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We propose a new phase-field model to investigate the hydrodynamics of a water–oil-sur-
factant system. The phase-field method based on the time-dependent Ginzbug–Landau
model is developed for the water–oil-surfactant system using two order parameters. We
derive the new model in which the water–oil interfacial profile is independent of the sur-
factant concentration. The proposed model is coupled with the Navier–Stokes equation to
have hydrodynamics and it provides an accurate surface tension from the numerical point
of view. Various numerical results are presented such as the pressure difference test, cal-
culation of the Dirac-delta function, and the interfacial profile effect to demonstrate the
good performance of our model. A droplet deformation under shear flows with Marangoni
force is also numerically investigated.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Water–oil-surfactant mixtures have been widely investigated mainly due to their important applications in everyday life
[1–3]. To model these micro-scale mixtures, phase-field models have been studied [1,4] where interfacial transitions of oil–
water and surfactant are considered to be infinitely thin interfaces. The dynamics of the water–oil system with surfactants
has been investigated by using the time-dependent Ginzburg–Landau (TDGL) free energy functional [5–8] with two order
parameters [9–14]. To include the hydrodynamics of the system, the Navier–Stokes (NS) equation is coupled with the
water–oil-surfactant system [7,15–18]. The interface motion with fluid flows for immiscible mixtures which has been widely
studied [19,20] is described with TDGL–NS system. Surfactants tend to assemble at the water–oil interface and the interfacial
surface tension is typically lowered by the presence of surfactants [21]. In the mathematical formulation, the surface tension
is represented as a function of surfactants.

However, the straightforward use of the numerical solution for the water–oil-surfactant system can cause unphysical
phenomena such as higher interfacial force which leads to higher pressure jump and higher summation of the value of
the Dirac-delta function. The main purpose of this paper is to present a robust and accurate phase-field model for solving
the water–oil-surfactant system with hydrodynamics. In our model, the water–oil interfacial profile is independent of the
surfactant concentration.

The contents are organized as follows: In Section 2, the governing equations are presented with the interfacial tension. In
Section 3, a fully discrete semi-implicit finite difference scheme is described. We use a robust nonlinear multigrid method for
the phase-field equations and a projection method for the incompressible fluids. Numerical experiments are presented in
Section 4. Conclusions are drawn in Section 5.
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2. Governing equations

The dynamics of two immiscible fluids and surfactants is modeled by the TDGL free energy functional of the phase-field
with two order parameters, / and w, which describe the difference in the local densities of the water–oil system and the local
concentration of surfactants, respectively [22]. The hydrodynamics is included by using the modified Navier–Stokes
equations. The equation for interface advection is replaced by a continuum advective-diffusion equation, where diffusion
is driven by chemical potential gradients [23]. Finally, the TDGL–NS system models the hydrodynamics of the water–oil-
surfactant system.
2.1. Previous model

We consider a widely used model proposed by van der Sman and van der Graaf [14]:
Eð/;wÞ ¼
Z

X
aFð/Þ þ k

2
jr/j2 � sw

2
jr/j2 þw

2
w/2 þ k½w ln wþ ð1� wÞ lnð1� wÞ�

� �
dx; ð1Þ
where the double-well potential Fð/Þ ¼ ð/2 � 1Þ2=4 is the Helmholtz free energy (see Fig. 1). The small positive constant k is
the gradient energy coefficient related to the interfacial energy. a; s; w, and k are positive phenomenological parameters and
X is a domain. In the free energy functional Eð/;wÞ, the terms �0:5swjr/j2 and 0:5ww/2 prefer a relatively high value of w at
the water–oil interface. The term k½w ln wþ ð1� wÞ lnð1� wÞ� restricts the value of w to be in the range ð0;1Þ.

