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Abstract For an animal cell, cytokinesis is the process by which a cell divides its
cytoplasm to produce two daughter cells. We propose a new mathematical model for
simulating cytokinesis. The proposed model is robust and realistic in deciding the
position of the cleavage furrow and in defining the contractile force leading to cell
division. We use an immersed boundary method to track the morphology of cell mem-
brane during cytokinesis. For accurate calculation, we adaptively add and delete the
immersed boundary points. We perform numerical simulations on the axisymmet-
ric domain to have sufficient resolution and to incorporate three-dimensional effects
such as anisotropic surface tension. Finally, we investigate the effects of each model
parameter and compare a numerical result with the experimental data to demonstrate
the efficiency and accuracy of our proposed method.

Keywords Cytokinesis · Cleavage furrow · Immersed boundary method ·
Axisymmetric simulation

Mathematics Subject Classification (2000) 65M50 · 65M06 · 9208

1 Introduction

Cytokinesis is the process by which an animal cell divides its cytoplasm to produce
two daughter cells (Barr et al. 2007). A cell separates into two cells by the contractile
ring which is formed by actin–myosin interactions. The contractile ring forms a cleav-
age furrow and as the ring tightens, the cleavage furrow develops further, eventually
the cell is divided into two daughter cells. Cytokinesis consists of four major steps.
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Fig. 1 Simulation of the evolution of the cytokinesis

(a) (b) (c)

Fig. 2 Models to explain how the mitotic apparatus signals the cortex locate the cleavage furrow position. a
Astral relaxation by signals from the astral centers. b Astral stimulation. c Equatorial stimulation by signals
from the spindle midzone

The first step is to decide the position of the cleavage furrow. The second step is to
form the contractile ring. The third step is contraction of the contractile ring. The final
step is to break plasma membrane (Murray et al. 1983; Tyson and Hannsgen 1986;
Satterwhite and Pollard 1992; Guertin et al. 2002). The physical division process of
the cell is illustrated in Fig. 1.

Three models have been proposed to explain how the mitotic apparatus gives signals
to the surface for deciding location of the cleavage furrow (Oegema and Mitchison
1997). The first model is the astral relaxation theory (White and Borisy 1983; Wolpert
1960) which states that signals from the asters provide relaxation of the cortex (Fig.
2a). The signals cause regional tension differences at the surface and the tension
inequality causes equatorial contraction. The second model is the astral stimulation
theory (Rappaport 1986; Devore et al. 1989). This model states that signals from the
astral centers have larger values at the overlapped equatorial positions (Fig. 2b). The
division mechanism is formed by direct response in the stimulated region. The third
model suggests that an equatorial stimulation is caused by signals from the spindle
midzone. In this model, the signals arise from the spindle midzone rather than the
asters (Fig. 2c).

This study is a generalization and extension of the previous research by Rejniak
(2005) and includes the following salient features: (a) three-dimensional axisymmetric
model; (b) robust and realistic model for positioning the cleavage furrow and for defin-
ing the contractile force leading to cell division; and (c) accurate immersed boundary
method. We choose the astral relaxation theory as a signal model and propose a robust
and accurate mathematical model for the relaxation theory.

This paper is organized as follows. In Sect. 2, we propose our governing equations
for an animal cell growth and division. In Sect. 3, the numerical method with the
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adaptive immersed boundary points is given. In Sect. 4, we present numerical results
such as convergence of the scheme, effects of model parameters, and comparison with
the experimental data. Finally, conclusions are made in Sect. 5.

2 Mathematical formulation

Our mathematical model is based on the immersed boundary method for the cell
growth and division (Rejniak 2005). The materials inside and outside of the cell are
modeled as homogeneous continuum fluids (Greenspan 1977) with the same constant
density ρ and viscosity μ. Two discrete material points Y1 and Y2 represent the aster
centers where sources of fluid S1(t) and S2(t) are located. When S1(t) and S2(t) are
positive, the cell is growing. Once the cell doubles its volume, the sources are deac-
tivated. After that, the division site of the cell is chosen and the cleavage furrow is
developed. Now, we introduce the three-dimensional governing equation for the cell
evolution, then we will change it into the axisymmetric system.

