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Abstract. A computationally efficient numerical scheme is presented
for the phase-field model of two-phase systems for anisotropic interfacial
energy. The scheme is solved by using a nonlinear multigrid method.
When the coefficient for the anisotropic interfacial energy is sufficiently
high, the interface of the system shows corners or missing crystallographic
orientations. Numerical simulations with high and low anisotropic coeffi-
cients show excellent agreement with exact equilibrium shapes. We also
present spinodal decomposition, which shows the robustness of the pro-
posed scheme.

1. Introduction

In this paper, an efficient and accurate numerical scheme and its nonlinear
multigrid solver are presented for solving the phase-field model with anisotropy
interfacial energy. Phase-field models provide a useful numerical approach to
study a wide variety of phase transformation processes [14, 15] because explicit
tracking of the interface is not needed.

The fundamental idea of a phase-field model is to include an additional vari-
able, or order parameter c, that denotes the phases in a multiphase system.
The order parameter is constant in each bulk phase, e.g. c = −1 in the ma-
trix phase and c = 1 in the particle phase. The interface between phases is
represented by a smooth transition region where c varies from −1 to 1. The
interfacial energy is accounted for by the addition of gradient energy terms that
are nonzero in this transition region [3].

Strongly anisotropic surface energy is common in many semiconductor sys-
tems. In this case, the equilibrium shape of a crystal of the film material will
have corners and edges where certain high energy orientations have been ex-
cluded. It is shown that the surface energy anisotropy, which may be modified
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by the change in material composition and temperature, plays an important
role in the island shape transition, self-organization, and stability of epitaxial
islands [17]. There is an excellent work about the anisotropy with regulariza-
tion [3], but it is restricted to two-dimensional computation only. Also, it is
not an easy task to extend it to three-dimensional calculation with straightfor-
ward manner. But most physical problems which interest us require a three-
dimensional calculation. Our goal in this paper is to present an efficient and
accurate three-dimensional numerical scheme and solver.

The paper is organized as follows. In Section 2 we provide a brief description
of the phase-field model for the system with anisotropy interface energy. Section
3 describes the numerical scheme and its nonlinear multigrid solver. Section 4
shows numerical results. Finally, conclusions are drawn in Section 5.

2. Phase-field model

We briefly review the phase field model for anisotropic interface energy.
Phase-field models are natural extensions of the diffuse-interface models of
Cahn and Hilliard [2]. The phase-field equations are developed from the free-
energy functional,

F =
∫

Ω

(
F (c) +

ε2

2
|∇c|2

)
dΩ,(1)

where Ω is the region occupied by the system. A free-energy density function,
F (c) = 0.25(1 − c2)2, is a double-well that has two minima at c = −1 and
c = 1. Requiring the free-energy functional to decrease monotonically in time
for a conserved order parameter results in the Cahn-Hilliard evolution equation

∂c

∂t
= M∆µ,(2)

µ = f(c)−∇ · [ε(n)2∇c]− ∂x[|∇c|2ε(n)∂cxε(n)]
−∂y[|∇c|2ε(n)∂cyε(n)]− ∂z[|∇c|2ε(n)∂czε(n)],(3)

where M is the mobility. For simplicity, we consider a constant one (M ≡
1). f(c) = ∂cF and ∂φ are partial derivatives with respect to the variable φ.
Anisotropy is included in this model by writing ε as a function of the local unit
normal vector n = ∇c/|∇c| in the interfacial region. Thus,

ε(n) = ε0(1− 3ε4)

[
1 +

4ε4
1− 3ε4

c4
x + c4

y + c4
z

|∇c|4
]

.

The constant parameters ε0 and ε4 are related to the strength and the mag-
nitude of the anisotropy in the interface energy, respectively. The subscripts
denote partial differentiation with respect to x, y, and z.
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3. Numerical method for the phase field model

We employ a finite difference scheme to solve the phase field Eqs. (2) and (3).
Semi-implicit time and centered difference space discretizations are used. The
resulting discrete equations are solved using an efficient and accurate nonlinear
multigrid method. For simplicity of presentation, we introduce two-dimensional
numerical solution and three-dimensional one is a straightforward extension.