Let l/ ¼ dE=d/ and lw ¼ dE=dw be the variational derivatives of the energy functional Eq. (1) with respect to / and w.
Though the Sman–Graaf [14] includes hydrodynamics with the Lattice Boltzmann equation, let us consider the TDGL–NS sys-
tem of the Sman–Graaf model as follows:
qðut þ u � ruÞ ¼ �rpþ gDuþ SFð/;wÞ; ð2Þ
r � u ¼ 0; ð3Þ
@/
@t
þr � ð/uÞ ¼ M/Dl/; ð4Þ
@w
@t
þr � ðwuÞ ¼ MwDlw; ð5Þ
l/ ¼ að/3 � /Þ � kD/þ br � ðwr/Þ þ c/w; ð6Þ
lw ¼ �
b
2
jr/j2 þ c

2
/2 þ d½ln w� lnð1� wÞ�; ð7Þ
where q is the density, g is the viscosity, u is the velocity, p is the pressure, SFð/;wÞ is the interfacial force, M/ and Mw are the
mobilities of / and w, respectively.
Fig. 1. A double well potential, ð/2 � 1Þ2=4.
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To rewrite the dimensional TDGL–NS system (2)–(7) in dimensionless form, we consider characteristic values: length ðL�Þ,
velocity ðV�Þ, viscosity ðg�Þ, density ðq�Þ, chemical potentials ðl/�

Þ; ðlw�
Þ, and mobilities ðM/� Þ, ðMw� Þ. We introduce following

non-dimensional variables:
�x ¼ x
L�
; �u ¼ u

V�
; �t ¼ tV�

L�
; �p ¼ p

qV2
�
; �l/ ¼

l/

l/�

; �lw ¼
lw

l/�

;

where the bars denote dimensionless variables. After substituting these variables to the governing equations, dropping bar
notations, and using the dimensionless numbers, we have the nondimensionalized system:
qðut þ u � ruÞ ¼ �rpþ 1
Re

Duþ 1
ReCa

SFð/;wÞ; ð8Þ

r � u ¼ 0; ð9Þ

@/
@t
þr � ð/uÞ ¼ 1

Pe/
Dl/; ð10Þ

@w
@t
þr � ðwuÞ ¼ 1

Pew
Dlw; ð11Þ

l/ ¼ /3 � /� �2D/þ sr � ðwr/Þ þw/;w; ð12Þ

lw ¼ �
s
2
jr/j2 þw

2
/2 þ k½ln w� lnð1� wÞ�; ð13Þ
where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ðl/�

L2
� Þ

q
is the interfacial thickness for a ¼ l/�

, s ¼ b=ðl/�
L2
� Þ; w ¼ c=l/�

; k ¼ d=l/�
; Re ¼ qV�L�=g is the Rey-

nolds number which describes the ratio between the inertial force and the viscous force, the Capillary number Ca ¼ V�g=r0,
and r0 is the surface tension of the clean interface. The diffusional Peclet numbers are Pe/ ¼ L�V�=ðM/l/�

Þ and
Pew ¼ L�V�=ðMwl/�

Þ. We let q ¼ 1 and g ¼ 1.
The boundary conditions for the TDGL system are zero Neumann boundary conditions
m � r/ ¼ m � rw ¼ m � rl/ ¼ m � rlw ¼ 0 on @X; ð14Þ
where m is the outward normal vector to @X.

2.2. Proposed model

The term I ¼ sr � ðwr/Þ þw/w in Eq. (12) makes the interface of / sharpen and causes unphysical behavior of /. We
propose a new model without the term I as:
qðut þ u � ruÞ ¼ �rpþ 1
Re

Duþ 1
ReCa

SFð/;wÞ; ð15Þ

r � u ¼ 0; ð16Þ

@/
@t
þr � ð/uÞ ¼ 1

Pe/
Dl/; ð17Þ

@w
@t
þr � ðwuÞ ¼ 1

Pew
Dlw; ð18Þ

l/ ¼ /3 � /� �2D/; ð19Þ

lw ¼ �
s
2
jr/j2 þw

2
/2 þ k½ln w� lnð1� wÞ�: ð20Þ
Note that the thin interfacial thickness � has the physical value of 3:3� 10�6 ðJ=cmÞ1=2 [4] which is difficult to implement
with current computational powers. By this reason, an interfacial width for the phase-field model (including the diffuse-
interface models) is diffused by the length scale of the numerical spatial step size [19].