ρ

(
∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t)

)
= −∇ p(x, t) + μ�u(x, t) (1)

+
(
ζ + μ

3

)
∇(∇ · u(x, t)) + F (x, t),

where u = (u, v, w) is the velocity, p is the pressure, and F = (F1, F2, F3) is the
external force density from the cell membrane. x = (x, y, z) and t are space and time
coordinates, respectively. When the compressible effects of the fluid flow are negligi-
ble, ζ disappears. Also, if we have a source term for the fluid, we have the following
continuity equation for the mass

∂ρ

∂t
+ ∇ · (ρu(x, t)) = S(x, t),

where S is the fluid source distribution (Guyon et al. 2001). Since we assume that ρ

is constant, we have

ρ∇ · u(x, t) = S(x, t).

In the axisymmetric formulation, we set u = (u, w),F = (F1, F2), and x = (r, z).
The immersed boundary for the cell membrane is described by the function X(s, t) =
(R(s, t), Z(s, t)), where 0 ≤ s ≤ L and L is the length of the boundary (see Fig. 3).
Then, the axisymmetric governing equation is given as

ρ(ut + uur + wuz) = −pr + μ

[
1

r
(rur )r + uzz − u

r2

]
+ μ

3ρ
Sr + F1, (2)

ρ(wt + uwr + wwz) = −pz + μ

[
1

r
(rwr )r + wzz

]
+ μ

3ρ
Sz + F2, (3)

ρ∇ · u(x, t) = S(x, t), (4)
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Fig. 3 Schematic of
computational configuration

S(x, t) =
2∑

j=1

S j (t)δ
2(x − Y j (t)), (5)

S j (t) = ς(1 − H(t − t0)), (6)

F (x, t) =
∫

Γ

f (s, t)δ2(x − X(s, t))ds, (7)

U(X(s, t), t) =
∫

Ω

u(x, t)δ2(x − X(s, t))dx, (8)

∂X(s, t)

∂t
= U(X(s, t), t), (9)

U(Y j (t), t) =
∫

Ω

u(x, t)δ2(x − Y j (t))dx for j = 1, 2, (10)

∂Y j (t)

∂t
= U(Y j (t), t), (11)

f (s, t) =
(

σ1

R1
+ σ2(s, t)

R2

)
ns = (σ1κ1 + σ2(s, t)κ2)ns, (12)

κ1 = Rs Zss − Rss Zs√
R2

s + Z2
s

3 , κ2 = Zs

R
√

R2
s + Z2

s

, (13)

σ2(s, t) = αH(t − t0)

s(X)
+ σ1(1 − H(t − t0)), (14)

where ς is the positive value and H(t) is the Heaviside function, where H(t) = 1 for
t ≥ 0, and H(t) = 0, otherwise. The time dependent source S j (t) in Eq. (6) is ς when
t < t0 and S j (t) = 0 when t ≥ t0. Here, t0 is the time when the volume of the mother
cell becomes double. R1 and R2 are the principal radii for principal curvatures κ1 and
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Fig. 4 Configuration of cell
membrane and two astral centers

κ2 of the cell membrane, respectively (Bernoff et al. 1998; Hilbing et al. 1995; Lai
et al. 2004). ns = (ms, ns) is the unit normal vector into the cell, σ1(s, t) and σ2(s, t)
are stiffness coefficients for the curvature forces, and α is a scaling parameter. In Eq.
(14), a time dependent surface tension σ2 is modeled as σ1 when t < t0 and α/s(X)

when t ≥ t0. Here s(X) is our proposed stimulus model which will be described in
the next section.

Now, we present three different previous stimulus models by White and Borisy
(1983) and then we propose a more robust and realistic model. Let

X = (r, z) = (a cos(θ), b sin(θ)),−π/2 ≤ θ ≤ π/2

be the cell surface (see Fig. 4). We note that the rotated three-dimensional volume
is 4a2bπ/3. Two astral centers at Y1 = (0,−d) and Y2 = (0, d) are separated by a
distance 2d. It should be noted that we define the cell polar, located on the axis of
two astral centers, and the cell equator, located orthogonal bisection to the axis of
astral centers. Then, the distances from the point X on the cell membrane to the astral
centers are |X − Y1| and |X − Y2|.

