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Abstract

We consider a conservative nonlinear multigrid method for the Cahn–Hilliard equation with a variable mobility of a
model for phase separation in a binary mixture. The method uses the standard finite difference approximation in spatial
discretization and the Crank–Nicholson semi-implicit scheme in temporal discretization. And the resulting discretized
equations are solved by an efficient nonlinear multigrid method. The continuous problem has the conservation of mass
and the decrease of the total energy. It is proved that these properties hold for the discrete problem. Also, we show the
proposed scheme has a second-order convergence in space and time numerically. For numerical experiments, we investi-
gate the effects of a variable mobility.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider an efficient and accurate finite difference multigrid approximation of the Cahn–
Hilliard (CH) equation with a variable mobility. The quantity c(x, t) is defined to be the mass concentration
(volumic mass) of one of the components. The following equation was introduced to model spinodal decom-
position and coarsening phenomena in binary alloys [2,6]:
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where X � Rd (d = 1,2,3). This equation arises from the Ginzburg–Landau free energy
EðcÞ :¼
Z

X
F ðcÞ þ �

2

2
jrcj2

� �
dx;
where F(c) is the Helmholtz free energy and � is a positive constant. In this paper, we use the free energy in the
form of [10]
F ðcÞ ¼ 1

4
c2ð1� cÞ2.
To obtain the CH equation with a variable mobility one introduces a chemical potential l as the variational
derivative of E,
l :¼ dE
dc
¼ F 0ðcÞ � �2Dc
and defines the flux, J :¼ �MðcÞrl, where M(c) P 0 is a diffusional mobility. We take a mobility of the form
M(c) :¼ c(1 � c), which is a thermodynamically reasonable choice [8]. This mobility significantly lowers the
long-range diffusion across bulk regions. As a consequence of mass conservation, we have
oc
ot
¼ �r �J;
which is the CH equation with a variable mobility. The natural and no-flux boundary conditions are
oc
on
¼ J � n ¼ 0 on oX; where n is normal to oX. ð3Þ
We differentiate the energy E and the total mass
R

X cdx to get
d

dt
EðtÞ ¼

Z
X
ðF 0ðcÞct þ �2rc � rctÞdx ¼

Z
X

lct dx ¼
Z

X
lr � ðMðcÞrlÞdx

¼
Z

oX
lMðcÞ ol

on
ds�

Z
X
rl � ðMðcÞrlÞdx ¼ �

Z
X

MðcÞjrlj2dx ð4Þ
and
d

dt

Z
X

cdx ¼
Z

X
ct dx ¼

Z
X
r � ðMðcÞrlÞdx ¼

Z
oX

MðcÞ ol
on

ds ¼ 0; ð5Þ
where we used the no flux boundary condition (3). Therefore, the total energy is non-increasing in time and the
total mass is conserved.

The CH equation with a constant mobility has been intensively studied with numerical methods (e.g., [1,3–
5,9,11,14], and the references therein). However, only a few authors (e.g., [12,15]) studied the CH equation
with concentration dependent mobility numerically, although it appeared in the original derivation of the
equation, see [7]. And also, compared to a large number of numerical methods (e.g., a successive overrelax-
ation iteration method (SOR) [3], a generalized Newton’s method [4], and a fast Fourier transformation
(FFT) [5]) in solving the CH equation, there is no numerical results by nonlinear multigrid methods to our
knowledge, But multigrid methods are generally accepted as among the fastest numerical methods for solving
this type of partial differential equations [13]. We use a nonlinear multigrid method to solve resulting equa-
tions accurately and efficiently.

This paper is organized as follows. In Section 2, we describe the discrete scheme and its properties. We pres-
ent the nonlinear multigrid method for the fully discrete system in Section 3. In Section 4, a local Fourier anal-
ysis of the scheme is performed. The numerical results showing the effects of a variable mobility are described
in Section 5. A discussion is presented in Section 6.

2. Numerical analysis

In this section, we present fully discrete schemes for the CH equation. In addition, we prove discrete ver-
sions of mass conservation and energy dissipation, which immediately imply the stability of the numerical
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scheme. We shall first discretize the CH equation (1) and (2) in two-dimensional space, i.e., X = (a,b) · (c,d).
One- and three-dimensional discretizations are analogously defined. Let Nx and Ny be positive even integers,
h = (b � a)/Nx be the uniform mesh size, and Xh = {(xi,yj) : xi = (i � 0.5)h, yj = (j � 0.5)h, 1 6 i 6 Nx,
1 6 j 6 Ny} be the set of cell-centers.