3.1. Discretization of the governing equations

In this section, we present fully discrete schemes for the equation. Let Nx

and Ny be positive even integers, h be the uniform mesh size, and Ωh =
{(xi, yj) : xi = (i − 0.5)h, yj = (j − 0.5)h, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny} be
the set of cell-centers. Let cn

ij denote the discretized phase field approximation
of c(xi, yj , t

n). Let us rewrite the Eq. (3) as

µ = ν + c3 − 3c + s,(4)

where ν = 2c− ε20∆c and

s = −∇ · [(ε(n)2 − ε20)∇c]− ∂x[|∇c|2ε(n)∂cxε(n)](5)
−∂y[|∇c|2ε(n)∂cyε(n)].

We lag s in the Eq. (4) and discretize the Eqs. (2) and (4) by using a semi-
implicit scheme in time and a centered difference one in space. Thus, we write
the discrete equations as follows:

cn+1
ij − cn

ij

∆t
= ∆dν

n+1
ij + ∆d[(cn

ij)
3 − 3cn

ij + sn
ij ],(6)

νn+1
ij = 2cn+1

ij − ε20∆dc
n+1
ij ,(7)

where ∆d denotes the standard five point difference approximation of ∆. That
is, ∆dcij = (ci−1,j + ci+1,j − 4cij + ci,j−1 + ci,j+1)/h2. The first term in s,
∇ · [(ε(n)2 − ε20)∇c], is discretized as follows.

(∇ · [(ε(n)2 − ε20)∇c])ij

= [(ε(n)2 − ε20)i+ 1
2 ,j(ci+1,j − cij)

−(ε(n)2 − ε20)i− 1
2 ,j(cij − ci−1,j) + (ε(n)2 − ε20)i,j+ 1

2
(ci,j+1 − cij)

−(ε(n)2 − ε20)i,j− 1
2
(cij − ci,j−1)]/h2.

For the second term, ∂x[|∇c|2ε(n)∂cxε(n)], first analytically calculate the
term inside bracket and then apply a central difference approximation. The
third one is treated with similar manners. One of the important features of
this scheme is that we can take a large time step by the convexity splitting
type temporal discretization [4, 9]. Another feature is that we incorporate fast
solvers, nonlinear multigrid methods for the Cahn-Hilliard equations [7], into
the resulting scheme.
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3.2. Stability of the proposed scheme

In this section, we will discuss the stability of the scheme, Eqs. (6) and (7).
Several other schemes for phase-field models (Eqs. (2) and (3)) with anisotropic
interfacial energy have been developed by many authors. For example, in
[3], a regularization in the numerical scheme was employed to enforce local
equilibrium at the corners. In [12], an explicit scheme was used and the time
step, ∆t, is proportional to h4. This time step restriction becomes very severe
when the space step, h, is small. In the isotropic case (ε is constant in the
free-energy functional, Eq.(1)), we have sn

ij ≡ 0 in the Eq. (6) and recover an
unconditionally gradient stable scheme as in [4]. For the anisotropic case, since
we subtract the dominant part, ∇·(ε20∇c), in Eq. (5), s is a source with a small
deviation. Therefore, we inherit a good stability property from the isotropic
case and this property is validated by numerical experiments.

3.3. A nonlinear multigrid method

In this section, we develop a nonlinear Full Approximation Storage (FAS)
multigrid method to solve the nonlinear discrete system (6) and (7) at the
implicit time level. See the reference text [13] and the paper [8] for additional
details and background. The algorithm of the nonlinear multigrid method for
solving the discretized system is given as follows: First, let us rewrite Eqs. (6)
and (7) in the form of

N(cn+1, νn+1) = (φn, ψn),

where N(cn+1, νn+1) =

(
cn+1
ij

∆t
−∆dν

n+1
ij , νn+1

ij − 2cn+1
ij + ε20∆dc

n+1
ij

)
,

(φn, ψn) =
(

cn
ij

∆t
+ ∆d[(cn

ij)
3 − 3cn

ij + sn
ij ], 0

)
.

Given the number β of pre- and post-smoothing relaxation sweeps, an it-
eration step for the nonlinear multigrid method using the V-cycle is formally
written as follows [13]:
FAS multigrid cycle

{cm+1
k , νm+1

k } = FAScycle(k, cm
k , νm

k , Nk, φn
k , ψn

k , β).