Interfacial force SFð/;wÞ satisfying the Laplace–Young condition is given as the summation of the interfacial surface ten-
sion and Marangoni force [8,24,25]:
SFð/;wÞ ¼ �rðwÞjdnþ dðrsrðwÞÞ ¼ �rðwÞðr � nÞa�jr/j2nþ a�jr/j2½ðI� n� nÞrrðwÞ�;
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where rðwÞ is the interfacial tension depending on the surfactant concentration, d ¼ a�jr/j2 is a smoothed Dirac-delta dis-
tribution and a ¼ 3

ffiffiffi
2
p

=4 [26], n ¼ r/=jr/j is the unit normal vector to the interface of two immiscible phases,
j ¼ r � r/=jr/jð Þ is the mean curvature, and rs ¼ ðI� n� nÞr is the surface gradient operator. Note that the smoothed
Dirac-delta distribution in interfacial force only depends on /. Therefore, even though surfactant changes interfacial force,
it does not alter the distribution of /. The nonlinear dependence of the interfacial tension rðwÞ is given through a constitutive
law as
Fig. 2.
line).
rðwÞ ¼ r0 þ RTw1 ln 1� w
w1

� �
; ð21Þ
where r0 is the surface tension of the clean interface, R is the gas constant, T is the temperature, and w1 denotes the mono-
layer saturation concentration (scaled by the initial equilibrium concentration), which is a theoretical limit [27,28]. Let
b ¼ RTw1=r0, then we have a nondimensionalized rðwÞ
rðwÞ ¼ 1þ b ln 1� w
w1

� �
; ð22Þ
where the elasticity number b is a measure of the sensitivity of interfacial tension to variations in the surfactant
concentration.

Note that Eq. (22) is a form of the Langmuir equation of state [29], in which we assume that there are no adhesive or
repulsive interactions between the surfactant molecules. The term has been widely used in studying the fluid-surfactant
dynamics [6,8,11,27,29]. In [5,14,21], the authors use the interfacial force from the Gibbs–Duhem equality where the excess
chemical potential gradients give rise to a thermodynamic force as
SFð/;wÞ ¼ �/rl/ � wrlw: ð23Þ
The main differences between the proposed model and the Sman–Graaf model are that (1) the present model omits the
interface sharpening term I; (2) the present model uses the Navier–Stokes equation, whereas the Sman–Graaf model uses
the Lattice Boltzmann equation; and (3) the present model uses the interface force from geometric feature of surface,
whereas the Sman–Graaf model uses a formulae from the thermodynamics. (see Fig. 2)

3. Numerical solution

We present the algorithm for numerical solution on a staggered grid [30]. /;w, and p are defined at the cell center. Each
velocity component u and v from velocity u ¼ ðu;vÞ is defined at vertical lines and horizontal lines (see Fig. 3).

Let us discretize Eqs. (15)–(20) in two-dimensional space X ¼ ða; bÞ � ðc; dÞ. Let Nx and Ny be the numbers of cells in x- and
y-directions, respectively. Then, h ¼ ðb� aÞ=Nx ¼ ðd� cÞ=Ny be the uniform mesh size. Let Xij ¼ fðxi; yjÞ : xi ¼ aþ ði� 0:5Þh; yj

¼ c þ ðj� 0:5Þh;1 6 i 6 Nx;1 6 j 6 Nyg be the set of cell-centers. The cell vertices are ðxiþ1
2
; yjþ1

2
Þ ¼ ðih; jhÞ. Velocity compo-

nents u and v are located at ðxiþ1
2
; yjÞ, ðxi; yjþ1

2
Þ, respectively. Let /n

ij be approximations of /ðxi; yj;nDtÞ, where Dt is the time
step. We implement the zero Neumann boundary condition (14) by requiring that
/n
0j ¼ /n