Let cij and lij be approximations of c(xi,yj) and l(xi,yj). We first implement the zero Neumann boundary
condition (3) by requiring that
Dxc�1
2;j
¼ DxcNxþ1

2;j
¼ Dyci;�1

2
¼ Dyci;Nyþ1

2
¼ 0;
where the discrete differentiation operators are
Dxciþ1
2;j
¼ ciþ1;j � cij

h
; Dyci;jþ1

2
¼ ci;jþ1 � cij

h
.

And we use the notation rdcij ¼ Dxciþ1
2;j
;Dyci;jþ1

2

� �
to represent the discrete gradient of c at cell-edges.

Correspondingly, the divergence at cell-centers, using values from cell-edges, is rd � ðg1; g2Þij ¼
g1

iþ1
2;j
� g1

i�1
2;j
þ g2

i;jþ1
2
� g2

i;j�1
2

� �.
h. We then define the discrete Laplacian by Ddcij = $d Æ $dcij and the discrete

l2 inner product by
ðc; dÞh ¼ h2
XNx

i¼1

XNy

j¼1

cijdij; ð6Þ

ðrdc;rddÞe ¼ h2
XNx

i¼0

XNy

j¼1

Dxciþ1
2;j

Dxdiþ1
2;j
þ
XNx

i¼1

XNy

j¼0

Dyci;jþ1
2
Dydi;jþ1

2

 !
. ð7Þ
We also define discrete norms as kck2 = (c,c)h and jcj21 ¼ ðrdc;rdcÞe.

2.1. Discretization and properties of the proposed scheme

We present a semi-implicit time (Crank–Nicholson) and centered difference space discretization of Eqs. (1)
and (2).
cnþ1
ij � cn

ij

Dt
¼ rd � MðcÞnþ

1
2

ij rdl
nþ1

2
ij

h i
; ð8Þ

l
nþ1

2
ij ¼

1

2
f ðcnþ1

ij Þ þ f ðcn
ijÞ

� �
� �

2

2
Ddðcnþ1

ij þ cn
ijÞ; ð9Þ
where f(c) = F 0(c) and rd � MðcÞnþ
1
2

ij rdl
nþ1

2
ij

h i
is described at (17) in detail. Mass conservation and stability esti-

mate of a discrete energy functional are established in the following theorem and for simplicity, let
M ¼ MðcÞnþ

1
2.

Theorem 1. If cn; lnþ1
2

n o
is the solution of (8) and (9) and if we define the discrete energy functional by
EhðcnÞ ¼ ðF ðcnÞ; 1Þh þ
�2

2
jcnj21; ð10Þ
then (cn+1,1)h = (cn,1)h and
Ehðcnþ1Þ � EhðcnÞ 6 � Dt � CDt2

h2

� �
Mrdl

nþ1
2;rdl

nþ1
2

� �
e
.

Proof. The first assertion follows using discrete summation by parts. We have
ðcnþ1; 1Þh ¼ ðcn; 1Þh þ Dt rd � Mrdl
nþ1

2

� �
; 1

� �
h
¼ ðcn; 1Þh � Dt Mrdl

nþ1
2;rd1

� �
e
¼ ðcn; 1Þh.
It remains to prove the second assertion. Multiplying lnþ1
2 and cn+1 � cn to (8) and (9), respectively and sum-

ming by parts, we obtain the following two identities:
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cnþ1 � cn; lnþ1
2

� �
h
þ Dt Mrdl

nþ1
2;rdl

nþ1
2

� �
e
¼ 0; ð11Þ

cnþ1 � cn; lnþ1
2

� �
h
¼ 1

2
cnþ1 � cn; f ðcnþ1Þ þ f ðcnÞ
� �

h
� �

2

2
cnþ1 � cn;Ddcnþ1 þ Ddcn
� �

h

¼ 1

2
cnþ1 � cn; f ðcnþ1Þ þ f ðcnÞ
� �

h
þ �

2

2
jcnþ1j21 � jcnj21
� �

. ð12Þ
Next, using our scheme (8) and (9), we also have the following estimate:
kcnþ1 � cnk2
6