Now, define the FAScycle.
step 1) Presmoothing

{c̄m
k , ν̄m

k } = SMOOTHβ(cm
k , νm

k , Nk, φn
k , ψn

k ),

which means performing β smoothing steps with the initial approximations
cm
k , νm

k , source terms φn
k , ψn

k , and SMOOTH relaxation operator to get the
approximations c̄m

k , ν̄m
k . One SMOOTH relaxation operator step consists of

solving the system (8) and (9) given below by 2 × 2 matrix inversion for each
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i and j. Rewriting Eqs. (6) and (7), we get

cn+1
ij

∆t
+

4νn+1
ij

h2
= φn

ij +
νn+1

i+1,j + νn+1
i−1,j + νn+1

i,j+1 + νn+1
i,j−1

h2
,

h2 + 2ε20
(h2/2)

cn+1
ij − νn+1

ij = −ψn
ij +

cn+1
i+1,j + cn+1

i−1,j + cn+1
i,j+1 + cn+1

i,j−1

(h2/ε20)
.

Now, we replace cn+1
kl and νn+1

kl with c̄m
kl and ν̄m

kl if k ≤ i and l ≤ j, otherwise
with cm

kl and νm
kl , i.e.,

c̄m
ij

∆t
+

4ν̄m
ij

h2
= φn

ij +
νm

i+1,j + ν̄m
i−1,j + νm

i,j+1 + ν̄m
i,j−1

h2
,(8)

h2 + 2ε20
(h2/2)

c̄m
ij − ν̄m

ij = −ψn
ij +

cm
i+1,j + c̄m

i−1,j + cm
i,j+1 + c̄m

i,j−1

(h2/ε20)
.(9)

step 2) Compute the defect (d̄m
1 k, d̄m

2 k) = (φn
k , ψn

k )−Nk(c̄m
k , ν̄m

k ).
step 3) Restrict the defect and {c̄m

k , ν̄m
k }

(d̄1
m
k−1, d̄2

m
k−1) = Ik−1

k (d̄1
m
k , d̄2

m
k ), (c̄m

k−1, ν̄
m
k−1) = Ik−1

k (c̄m
k , ν̄m

k ).

step 4) Compute the right-hand side

(φn
k−1, ψ

n
k−1) = (d̄m

1 k−1, d̄
m
2 k−1) + Nk−1(c̄m

k−1, ν̄
m
k−1).

step 5) Compute an approximate solution {ĉm
k−1, ν̂m

k−1} of the coarse grid
equation on Ωk−1, i.e.,

Nk−1(cm
k−1, ν

m
k−1) = (φn

k−1, ψ
n
k−1).(10)

If k = 1, we explicitly invert a 2× 2 matrix to obtain the solution. If k > 1, we
solve (10) by performing a FAS k-grid cycle using {c̄m

k−1, ν̄m
k−1} as an initial

approximation:

{ĉm
k−1, ν̂

m
k−1} = FAScycle(k − 1, c̄m

k−1, ν̄
m
k−1, Nk−1, φ

n
k−1, ψ

n
k−1, β).

step 6) Compute the coarse grid correction (CGC).

v̂m
1k−1 = ĉm

k−1 − c̄m
k−1, v̂m

2k−1 = ν̂m
k−1 − ν̄m

k−1.

step 7) Interpolate the correction: v̂m
1k = Ik

k−1v̂
m
1k−1, v̂m

2k = Ik
k−1v̂

m
2k−1.

step 8) Compute the corrected approximation on Ωk

cm, after CGC
k = c̄m

k + v̂1
m
k , νm, after CGC

k = ν̄m
k + v̂2

m
k .

step 9) Do postsmoothing

{cm+1
k , νm+1

k } = SMOOTHβ(cm, after CGC
k , νm, after CGC

k , Nk, φn
k , ψn

k ).

This completes the description of a nonlinear FAScycle.
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4. Numerical simulations

In this section, we first present two- and three-dimensional calculations to
verify quantitatively the proposed numerical solution for the phase field model
for the anisotropic particle-matrix interfacial energy. We will assume periodic
boundary conditions.

4.1. Two-dimensional simulations

The first example is equilibrium shapes of particles in a matrix with two
different anisotropic coefficients. This test problem is based on the similar one
in Eggleston, McFadden, and Voorhees [3]. The second one is the evolution of
a random distribution of concentration.

4.1.1. Comparison between analytical and phase-field numerical results for
equilibrium shapes of particles in a matrix. Equilibrium shapes are achieved
when the chemical potential is constant throughout the system and can be
found in parametric form [1]:

x = A(ε cos θ − εθ sin θ), y = A(ε sin θ + εθ cos θ),(11)

where A is a constant, tan(θ) = cy/cx, and ε = ε0(1 + ε4 cos(4θ)), which is
valid for a crystal with four fold symmetry. Missing orientations occur when
the reciprocal ε - plot first becomes concave [5]. The curvature of a polar plot
r = f(θ) is

k = (r2 + 2r2
θ − rrθθ)/(r2 + r2

θ)
3
2 .(12)

For r = f(θ) = 1/ε, Eq. (12) becomes

k = (ε + εθθ)/[1 + (εθ/ε)2]
3
2 .(13)

Since the denominator in Eq. (13) is positive, convexity is lost whenever

ε + εθθ = ε0(1− 15ε4 cos(4θ)) < 0.