1j;/
n
Nxþ1;j ¼ /n

Nxj; /n
i0 ¼ /n

i1;/
n
i;Nyþ1 ¼ /n

iNy
; ð24Þ
for j ¼ 1; . . . ;Ny and i ¼ 1; . . . ;Nx. The discrete differentiation operators are given as
Semilogarithmic plot of Dr against 1� wmax=w1 . Results obtained by simulation (represented with circles) and linear fitting (represented with solid



Fig. 3. /; w, and p are defined at the cell center. u and v are defined at the cell edges.
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Dx/iþ1=2;j ¼
/iþ1;j � /ij

h
; Dy/i;jþ1=2 ¼

/i;jþ1 � /ij

h
;

r � /ij ¼ Dx/ij þ Dy/ij;

r/ij ¼ Dx/iþ1=2;j;Dy/i;jþ1=2

� �
;

rc/ij ¼
Dx/iþ1=2;j þ Dx/i�1=2;j

2
;
Dy/i;jþ1=2 þ Dy/i;j�1=2

2

� �
;

D/ij ¼
Dx/iþ1=2;j � Dx/i�1=2;j þ Dy/i;jþ1=2 � Dy/i;j�1=2

h
:

Then, a semi-implicit time and centered difference space discretization of Eqs. (15)–(20) is given by
unþ1 � un

Dt
¼ �rpnþ1 þ 1

Re
Dun þ 1

ReCa
SFn � ðu � ruÞn; ð25Þ

r � unþ1 ¼ 0; ð26Þ

/nþ1 � /n

Dt
¼ 1

Pe/
Dlnþ1

/ �r � ð/uÞn; ð27Þ

lnþ1
/ ¼ ð/nþ1Þ3 � /n � �2D/nþ1; ð28Þ

wnþ1 � wn

Dt
¼ 1

Pew
Dlnþ1

w �r � ðwuÞn; ð29Þ

lnþ1
w ¼ � s

2
jrc/nþ1j2 þw

2
/nþ1	 
2 þ k½ln wn � lnð1� wnÞ�: ð30Þ
The one time step is proceeded as follows.

Step 1. Solve the Navier–Stokes Eqs. (25) and (26) on the rectangular grid to get unþ1 and pnþ1 from un and SFn by employing
the projection method [31].
Let us discretize SFn. The normal vector at the top right vertex of cell ði; jÞ is given by
miþ1
2;jþ

1
2
¼ mx

iþ1
2;jþ

1
2
;my

iþ1
2;jþ

1
2

� �
¼

/iþ1;j þ /iþ1;jþ1 � /ij � /i;jþ1

2h
;

�
/i;jþ1 þ /iþ1;jþ1 � /ij � /iþ1;j

2h

�
:

The other normal vectors are defined in the same manner. Then the curvature at the cell center is
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re � m
jmj

� �
ij

¼ 1
2h

mx
iþ1

2;jþ
1
2
þmy

iþ1
2;jþ

1
2

jmiþ1
2;jþ

1
2
j þ

mx
iþ1

2;j�
1
2
�my

iþ1
2;j�

1
2

jmiþ1
2;j�

1
2
j

 
�

mx
i�1

2;jþ
1
2
�my

i�1
2;jþ

1
2

jmi�1
2;jþ

1
2
j �

mx
i�1

2;j�
1
2
þmy

i�1
2;j�

1
2

jmi�1
2;j�

1
2
j

!
:

The cell-centered normal is the average of vertex normals,
re/ij ¼ miþ1
2;jþ

1
2
þmiþ1

2;j�
1
2
þmi�1

2;jþ
1
2
þmi�1

2;j�
1
2

� �
=4:
The unit normal vector, nij ¼ ðnx
ij;n

y
ijÞ, is defined as re/ij=jre/ijj. Then the surface tension force SF is discretized as
SFð/ij;wijÞ ¼ �rðwijÞa�re � m
jmj

� �
ij
jre/ijjre/ij þ a�ðI� n� nÞijrrðwijÞjre/ijj

2

¼ �rðwijÞa�re � m
jmj

� �
ij
jre/ijjre/ij

þ a� ð1� ðnx
ijÞ

2ÞDxrðwijÞ � nx
ijðn

y
ijÞ

2DyrðwijÞ;
�

�nx
ijn

y
ijDxrðwijÞ þ ð1� ðn

y
ijÞ

2ÞDyrðwijÞ
�
jre/ijj

2
:

We decompose Eq. (25) into two steps. First, we solve an intermediate velocity field ~u without the pressure gradient term,
~u� un

Dt
¼ 1

Re
Dun þ 1

ReCa
SFn � ðu � ruÞn: ð31Þ
Second, we solve the following equations for the pressure field at ðnþ 1Þ time step.
unþ1 � ~u
Dt

¼ �rpnþ1; ð32Þ

r � unþ1 ¼ 0: ð33Þ
Taking the discrete divergence operator to Eq. (32) and using Eq. (33), we have the Poisson equation for the pressure at the
time ðnþ 1Þ, which is solved using a multigrid method.
Dpnþ1 ¼ 1
Dt
r � ~u: ð34Þ
Then the divergence-free velocities unþ1 and vnþ1 are defined by
unþ1 ¼ ~u� Dtrpnþ1: ð35Þ
Step 2. Update the composition fields /n and wn to /nþ1 and wnþ1 from Eqs. 27,28,29,30. Here r � ð/uÞn is computed in a conser-
vative form such as
r � ð/uÞnij ¼
un

iþ1
2;j
ð/n

iþ1;j þ /n
ijÞ � un

i�1
2;j
ð/n

ij þ /n
i�1;jÞ

2h
þ

vn
i;jþ1

2
ð/n

i;jþ1 þ /n
ijÞ � vn

i;j�1
2
ð/n

ij þ /n
i;j�1Þ

2h
:

We apply an unconditionally gradient stable type scheme and use a nonlinear multigrid solver [32] to solve Eqs. (27)–(30).
For a detailed description of the numerical method used in solving these equations, please refer to [33,34]. These steps com-
plete one time step.
4. Numerical experiments

To show the accuracy of the proposed model, we perform numerical experiments such as pressure jump, effect of the
term I , calculation of the Dirac-delta function, and droplet deformation. Here we define the numerical steady state when

the l2 norm between wnþ1 and wn becomes less than a tolerance, i.e., jjwnþ1 � wnjj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNx

i¼1

PNy

j¼1ðw
nþ1
ij � wn

ijÞ
2
=ðNxNyÞ

q
< 10�6. Unless otherwise specified, we use wðx; y;0Þ ¼ wavarge ¼ 0:2, k ¼ 0:02; b ¼ 0:5, and w1 ¼ 1. For the numerical exper-
iments, we focus on investigating the hydrodynamics in which surfactant concentration is relatively high. It should be noted
that if surfactant concentration is relatively small, then the value of the term I approaches to zero and our proposed model
shows similar results to the van der Sman and van der Graaf model [14]. Also note that the Engblom et al.’s model [5], in

which they replaced �swjr/j2 by �swð1� /2Þ2=ð4�2Þ to produce a sharper equilibrium profile.

4.1. Pressure difference

We calculate the pressure difference ½p� to compare the analytical prediction with the numerical solution of our proposed
model. In this numerical test, we calculate the governing equations (15)–(17), (19) with the initial condition



Table 1
Error with mesh refinement.

Mesh sizes 64 � 64 128 � 128 256� 256 512 � 512

Relative error 0.2568 0.0856 0.0269 0.0098

Fig. 4. Overlapped numerical solutions of the order parameter / and the surfactant concentration w (a) with and (b) without I at the steady state. For
comparison, we also plot the equilibrium profile of / without surfactant.

Fig. 5. Contour plots of order parameter / at four levels (a) with and (b) without I at the steady state. Note that we overlap the steady state of a clean
droplet for comparison.
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/ðx; y;0Þ ¼ tanh½ð0:4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:5Þ2 þ ðy� 0:5Þ2

q
Þ=ð

ffiffiffi
2
p
�Þ� on the unit domain ð0;1Þ � ð0;1Þ. The pressure jump across interface

for a clean droplet with a radius r ¼ 0:4 is analytically given by the Laplace law ½p�exact ¼ 1=ðrReCaÞ [35]. Parameters � ¼ 0:01,
Re ¼ 100; Ca ¼ 0:01, and Pe/ ¼ 1 are used. With finer mesh sizes up to four levels such as 64� 64; 128� 128; 256� 256,
and 512� 512, we compute the relative error, j½p�exact � ½p�numericalj=½p�exact. Table 1 shows that the numerical pressure differ-
ence approaches to the analytic value with mesh refinements.