CDt2

h2
Mrdl

nþ1
2

��� ���2

; ð13Þ
where C depends on the dimension of domain of X and denotes the generic constant. Indeed, multiplying
cn+1 � cn to (8) and using the Hölder inequality, we obtain
kcnþ1 � cnk2
6 DtkMrdl

nþ1
2kjcnþ1 � cnj1. ð14Þ
On the other hand, the following inequality can be easily verified
jcnþ1 � cnj21 6
C

h2
kcnþ1 � cnk2. ð15Þ
Combining the above inequalities (14) and (15), we get the estimate (13). Using the identities (11) and (12)
above, we obtain
Ehðcnþ1Þ �EhðcnÞ ¼ F ðcnþ1Þ � F ðcnÞ;1
� �

h
þ �

2

2
jcnþ1j21�

�2

2
jcnj21

¼ F ðcnþ1Þ � F ðcnÞ;1
� �

h
�Dt Mrdl

nþ1
2;rdl

nþ1
2

� �
e
� 1

2
f ðcnþ1Þ þ f ðcnÞ;cnþ1� cn
� �

h
. ð16Þ
Since F is differentiable, the first term in right-hand side (16) is estimated as follows:
F cnþ1
� �

� F ðcnÞ ¼ f
cnþ1 þ cn

2

� �
ðcnþ1 � cnÞ þO ðcnþ1 � cnÞ2

� �
.

Therefore, using the above identities and estimates we have
Ehðcnþ1Þ �EhðcnÞ6 F ðcnþ1Þ � F ðcnÞ
cnþ1 � cn

� f ðcnþ1Þ þ f ðcnÞ
2

; cnþ1� cn

� �
h

�Dt Mrdl
nþ1

2;rdl
nþ1

2

� �
e

¼ f
cnþ1þ cn

2

� �
� f ðcnþ1Þ þ f ðcnÞ

2
þOðcnþ1� cnÞ;cnþ1� cn

� �
h

�Dt Mrdl
nþ1

2;rdl
nþ1

2

� �
e

¼ Oðcnþ1� cnÞ;cnþ1� cn
� �

h
�Dt Mrdl

nþ1
2;rdl

nþ1
2

� �
e

6
CDt2

h2
Mrdl

nþ1
2

��� ���2

�Dt Mrdl
nþ1

2;rdl
nþ1

2

� �
e
6

CDt2

h2
�Dt

� �
Mrdl

nþ1
2;rdl

nþ1
2

� �
e
.

This completes the theorem. h
3. Numerical solution – a nonlinear multigrid method

In this section, we develop a nonlinear full approximation storage (FAS) multigrid method to solve the
nonlinear discrete system (8) and (9) at the implicit time level. The nonlinearity is treated using one step of
Newton’s iteration and a pointwise Gauss–Seidel relaxation scheme is used as the smoother in the multigrid
method. See the reference text [13] for additional details and background. The algorithm of the nonlinear
multigrid method for solving the discrete CH system is as follows.

First, let us rewrite Eqs. (8) and (9) as
NSO cnþ1; lnþ1
2

� �
¼ ð/n;wnÞ;
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where
NSO cnþ1; lnþ1
2

� �
¼

cnþ1
ij

Dt
�rd � MðcÞnþ

1
2

ij rdl
nþ1

2
ij

� �
; l

nþ1
2

ij �
1

2
f ðcnþ1

ij Þ þ
�2

2
Ddcnþ1

ij

 !

and the source term is
ð/n;wnÞ ¼ cn
ij=Dt; 0:5f ðcn

ijÞ � 0:5�2Ddcn
ij

� �
.

In the following description of one FAS cycle, we assume a sequence of grids Xk (Xk�1 is coarser than Xk by
factor 2). Given the number m of pre- and post-smoothing relaxation sweeps, an iteration step for the nonlinear
multigrid method using the V-cycle is formally written as follows [13]:

3.1. FAS multigrid cycle

mþ1
n o

m�1
� �
cmþ1
k ; l 2

k ¼ FAScycle k; cn
k ; c

m
k ; l

2
k ;NSOk;/

n
k ;w

n
k ; m .
That is, cm
k ;l

m�1
2

k

n o
and cmþ1

k ; l
mþ1

2
k

n o
are the approximations of cn+1(xi,yj) and lnþ1

2ðxi; yjÞ before and after an

FAS cycle. Now, define the FAS cycle.

