Homogeneous Equations, Initial Value

$$ay'' + by' + cy = 0$$

Initial conditions are :

$$y(t_0) = y_0, \ y'(t_0) = y_0'$$

• Solution passes through (t_0, y_0) , and slope of solution at (t_0, y_0) is y_0 .

Characteristic Equation

- To solve the 2nd order equation with constant coefficients, ay'' + by' + cy = 0,
 - (1) Assume a solution of the form $y = e^{rt}$.

Substituting into the differential equation, we obtain $ar^2e^{rt} + bre^{rt} + ce^{rt} = 0$

Since $e^{rt} \neq 0$, we have $ar^2 + br + c = 0$.

- (2) We have the **characteristic equation** of the differential equation: $ar^2 + br + c = 0$.
- (3) Solve *r* by factoring or using quadratic formula.

General Solution

$$ar^2 + br + c = 0,$$

we obtain two solutions, r_1 and r_2 .

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

- Then:
 - The roots r_1 , r_2 are real & $r_1 \neq r_2$.
 - The roots r_1 , r_2 are real & $r_1 = r_2$.
 - The roots r_1 , r_2 are complex.
- We assume r_1 , r_2 are real, and $r_1 \neq r_2$.
- The **general solution** has the form

$$y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}.$$

Initial Conditions

ay'' + by' + cy = 0, $y(t_0) = y_0$, $y'(t_0) = y_0'$, We find c_1 and c_2 using the general form & initial:

$$y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t},$$

$$\begin{vmatrix} c_1 e^{r_1 t_0} + c_2 e^{r_2 t_0} = y_0 \\ c_1 r_1 e^{r_1 t_0} + c_2 r_2 e^{r_2 t_0} = y_0' \end{vmatrix} \Rightarrow c_1 = \frac{y_0' - y_0 r_2}{r_1 - r_2} e^{-r_1 t_0}, c_2 = \frac{y_0 r_1 - y_0'}{r_1 - r_2} e^{-r_2 t_0}$$

• As $r_1 \neq r_2$, a solution with form $y = e^{rt}$ exists, for any initial conditions.

Example

Consider the initial value problem

$$3y'' - y' - 2y = 0$$
, $y(0) = 1$, $y'(0) = 0$

- (1) Assume exponential: $y(t) = e^{rt}$
- (2) We have characteristic equation

$$3r^2 - r - 2 = 0 \iff (3r + 2)(r - 1) = 0$$

(3) two solutions, $r_1 = -2/3$ and $r_2 = 1$.

Thus
$$y(t) = c_1 e^{-\frac{2}{3}t} + c_2 e^t$$

(4) Use the initial condition:

$$\begin{vmatrix} c_1 + c_2 = 1 \\ -\frac{2}{3}c_1 + c_2 = 0 \end{vmatrix} \Rightarrow c_1 = \frac{3}{5}, c_2 = \frac{2}{5}$$

• Thus

$$y(t) = \frac{3}{5}e^{-\frac{2}{3}t} + \frac{2}{5}e^{t}.$$