If there is surfactant around the droplet, then the interfacial tension rðwÞ depends on surfactant concentration:
rðwÞ ¼ 1þ b ln 1� w=w1ð Þ. Fig. 2 shows the semilogarithmic plot of Dr ¼ 1� rðwmaxÞ against 1� wmax=w1, where wmax is



Fig. 6. Plots of / and w at y ¼ 16 with various surfactant concentrations: (a) / and (b) w with I ; (c) / and (d) w without I .

Fig. 7. Droplet profiles with (dashed line) and without (solid line) the term I .
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the maximum value of surfactant concentration in equilibrium condition and rðwmaxÞ ¼ rReCa½p� is calculated numerically.
Here we used several different average surfactant concentrations wavarage ¼ 0:2;0:3;0:4;0:5;0:6 and b ¼ 0:5, w1 ¼ 1. We ex-
pect the relation rðwmaxÞ � 1 � ln 1� wmax=w1ð Þ by the equation of state and Fig. 2 demonstrates that our numerical results
(represented with circles) fit well to the linear fitting (represented with solid line).



Fig. 8. Effect of Ca number: (a) contour plots of / and (b) deformation rate with Ca ¼ 0:25 (dashed line) and Ca ¼ 0:5 (solid line).

Fig. 9. Contour lines droplet with clean, surfactant with Marangoni force, and surfactant without Marangoni force (a) and its close-up view (b). The arrows
are the Marangoni stress vector field along the interface of the droplet.
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4.2. Interface sharpening effect and Dirac-delta function

With Eqs. (10)–(13), we investigate the effect of the interface sharpening term I on the interfacial profile with high sur-
factant concentration without flow. Here, the initial condition is given as /ðx; y;0Þ ¼ tanh½ð16� xÞ=ð

ffiffiffi
2
p
�Þ� on the domain

X ¼ ð0;32Þ � ð0;32Þ. The parameter values � ¼ 18h=ð2
ffiffiffi
2
p

tanh�1ð0:9ÞÞ; s ¼ 0:3�; w ¼ 0:0001; Pe/ ¼ 1, and Pew ¼ 50 are used
with a time step Dt ¼ 0:4 and a space step h ¼ 0:25. Fig. 4(a) and (b) show the order parameter / and the surfactant concen-
tration w on y ¼ 16 with and without I , respectively. To compare numerical results with and without surfactant, we overlap
the equilibrium profiles. As can be seen that the interfacial transition of the order parameter / becomes sharper when the
term I is included. However, without the term I ;/ does not change. In both cases, surfactant has relatively high concentra-
tion at the interfacial region of /.

Across the interface, a�
PNx

i¼1ðDx/iþ1=2;Ny=2Þ
2h, the summation of the smoothed Dirac-delta function, should equal to 1. With

and without I , the values are 1:1809 and 0:9955, respectively. This result suggests that we have a better smoothed Dirac-
delta function without the term I .
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Next, we consider a droplet which is placed on the center of computational domain ð0;32Þ � ð0;32Þ with a radius of 12.