(1) Presmoothing:
�cm
k ; �l

m�1
2

k

n o
¼ SMOOTHm cn

k ; c
m
k ; l

m�1
2

k ;NSOk;/
n
k ;w

n
k

� �
;

which means performing m smoothing steps with the initial approximations cm
k , l

m�1
2

k , cn
k , source terms

/n
k ;w

n
k , and SMOOTH relaxation operator to get the approximations �cm

k , �l
m�1

2
k . One SMOOTH relaxation

operator step consists of solving the system (19) and (20) given below by 2 · 2 matrix inversion for each i

and j. Here, we derive the smoothing operator in two dimensions. Rewriting Eq. (8), we get
cnþ1
ij

Dt
þ

M
nþ1

2

iþ1
2;j
þM

nþ1
2

i�1
2;j
þM

nþ1
2

i;jþ1
2

þM
nþ1

2

i;j�1
2

h2
l

nþ1
2

ij ¼ /n
ij þ

M
nþ1

2

iþ1
2;j
l

nþ1
2

iþ1;j þM
nþ1

2

i�1
2;j
l

nþ1
2

i�1;j þM
nþ1

2

i;jþ1
2

l
nþ1

2
i;jþ1 þM

nþ1
2

i;j�1
2

l
nþ1

2
i;j�1

h2
.

ð17Þ� �

Since f cnþ1

ij is nonlinear with respect to cnþ1
ij , we linearize f ðcnþ1

ij Þ at cm
ij , i.e.,
f ðcnþ1
ij Þ � f ðcm

ijÞ þ
df ðcm

ijÞ
dc

ðcnþ1
ij � cm

ijÞ.
After substitution of this into (9), we get
� 2�2

h2
þ

df ðcm
ijÞ

2dc

� �
cnþ1

ij þ l
nþ1

2
ij ¼ wn

ij þ
1

2
f ðcm

ijÞ �
df ðcm

ijÞ
2dc

cm
ij �

�2

2h2
cnþ1

iþ1;j þ cnþ1
i�1;j þ cnþ1

i;jþ1 þ cnþ1
i;j�1

� �
. ð18Þ
Next, we replace cnþ1
kl and l

nþ1
2

kl in Eqs. (17) and (18) with �cm
kl and �l

m�1
2

kl if k 6 i and l 6 j, otherwise with cm
kl

and l
m�1

2
kl , i.e.,
�cm
ij

Dt
þ

M
m�1

2

iþ1
2;j
þM

m�1
2

i�1
2;j
þM

m�1
2

i;jþ1
2

þM
m�1

2

i;j�1
2

h2
�l

m�1
2

ij ¼ /n
ij þ

M
m�1

2

iþ1
2;j
l

m�1
2

iþ1;j þM
m�1

2

i�1
2;j

�l
m�1

2
i�1;j þM

m�1
2

i;jþ1
2

l
m�1

2
i;jþ1 þM

m�1
2

i;j�1
2

�l
m�1

2
i;j�1

h2
; ð19Þ
where M
m�1

2

iþ1
2;j
¼ M cm

ij þ cm
iþ1;j þ cn

ij þ cn
iþ1;j

� �� .
4
�

and the other terms are similarly defined.
� 2�2

h2
þ

df ðcm
ijÞ

2dc

� �
�cm

ij þ �l
m�1

2
ij ¼ wn

ij þ
1

2
f ðcm

ijÞ �
df ðcm

ijÞ
2dc

cm
ij �

�2

2h2
cm

iþ1;j þ �cm
i�1;j þ cm

i;jþ1 þ �cm
i;j�1

� �
. ð20Þ
(2) Compute the defect:
�d1
m
k ;

�d2
m
k

� �
¼ ð/n

k ;w
n
kÞ �NSOk �cn

k ;�c
m
k ; �l

m�1
2

k

� �
. ð21Þ
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(3) Restrict the defect and �cm
k ; �l

m�1
2

k

n o
:

�d1
m
k�1;

�d2
m
k�1

� �
¼ Ik�1

k
�d1

m
k ;

�d2
m
k

� �
; �cm

k�1; �l
m�1

2
k�1

� �
¼ Ik�1

k �cm
k ; �l

m�1
2

k

� �
.

