# Bessel's Equation of order zero



The Bessel Equation of order zero is

$$x^2y'' + xy' + x^2y = 0$$

We assume solutions have the form

$$y(x) = \phi(r, x) = \sum_{n=0}^{\infty} a_n x^{r+n}$$
, for  $a_0 \neq 0$ ,  $x > 0$ 

· Taking derivatives,

$$y(x) = \sum_{n=0}^{\infty} a_n x^{r+n}, \ y'(x) = \sum_{n=0}^{\infty} a_n (r+n) x^{r+n-1},$$

$$y''(x) = \sum_{n=0}^{\infty} a_n (r+n)(r+n-1)x^{r+n-2}$$

• Substituting these into the differential equation, we obtain

$$\sum_{n=0}^{\infty} a_n (r+n)(r+n-1)x^{r+n} + \sum_{n=0}^{\infty} a_n (r+n)x^{r+n} + \sum_{n=0}^{\infty} a_n x^{r+n+2} = 0$$

• From the previous slide,

$$\sum_{n=0}^{\infty} a_n (r+n)(r+n-1)x^{r+n} + \sum_{n=0}^{\infty} a_n (r+n)x^{r+n} + \sum_{n=0}^{\infty} a_n x^{r+n+2} = 0$$

· Rewriting,

$$a_0[r(r-1)+r]x^r + a_1[(r+1)r + (r+1)]x^{r+1}$$

$$+ \sum_{n=2}^{\infty} \{a_n[(r+n)(r+n-1) + (r+n)] + a_{n-2}\}x^{r+n} = 0$$

or

$$a_0 r^2 x^r + a_1 (r+1)^2 x^{r+1} + \sum_{n=2}^{\infty} \left\{ a_n (r+n)^2 + a_{n-2} \right\} x^{r+n} = 0$$

• The indicial equation is  $r^2 = 0$ , and hence  $r_1 = r_2 = 0$ .

## **Recurrence Relation**



· From the previous slide,

$$a_0 r^2 x^r + a_1 (r+1)^2 x^{r+1} + \sum_{n=2}^{\infty} \left\{ a_n (r+n)^2 + a_{n-2} \right\} x^{r+n} = 0$$

• Note that  $a_1 = 0$ ; the recurrence relation is

$$a_n = -\frac{a_{n-2}}{(r+n)^2}, n = 2,3,...$$

• We conclude  $a_1 = a_3 = a_5 = \dots = 0$ , and since r = 0,

$$a_{2m} = -\frac{a_{2m-2}}{(2m)^2}, m = 1, 2, \dots$$

• Note: Recall dependence of  $a_n$  on r, which is indicated by  $a_n(r)$ . Thus we may write  $a_{2m}(0)$  here instead of  $a_{2m}$ .

## **First Solution**



· From the previous slide,

$$a_{2m} = -\frac{a_{2m-2}}{(2m)^2}, m = 1, 2, \dots$$

Thus

$$a_2 = -\frac{a_0}{2^2}$$
,  $a_4 = -\frac{a_2}{4^2} = \frac{a_0}{4^2 2^2} = \frac{a_0}{2^4 (2 \cdot 1)^2}$ ,  $a_6 = -\frac{a_0}{2^6 (3 \cdot 2 \cdot 1)^2}$ ,...

and in general,

$$a_{2m} = \frac{(-1)^m a_0}{2^{2m} (m!)^2}, m = 1, 2, \dots$$

Thus

$$y_1(x) = a_0 \left[ 1 + \sum_{m=1}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m} (m!)^2} \right], \quad x > 0$$



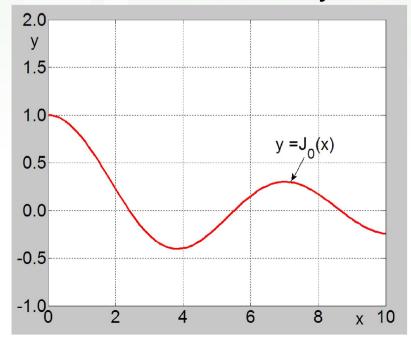
Our <u>first solution of Bessel's Equation of order zero</u> is

$$y_1(x) = a_0 \left[ 1 + \sum_{m=1}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m} (m!)^2} \right], \quad x > 0$$

 The series converges for all x, and is called the Bessel function of the first kind of order zero, denoted by

$$J_0(x) = \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m} (m!)^2}, \quad x > 0$$

• The graphs of  $J_0$  and several partial sum approximations are given here.



