variable mobility case has two components.

5.4. Two space dimensions

In Ref. [12], finite element approximation is used to solve the CH equation with a variable mobility numer-
ically and we take a similar test problem here. The initial state is taken to be ¢” = 0.25 + 0.001rand( ). We take
the simulation parameters, e = 0.004, i1 = 1/128, At = 0.5h, and mesh size 128 x 128. Fig. 4 shows evolution of
the concentration ¢(x,y,f) with a constant mobility M(c) =0.25 (the top row) and a variable mobility
M(c) = ¢(1 — ¢) (the bottom row). In the constant mobility case, the initial data is taken to be ¢° = ¢(:,27) from
the variable mobility case. The final numerical solutions plotted in Fig. 4 are stationary numerical solutions
according to the stopping criteria.

In Fig. 4, in the case of the variable mobility (the bottom row), second-phase regions are nucleated (black
regions). The surface energy in the CH equation causes the regions to be circular. There is evidence of a small
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=23 t=70 =102 =156
t=117 =195 =390 t=1000

Fig. 5. Evolution of the concentration c¢(x,y,z,¢) with a constant mobility M(c)=0.25 (the top row) and a variable mobility
M(c) = c(1 — ¢) (the bottom row). The times are shown below each figure.

amount of coarsening as small regions vanish and redistribute their mass to the other regions. As the remain-
ing regions grow, an equilibrium is established. The variable mobility generally reduces diffusion in the bulk.
This is made clear by comparing to the results in the top row, where the mobility is constant. In the case of the
constant mobility, the evolution leads to a microstructure consisting entirely of a single large, semi-circular
second-phase domain.

5.5. Three space dimensions

We repeat the phase separation simulation in the three-dimensional case. The three-dimensional implemen-
tation of the CH equation is a straightforward extension of the two-dimensional one. A 64 X 64 X 64 compu-
tational grid, e = 0.01, 7 = 1/64, and At = 0.1/ are used for the numerical parameters. The initial state is taken
to be ¢® =0.25 + 0.2rand(). In Fig. 5, the case of the variable mobility (the bottom row), the numerical sta-
tionary solution consists of many components, but the case of the constant mobility (the top row) has only one
component.

6. Conclusions

In this paper, an efficient and accurate numerical scheme was proposed for solving the CH equation with a
variable mobility. The new scheme is solved by a nonlinear multigrid method and is second-order accurate in
space and time. We have studied the dynamics of the one-, two-, and three-dimensional CH equations with a
constant mobility and a compositional-dependent mobility. Particularly, we compared the kinetics of bulk-dif-
fusion-controlled coarsening and interface-diffusion-controlled coarsening. We found, in the case of a variable
mobility, after the early stages there is very little interaction of regions that do not intersect and the evolution
takes place locally where the local mass is preserved. The final frame yields a numerical stationary solution
consisting of many components that do not intersect. While, in the case of the constant mobility, diffusion
through bulk regions is still possible and disconnected regions influence each other in order to decrease the
total amount of interfacial area. For large times, constant mobility CH systems generically lead to situations
where each phase occupies only one connected part of the domain.
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