The restriction operator Ik�1
k maps k-level functions to (k � 1)-level functions.
dk�1ðxi; yjÞ ¼ Ik�1
k dkðxi; yjÞ ¼

1

4
dk xi�1

2
; yj�1

2

� �
þ dk xi�1

2
; yjþ1

2

� �h
þdk xiþ1

2
; yj�1

2

� �
þ dk xiþ1

2
; yjþ1

2

� �i
.

(4) Compute the right-hand side:
/n
k�1;w

n
k�1

� �
¼ �d1

m
k�1;

�d2
m
k�1

� �
þNSOk�1 �cn

k�1;�c
m
k�1; �l

m�1
2

k�1

� �
.

(5) Compute an approximate solution ĉm
k�1; l̂

m�1
2

k�1

n o
of the coarse grid equation on Xk�1, i.e.,
NSOk�1 cn
k�1; c

m
k�1; l

m�1
2

k�1

� �
¼ /n

k�1;w
n
k�1

� �
. ð22Þ
If k = 1, we explicitly invert a 2 · 2 matrix to obtain the solution. If k > 1, we solve (22) by performing a
FAS k-grid cycle using �cm

k�1; �l
m�1

2
k�1

n o
as an initial approximation:
ĉm
k�1; l̂

m�1
2

k�1

n o
¼ FAScycle k � 1; cn

k�1;�c
m
k�1; �l

m�1
2

k�1 ;NSOk�1;/
n
k�1;w

n
k�1; m

� �
.

(6) Compute the coarse grid correction (CGC):
v̂m
1k�1 ¼ ĉm

k�1 � �cm
k�1; v̂

m�1
2

2k�1 ¼ l̂
m�1

2
k�1 � �l

m�1
2

k�1 .
(7) Interpolate the correction: v̂m
1k ¼ Ik

k�1v̂m
1k�1, v̂

m�1
2

2k ¼ Ik
k�1v̂

m�1
2

2k�1. Here, the coarse values are simply transferred
to the four nearby fine grid points, i.e., vkðxi; yjÞ ¼ Ik

k�1vk�1ðxi; yjÞ ¼ vk�1 xiþ1
2
; yjþ1

2

� �
for i and j odd-num-

bered integers.
(8) Compute the corrected approximation on Xk
cm;after CGC
k ¼ �cm

k þ v̂1
m
k ; l

m�1
2;after CGC

k ¼ �l
m�1

2
k þ v̂2

m�1
2

k .
(9) Post-smoothing:
cmþ1
k ; l

mþ1
2

k

n o
¼ SMOOTHm cn

k ; c
m;after CGC
k ; l

m�1
2;after CGC

k ;NSOk;/
n
k ;w

n
k

� �
.

This completes the description of a nonlinear FAS cycle.

4. Local Fourier analysis

To analyze the behavior of the multigrid method, we linearize the nonlinear scheme and perform a local
Fourier analysis (e.g., see [13]). In particular, we analyze the smoother since the performance of the multigrid
method depends strongly on the smoother. We ‘‘freeze’’ the coefficient, M(c), at a representative value
Mn = M(n), for some 0 6 n 6 1. After linearizing the nonlinear term 1

2
f ðcnþ1

ij Þ around an average concentra-
tion cm by a

2
cnþ1

ij þ b, where a = f 0(cm) and b is a constant and substituting l
nþ1

2
ij into (8), the scheme becomes
Lhcnþ1
h ¼ sn

h; where

Lhcnþ1
h :¼

cnþ1
ij

DtMn
� a

2h2
cnþ1

i�1;j þ cnþ1
iþ1;j � 4cnþ1

ij þ cnþ1
i;j�1 þ cnþ1

i;jþ1

� �
þ �2

2h4
cnþ1

i�2;j þ cnþ1
iþ2;j þ cnþ1

i;j�2 þ cnþ1
i;jþ2 þ 2 cnþ1

i�1;jþ1 þ cnþ1
i�1;j�1 þ cnþ1

iþ1;jþ1 þ cnþ1
iþ1;j�1

� �h
�8 cnþ1

i�1;j þ cnþ1
i;j�1 þ cnþ1

iþ1;j þ cnþ1
i;jþ1

� �
þ 20cnþ1

ij

i
ð23Þ
and sn
h ¼ 1

2
Ddf ðcn

ijÞ � �2

2
D2

dcn
ij þ

cn
ij

DtMn
.
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For Gauss–Seidel iteration with a lexicographic ordering of the grid points applied to the above equation
(23), we have the following operator decomposition:
Table
Conve