### **Second Solution**



 Since indicial equation has repeated roots, recall from Section 5.7 that the coefficients in second solution can be found using

$$a_n'(r)\Big|_{r=0}$$

Now

$$a_0(r)r^2x^r + a_1(r)(r+1)^2x^{r+1} + \sum_{n=2}^{\infty} \left\{ a_n(r)(r+n)^2 + a_{n-2}(r) \right\} x^{r+n} = 0$$

Thus

$$a_1(r) = 0 \implies a_1'(0) = 0$$

Also,

$$a_n(r) = -\frac{a_{n-2}(r)}{(r+n)^2}, \quad n = 2, 3, \dots$$

and hence

$$a'_{2m+1}(0) = 0, m = 1, 2, \dots$$

 Thus we need only compute derivatives of the even coefficients, given by

$$a_{2m}(r) = -\frac{a_{2m-2}(r)}{(r+2m)^2} \implies a_{2m}(r) = \frac{(-1)^m a_0}{(r+2)^2 \cdots (r+2m)^2}, \ m \ge 1$$

It can be shown that

$$\frac{a'_{2m}(r)}{a_{2m}(r)} = -2\left[\frac{1}{r+2} + \frac{1}{r+4} + \dots + \frac{1}{r+2m}\right]$$

and hence

$$a'_{2m}(0) = -2\left[\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2m}\right]a_{2m}(0)$$



• Thus

$$a'_{2m}(0) = -H_m \frac{(-1)^m a_0}{2^{2m} (m!)^2}, m = 1, 2, ...$$

where

$$H_m = \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2m}$$

• Taking  $a_0 = 1$  and using results of Section 5.7,

$$y_2(x) = J_0(x) \ln x + \sum_{m=1}^{\infty} \frac{(-1)^{m+1} H_m}{2^{2m} (m!)^2} x^{2m}, \quad x > 0$$



• Instead of using  $y_2$ , the second solution is often taken to be a linear combination  $Y_0$  of  $J_0$  and  $y_2$ , known as the **Bessel function of second kind of order zero**. Here, we take

$$Y_0(x) = \frac{2}{\pi} [y_2(x) + (\gamma - \ln 2)J_0(x)]$$

• The constant  $\gamma$  is the Euler-Mascheroni constant, defined by

$$\gamma = \lim_{n \to \infty} (H_n - \ln n) \cong 0.5772$$

• Substituting the expression for  $y_2$  from previous slide into equation for  $Y_0$  above, we obtain

$$Y_0(x) = \frac{2}{\pi} \left[ \left( \gamma + \ln \frac{x}{2} \right) J_0(x) + \sum_{m=1}^{\infty} \frac{(-1)^{m+1} H_m}{2^{2m} (m!)^2} x^{2m} \right], \quad x > 0$$

#### **General Solution of Bessel's Equation**



• The general solution of Bessel's equation of order zero, x > 0, is given by

$$y(x) = c_1 J_0(x) + c_2 Y_0(x)$$

where

$$J_0(x) = \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m} (m!)^2},$$

$$Y_0(x) = \frac{2}{\pi} \left[ \left( \gamma + \ln \frac{x}{2} \right) J_0(x) + \sum_{m=1}^{\infty} \frac{(-1)^{m+1} H_m}{2^{2m} (m!)^2} x^{2m} \right]$$

• Note that  $J_0 \to 0$  as  $x \to 0$  while  $Y_0$  has a logarithmic singularity at x = 0. If a solution which is bounded at the origin is desired, then  $Y_0$  must be discarded.

### Graphs of Bessel's Equation, Order Zero



- The graphs of  $J_0$  and  $Y_0$  are given below.
- Note that the behavior of  $J_0$  and  $Y_0$  appear to be similar to  $\sin x$  and  $\cos x$  for large x, except that oscillations of  $J_0$  and  $Y_0$  decay to zero.