Thus, missing orientations occur for ε4 > 1
15 . The shapes obtained from Eq.

(11) include metastable and unstable orientations on the “ears” that do not
belong to the equilibrium crystal. Mullins [10] proved that in two dimensions
the equilibrium shape is given by the convex shape remaining after removal of
these “ears”. We test the numerical stability by employing an initial particle
that has all orientations, a circle, with ε4 = 0.05 and ε4 = 0.2. The evolution
shapes were computed using the circular shape as the initial condition, i.e.,

c(x, y) = tanh

(
0.25−

√
(x− 0.5)2 + (y − 0.5)2√

2ε0

)
,

where ε0 = 0.0113. We take the spatial domain to be Ω = [0, 1] × [0, 1], the
mesh size to be 128 × 128, and time step to be ∆t = 100h. This time step is
vary large compared to other methods. For example, a very small time step,
∆t = 10−9, was necessary to adequately resolve the motion [11].
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(a) (b) (c)

Figure 1. (a) Surface contours during computation of an
equilibrium shape for ε4 = 0.2. The arrows denote the di-
rection of motion of the interface. Comparison of numerical
solid line and exact dotted line for the various values of ε4: (b)
ε4 = 0.05 and (c) ε4 = 0.2.

The evolution with ε4 = 0.2 is shown in Fig. 1(a) by contours of c = 0
at various times. The arrows denote the direction of motion of the interface.
Even though the initial condition contains missing orientations, the calculations
get rid of missing orientations quickly and evolve to the equilibrium state,
validating the stability of the method.

Let us consider the influence of the strength of the anisotropic coefficient, ε4.
Fig. 1(b) and (c) show this agreement in both the numerical (solid line) and
the exact (dotted line) equilibrium shapes for ε4 = 0.05 and 0.2, respectively.
In the case of ε4 = 0.05, both numerical and exact results are almost identical
and one overlaps the other. In the case of ε4 = 0.2, the situation is same except
the ears that do not belong to the equilibrium shape.

4.1.2. Evolution of a random distribution. To illustrate the robustness of the
proposed method, we examine the evolution of a random distribution of con-
centration. We take the same parameters in the previous calculation except
the initial condition and a smaller time step for the time accurate calculation.
The initial state is c(x, y) = −0.3 + rand(x, y), where rand(x, y) is a random
number between −0.01 and 0.01.

The phase-field model easily handles complicated interfacial geometries with-
out difficulties. In Fig. 2, the evolution of interface from random initial con-
figuration with ε4 = 0.05 (top) and ε4 = 0.2 (bottom) is shown. The result
demonstrates that the method can simulate numerically cases of multiple parti-
cles surrounded by a matrix phase. It also handles naturally topological change
such as interface merging as shown in top figures. At early stages, islands self
organize into a relative uniform and regular array, and then ripening occurs.
At later stages, the particles resemble equilibrium shapes. We next consider
three-dimensional calculations.
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Figure 2. Evolution of interface from random with ε4 =
0.05 (top) and ε4 = 0.2 (bottom). The times are t=0.15, 0.45,
and 5.90.

4.2. Three-dimensional simulations

In addition to the two-dimensional calculations previously described, a series
of three-dimensional calculations are performed in order to further evaluate the
present numerical solution for the phase field model.

4.2.1. Equilibrium shapes of particles in a matrix. Hoffman and Cahn [6] de-
veloped the ξ-vector to describe surface energy anisotropy in a first-order phase
transition represented by a sharp interface. In the three-dimensional space, by
employing spherical coordinates, the equilibrium shape can be described by the
ξ-vector and is given by

ξ = ε(n)n̂ + εθ(n)θ̂ +
εϕ(n)
sin θ

ϕ̂,

where n̂ = (sin θ cos ϕ, sin θ sinϕ, cos θ), θ̂ = (cos θ cosϕ, cos θ sin ϕ, − sin θ),
and ϕ̂ = (− sin θ sin ϕ, sin θ cosϕ, 0) are unit vectors of the spherical coordinate
system. Fig. 3 shows ξ-plots for