Case
llocffiffiffiffiffiffiffiffi

V ð1;
p

Lþh cnþ1
h :¼

cnþ1
ij

DtM n
� a

2h2
cnþ1

i�1;j þ cnþ1
i;j�1 � 4cnþ1

ij

� �
þ �2

2h4
cnþ1

i�2;j þ cnþ1
i;j�2 þ 2 cnþ1

i�1;jþ1 þ cnþ1
i�1;j�1

� �
� 8 cnþ1

i�1;j þ cnþ1
i;j�1

� �
þ 20cnþ1

ij

h i
;

L�h cnþ1
h :¼ � a

2h2
cnþ1

iþ1;j þ cnþ1
i;jþ1

� �
þ �2

2h4
cnþ1

iþ2;j þ cnþ1
i;jþ2 þ 2 cnþ1

iþ1;jþ1 þ cnþ1
iþ1;j�1

� �
� 8 cnþ1

iþ1;j þ cnþ1
i;jþ1

� �h i
.

Therefore, this relaxation method can be written locally as
Lþh ~zh þ L�h zh ¼ sn
h; ð24Þ
where zh corresponds to the old approximation of ch (approximation before the relaxation step) and ~zh to the
new approximation (after the step). Subtracting (24) from the discrete equation Lhch = fh and letting
~vh ¼ ch � ~zh and vh = ch � zh, we obtain the equation
Lþh ~vh þ L�h vh ¼ 0; or, equivalently ;~vh ¼ Shvh;
where Sh ¼ �ðLþh Þ
�1L�h is the resulting smoothing operator. Applying Lþh and L�h to the formal eigenfunctions

eih1x=heih2y=h, we obtain
Lþh e
ih1x

h e
ih2y

h ¼ bLþh e
ih1x

h e
ih2y

h ; L�h e
ih1x

h e
ih2y

h ¼ bL�h e
ih1x

h e
ih2y

h ;
where bLþh and bL�h are the formal eigenvalues of the operators Lþh and L�h , respectively:
bLþh ðh1; h2Þ ¼
1

DtMn
� a

2h2
e�ih1 þ e�ih2 � 4
� �

þ �2

2h4
e�2ih1 þ e�2ih2 þ 2 e�iðh1�h2Þ þ e�iðh1þh2Þ

� �
� 8 e�ih1 þ e�ih2
� �

þ 20
	 


;

bL�h ðh1; h2Þ ¼ �
a

2h2
eih1 þ eih2
� �

þ �2

2h4
e2ih1 þ e2ih2 þ 2 eiðh1þh2Þ þ eiðh1�h2Þ

� �
� 8 eih1 þ eih2
� �	 


.

The amplification factor of the relaxation scheme is bS hðh1; h2Þ :¼ �
bL�h ðh1;h2ÞbLþh ðh1;h2Þ

.

Define the smoothing factor: llocðShÞ :¼ supfjbS hðh1; h2Þj : p
2
6 jh1j; jh2j 6 pg.

We define a convergence factor as an average of the quantity kdmþ1
h k=kdm

h k, where dm
h ðm ¼ 1; 2; . . .Þ are the

defects (21). The convergence factor is estimated numerically using our nonlinear code with the parameters
� = 0.01, the mesh-dependent time step Dt = 0.1 h, and most unstable initial conditions
c0ðx; yÞ ¼ 0:5þ 0:01 cosð0:5px=hÞ cosð0:5py=hÞ.

We measure the V(m,n)-convergence factors, where m and n are the numbers of pre-smoothing and post-
smoothing. We focus on m = 1 and n = 1 as this yields the most efficient algorithms. In addition, we consider
a = �0.25 which corresponds to linearization in an unstable region. Table 1 shows lloc(Sh) factors with
Mn = 0.25 and measured

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ð1; 1Þ

p
-cycle convergence factors with different mesh sizes. Note

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ð1; 1Þ

p
-cycle

means the square root of V(1,1)-cycle convergence factor.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ð1; 1Þ

p
-cycle remains uniformly bounded below

1 with increasing resolutions and apparently converges to a number which is smaller than the theoretical esti-
mate lloc(Sh) as h! 0. This is due to the fact that given a time step, the smoothing factors of coarser grids are
1
rgence factors for different mesh sizes. a = �0.25, h = 1/Nx, and Dt = 0.1h

16 · 16 32 · 32 64 · 64 128 · 128 256 · 256 512 · 512 1024 · 1024 2048 · 2048
0.2324 0.6083 0.7295 0.6929 0.6763 0.6713 0.6700 0.6697ffiffiffiffiffiffiffi

1Þ-cycle 0.1792 0.4299 0.3691 0.3730 0.4104 0.4408 0.4387 0.4340
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much smaller than that of the finer one. Thus the number of V(1, 1)-cycles required to solve the full problem is
insensitive to the resolution.