The initial condition is /ðx; y;0Þ ¼ tanh 12�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 16Þ2 þ ðy� 16Þ2

q� �
=ð

ffiffiffi
2
p
�Þ

� �
. Here we use Pe/ ¼ 10; Pew ¼ 50,

� ¼ 18h=½2
ffiffiffi
2
p

tanh�1ð0:9Þ�; s ¼ 0:3�, h ¼ 0:25, and Dt ¼ 0:4. Overlapped contour plots of the order parameter / at four levels
from �1 to 1 (a) with and (b) without I at the steady state are shown in Fig. 5. Here we overlap the interface of clean droplet
for comparison. With the term I , (a), interface / is shrinked than the clean droplet. However, without the term, (b), we ob-
serve the interface of / is exactly the same as the clean droplet. Then we consider various surfactant concentrations such as
waverage ¼ 0:2(represented with circles), 0:1(represented with triangles), and 0:05(represented with stars) for a droplet in
Fig. 5. Fig. 6(a) and (b) show / and w with I at y ¼ 16 plane, respectively. In (a), we overlap steady state of the clean droplet
(represented with solid line) for comparison. The interface sharpening phenomenon diminishes when the value of the bulk
concentration of surfactant is small. Fig. 6(c) and (d) show / and w without I at y ¼ 16 plane, respectively. In (c), steady state
of the clean droplet (represented with solid line) is completely overlapped to the steady states with surfactant. We deduce
that the profile of / is independent of the amount of surfactant concentration.
4.3. Deformation of a droplet under shear flow

We investigate the effect of the term I on the deformation of a droplet under a simple shear flow. We consider a drop of

radius r ¼ 0:2 on X ¼ ð0;1Þ � ð0;1Þ, i.e., /ðx; y;0Þ ¼ tanh½ð0:2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:5Þ2 þ ðy� 0:5Þ2

q
Þ=ð

ffiffiffi
2
p
�ÞÞ�. The TDGL–NS system is

solved with a spatial mesh size 128� 128 and a temporal step Dt ¼ 2h2 up to time T ¼ 2:44. We impose a shear flow with
the top and bottom lid moving in opposite directions. In this simulation we take the parameters:
Re ¼ 10; Ca ¼ 0:3; � ¼ 0:015; s ¼ 0:00002; Pe/ ¼ 100; Pew ¼ 100, and w ¼ 0:00002. Fig. 7 shows the contour lines of the
droplet / with (dashed line) and without (solid line) the term I . In the case of without the term I , the droplet ends are more
elongated than that of with the term. This is due to the higher surface tension effect from the sharp interface profile with I .

Then we investigate the effect of Capillary number on the deformation of the droplet. Let the Taylor deformation param-
eter be D ¼ ðL� BÞ=ðLþ BÞ, where L and B are the maximum and the minimum distances of the drop interface from its center,
respectively. Fig. 8(a) and (b) show the droplet shapes and the Taylor deformation parameter D with Ca ¼ 0:25 (dashed line)
and Ca ¼ 0:5 (solid line) at T ¼ 1:5, respectively. The parameters Re ¼ 10; Pe/ ¼ 0:1; Pew ¼ 2; � ¼ 0:015, s ¼ 0:00001, and
w ¼ 0:00001 are used. This result illustrates that the bigger value of Ca makes more elongated droplet.
4.4. Effect of Marangoni stress term on a droplet under a shear flow

Finally, we study the effect of the Marangoni force on the droplet deformation under a shear flow. The parameters are the
same as Section 4.3. Fig. 9 shows the contour lines droplet with clean, surfactant with Marangoni force, and surfactant with-
out Marangoni force (a) and its close-up view (b). Here we overlap the Marangoni stress vector field along the interface of the
droplet. From the results, we deduce that surfactants lower the interfacial tension and promote drop deformation. Mean-
while, the Marangoni stress retards the convective flux and opposes the interfacial velocity.

5. Conclusions

We have proposed a new phase-field model to investigate the hydrodynamics of a water–oil-surfactant system. The new
model has a good numerical property that the water–oil profile is independent of the surfactant concentrations. With our
model, an accurate interfacial tension was provided, which resulted in an appropriate calculation of the surface force. We
used a nonlinear multigrid method for the phase-fields and a projection method for the incompressible Navier–Stokes equa-
tions. To show the accuracy of our proposed model, the pressure jump was calculated. We compared numerical results of
previous and proposed models for pressure difference, calculation of the Dirac-delta function and the interfacial profiles
for the equilibrium states. Numerical experiments for a droplet under shear flows with Marangoni force were included. Over-
all, our proposed model showed good performance compared to the previous approaches.
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