ε(n) = ε0(1− 3ε4)

[
1 +

4ε4
1− 3ε4

c4
x + c4

y + c4
z

|∇c|4
]

= ε0(1− 3ε4)
[
1 +

4ε4
1− 3ε4

(
sin4 θ(cos4 ϕ + sin4 ϕ) + cos4 θ

)]

with (a) ε4 = 0.05 and (b) ε4 = 0.2. See the Appendix for the Mathematica
software code for the graph generation. For ε4 = 0.05, all orientations appear
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on the equilibrium shape. For ε4 = 0.2, the ξ plot has ears and flaps that must
be truncated to give the equilibrium shape, which resembles an octahedron
with curved faces. For more details about ξ-vector for equilibrium shape, the
reader is referred to [16].

(a) (b)

Figure 3. ξ-plots for ε(n) = ε0(1 − 3ε4)[1 + 4ε4(c4
x + c4

y +
c4
z)/((1− 3ε4)|∇c|4)] with (a) ε4 = 0.05 and (b) ε4 = 0.2.

We test the numerical stability by employing an initial particle that has all
orientations, a circle, with ε4 = 0.05 and ε4 = 0.2. The evolution shapes were
computed using the sphere shape as the initial condition, i.e.,

c(x, y, z) = tanh

(
0.25−

√
(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2√

2ε0

)
,

where ε0 = 0.02. The mesh size is 128 × 128 × 128, domain size is Ω =
[0, 1] × [0, 1] × [0, 1], and time step is ∆t = 100h. Even though the initial
condition is unlikely to occur in nature because it contains missing orientations,
the calculation illustrates that the method is stable. Fig. 4 shows the evolution
of interface from a sphere with radius, 0.25. The top and the bottom rows are
with ε4 = 0.05 and ε4 = 0.2, respectively. We found the equilibrium shapes are
in good agreements with the exact ones.

4.2.2. Evolution of a random distribution. Fig. 5 shows evolution of interface
from a random initial condition with average concentration c = −0.3, ε0 =
0.0113, and ε4 = 0.2. From Figs. 5(a)-5(c), it is clear that there is a rapid
initial transient evolution of the phase field to c = −1 or 1. Subsequently,
coarsening behavior of the particle phase continues until t = 1.56, which is the
final time displayed. Note that the last Fig. 5(c) does not mean the equilibrium
state of the process. This result shows the robustness of the proposed numerical
solution.
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t = 0.0 t = 78.125 t = 1562.5

t=0.0 t = 15.625 t = 1562.5

Figure 4. Evolution of interface from a sphere with radius,
0.25. The top and the bottom rows are with ε4 = 0.05 and
ε4 = 0.2, respectively.

(a) t = 0.0 (b) t = 0.16 (c) t = 1.56

Figure 5. Evolution of interface from a random initial con-
dition with average concentration c = −0.3, ε0 = 0.0113, and
ε4 = 0.2.

5. Conclusion

An efficient and accurate numerical scheme and its nonlinear multigrid solver
for the phase-field model for systems with anisotropic interfacial energy have
been developed. The computed equilibrium particle shapes, both with and
without sharp corners, are in excellent agreement with the exact results. The
most important feature of the proposed scheme is that the method employs an
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unconditionally stable scheme that allows a large time step. The large time
step is very important in studying three-dimensional simulations.

Acknowledgment. This work was supported by the Korea Research Founda-
tion Grant funded by the Korean Government(MOEHRD)(KRF-2006-C00225).

Appendix A. Mathematica Code for Fig. 3(b)

<< Graphics‘ParametricPlot3D‘
e0 = 0.0113; e4 = 0.2;
e[t_,p_]:=e0(1 - 3e4)(1 + (4e4/(1 - 3e4))

(Sin[t]^4(Cos[p]^4+Sin[p]^4)+Cos[t]^4);
x=e[t,p]Sin[t]Cos[p]+D[e[t,p],t]Cos[p]Cos[t]-

Sin[p]D[e[t,p],p]/Sin[t];
y=e[t,p]Sin[t]Sin[p]+D[e[t,p],t]Sin[p]Cos[t]+

Cos[p]D[e[t,p],p]/Sin[t];
z=e[t,p]Cos[t]-D[e[t,p],t]Sin[t];
ParametricPlot3D[{x,y,z},{t,0,2Pi},{p,0,Pi},
PlotPoints->40,Axes -> False];
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