This result for a = �0.25 suggests that the multigrid method using a V(1, 1)-cycle with time step Dt � h con-
verges uniformly with respect to increasing resolutions. Correspondingly, this would impose a first-order time
step constraint on our discrete scheme to solve the CH equation.

5. Numerical results

We consider numerical experiments highlighting the difference between the variable mobility M(c) =
c(1 � c) and the constant mobility M(c) � 0.25 (the maximum value of the variable mobility M(c)). We check
the second-order convergence of the scheme, demonstrate the total energy dissipation and the mass conserva-
tion properties, and study the dynamics of bubbles in the one-, two-, and three-dimensional Cahn–Hilliard
equations numerically.

5.1. Convergence test

To obtain an estimate of the rate of convergence, we perform a number of simulations for a sample initial
problem on a set of increasingly finer grids. The initial state for this convergence test on a domain,
X = (0, 1) · (0, 1), is
Table
Conve

Case
l2
c0ðx; yÞ ¼ 0:5þ 0:17 cosðpxÞ cosð2pyÞ þ 0:2 cosð3pxÞ cosðpyÞ. ð25Þ

The numerical solutions are computed on the uniform grids, h = 1/2n for n = 5, 6, 7, 8, and 9. For each case,
the calculation is run to time T = 0.3 with the uniform time step, Dt = 0.1 h, and � = 0.01.

We define the error of a grid to be the discrete l2-norm of the difference between that grid and the average of
the next finer grid cells covering it:
eh=h
2ij
¼def chij � ch

22i;2j
þ ch

22i�1;2j
ch

22i;2j�1
þ ch

22i�1;2j�1

� �.
4.
The rate of convergence is defined as the ratio of successive errors: log2

ke
h=h

2
k

keh
2
=h

4
k.

The errors and rates of convergence are given in Table 2. The results suggest that the scheme is indeed sec-
ond-order accurate in space and time.

Next, we compare numerical equilibrium solutions with analytic ones. Fig. 1 shows evolutions of an initial
concentration (solid line) c0 = 0.5 � 0.3tanh(5x) with three different � = 0.01, 0.02, and 0.04 on a domain
X = (�1,1). We take h = 1/128 and Dt = 0.1h. We stop the numerical computations when the discrete l2-norm
of the difference between (n + 1)th and nth time step solutions becomes less than 10�6. That is kcn+1 � cnk 6
10�6. Circles are the results of numerical simulations and ‘*’, ‘+’, and ‘ Æ ’ are analytic equilibrium solutions [10]

c1eqðxÞ ¼ 1
2

1� tanh x
2
ffiffi
2
p

�

� �h i
on X = (�1,1) with � = 0.01, 0.02, and 0.04, respectively. The numerical equi-

librium interface profiles match well with the analytical ones.

5.2. The decrease of the total energy

In Fig. 2, the time evolution of the non-dimensional discrete total energy EhðtÞ=Ehð0Þ (solid line) and the
average concentration (cn, 1)h (diamond line) of the numerical solutions with the initial state (26) are shown:
c0ðx; yÞ ¼ 0:3þ 0:1ð1� x� yÞ þ 0:01randð Þ. ð26Þ

We take the simulation parameters, � = 0.01, h = 1/64, Dt = 0.1h, and mesh size 64 · 64. The energy is
non-increasing and the average concentration is conserved. These numerical results agree well with the total
2
rgence results – concentration c

32–64 Rate 64–128 Rate 128–256 Rate 256–512
2.90e�02 2.37 5.61e�03 2.03 1.38e�03 2.01 3.43e�04
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Fig. 1. Circles are numerical equilibrium solutions of an initial concentration c0(x) = 0.5 � 0.3tanh(5x) with � = 0.01, 0.02, and 0.04. ‘*’,
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Fig. 2. The non-dimensional discrete total energy EhðtÞ=Ehð0Þ (solid line) and the average concentration (cn, 1)h (diamond line) of the
numerical solutions with the initial state (26).

1568 J. Kim / Communications in Nonlinear Science and Numerical Simulation 12 (2007) 1560–1571
energy dissipation property (4) and the conservation property (5). Also, the inscribed small figures are the con-
centration fields at the indicated times.

5.3. One space dimension

Now, we examine the evolution of a random distribution of initial concentration. We take � = 0.009, h =
1/128, Dt = 0.2h, X = (0, 1), and the initial state (dotted line) in Fig. 3 is taken to be c0 = 0.3 + 0.01rand( ). The
random number, rand( ), is uniformly distributed between �1 and 1. Fig. 3 shows evolutions of the initial



Fig. 3. Evolution of initial concentration c0(Æ) = 0.3 + 0.01rand( ).

Fig. 4. Evolution of the concentration c(x,y, t) with a constant mobility M(c) � 0.25 (the top row) and a variable mobility M(c) = c(1 � c)
(the bottom row). The times are shown below each figure.

J. Kim / Communications in Nonlinear Science and Numerical Simulation 12 (2007) 1560–1571 1569
concentration c0 with a constant mobility and a variable mobility from a random perturbation. Constant
mobility case has only one big component, but the variable mobility case has two components.

5.4. Two space dimensions

In Ref. [12], finite element approximation is used to solve the CH equation with a variable mobility numer-
ically and we take a similar test problem here. The initial state is taken to be c0 = 0.25 + 0.001rand( ). We take
the simulation parameters, � = 0.004, h = 1/128, Dt = 0.5h, and mesh size 128 · 128. Fig. 4 shows evolution of
the concentration c(x,y, t) with a constant mobility M(c) � 0.25 (the top row) and a variable mobility
M(c) = c(1 � c) (the bottom row). In the constant mobility case, the initial data is taken to be c0 � c(Æ, 27) from
the variable mobility case. The final numerical solutions plotted in Fig. 4 are stationary numerical solutions
according to the stopping criteria.

In Fig. 4, in the case of the variable mobility (the bottom row), second-phase regions are nucleated (black
regions). The surface energy in the CH equation causes the regions to be circular. There is evidence of a small



Fig. 5. Evolution of the concentration c(x,y,z, t) with a constant mobility M(c) � 0.25 (the top row) and a variable mobility
M(c) = c(1 � c) (the bottom row). The times are shown below each figure.
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amount of coarsening as small regions vanish and redistribute their mass to the other regions. As the remain-
ing regions grow, an equilibrium is established. The variable mobility generally reduces diffusion in the bulk.
This is made clear by comparing to the results in the top row, where the mobility is constant. In the case of the
constant mobility, the evolution leads to a microstructure consisting entirely of a single large, semi-circular
second-phase domain.

5.5. Three space dimensions

We repeat the phase separation simulation in the three-dimensional case. The three-dimensional implemen-
tation of the CH equation is a straightforward extension of the two-dimensional one. A 64 · 64 · 64 compu-
tational grid, � = 0.01, h = 1/64, and Dt = 0.1h are used for the numerical parameters. The initial state is taken
to be c0 = 0.25 + 0.2rand( ). In Fig. 5, the case of the variable mobility (the bottom row), the numerical sta-
tionary solution consists of many components, but the case of the constant mobility (the top row) has only one
component.
6. Conclusions

In this paper, an efficient and accurate numerical scheme was proposed for solving the CH equation with a
variable mobility. The new scheme is solved by a nonlinear multigrid method and is second-order accurate in
space and time. We have studied the dynamics of the one-, two-, and three-dimensional CH equations with a
constant mobility and a compositional-dependent mobility. Particularly, we compared the kinetics of bulk-dif-
fusion-controlled coarsening and interface-diffusion-controlled coarsening. We found, in the case of a variable
mobility, after the early stages there is very little interaction of regions that do not intersect and the evolution
takes place locally where the local mass is preserved. The final frame yields a numerical stationary solution
consisting of many components that do not intersect. While, in the case of the constant mobility, diffusion
through bulk regions is still possible and disconnected regions influence each other in order to decrease the
total amount of interfacial area. For large times, constant mobility CH systems generically lead to situations
where each phase occupies only one connected part of the domain.
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