In the previous models, the stimulus from asters is combined by simply additive
way and the strength of the stimulus varies as the stimulus goes from the equator to
the pole. The combined stimulus si (X), i = 1, 2 and 3, follow inverse power laws as

Inverse power law: s1(X) = 1/|X − Y1| + 1/|X − Y2|,
Inverse square power law: s2(X) = 1/|X − Y1|2 + 1/|X − Y2|2,
Inverse fourth power law: s3(X) = 1/|X − Y1|4 + 1/|X − Y2|4.

As we will demonstrate later, these three mathematical models show different results
from the astral relaxation signal model for some shapes of cells. Therefore, we need
a robust model which is less sensitive to morphological type of cells. We propose a
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Fig. 5 Results with a spherical cell a = b = 2. The strength of stimulus is shown by lines drawn from
the cell surface, and the symbol ∗ represent the aster centers in the first and the second rows. d = 0.1b and
d = 0.5b are used in the top and bottom rows, respectively. a, b, c, and d are stimuli with inverse power s1,
inverse square power s2, inverse fourth power s3, and our proposed method s, respectively. e Comparison
of all cases for θ ∈ [0, π/2]

new mathematical stimulus model which is defined as the difference of distances from
aster centers to the cell membrane and a control parameter ε, i.e.,

s(X) = ∣∣|X − Y1| − |X − Y2|
∣∣ + ε.

Figure 5a–d show stimulus distribution along the cell boundary with s1, s2, s3, and
s, respectively. Here, a = b = 2 and ε = 0.05 are used. a = b implies that the
cell shape is a sphere. d = 0.1b and d = 0.5b are used in the top and bottom rows,
respectively. The length of the lines drawn from the cell surface means the strength
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(a) (b) (c) (d)
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Fig. 6 Results with a non spherical cell a = 1.2 and b = 2.778. The strength of stimulus is shown by lines
drawn from the cell surface, and the symbol ∗ represent the aster centers in the first and the second rows.
d = 0.1b and d = 0.5b are used in the top and bottom rows, respectively. a, b, c, and d are stimuli with
inverse power s1, inverse square power s2, inverse fourth power s3, and our proposed method s, respectively.
e Comparison of all cases for θ ∈ [0, π/2]

of stimulus. For better comparison, we normalize the maximum strength as 1. Fig-
ure 5e shows stimulus profiles (s1, s2, s3, and s) with (d = 0.1b and d = 0.5b) for
θ ∈ [0, π/2]. As all cases show that the maximum strength is at the poles and the
minimum strength is at the equatorial regions, these results follow well to the astral
relaxation model.

Next, we consider a non spherical cell shape, i.e., a = 1.2 and b = 2.778. Figure
6a–d show stimulus distribution along the cell boundary with s1, s2, s3, and s, respec-
tively. d = 0.1b and d = 0.5b are used in the top and bottom rows, respectively. In
Fig. 6 we can observe that all three stimulus models s1, s2, s3 obtain the maximum
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Fig. 7 a Contour lines of our proposed stimulus model and cell membrane. b Stem plot of s(X)

stimulus strengths at the equatorial regions and the minimum stimulus strengths at
poles with d = 0.1b case, and this result contradicts to the astral relaxation model.
However, our proposed model has the minimum strengths at the equatorial regions
and the maximum strengths at poles, regardless of the value of d. Figure 6e shows
stimulus profiles with eight cases with θ ∈ [0, π/2].

From these numerical experiments, we see that our proposed signal model is less
sensitive to the position of astral centers and cell shapes. Next, in order to get the
explicit expression, we set a numerical experiment. Let r(θ) be a random perturba-
tion, defined as r(θ) = 0.8 + ∑5

i=1 (0.015ri cos(20riθ) + 0.03ri sin(20riθ)), where
ri is a random number between 0 and 1. The cell membrane X with d = 0.5 is shown
as a thick curve in Fig. 7a. We also plot contours at levels s = 0.01, 0.1, 0.3, 0.5, 0.7
and 0.9 on the domain Ω = [0, 1.5] × [−1, 1]. As we can see from the figure, the
value of s is an increasing function with respect to the absolute value of angle θ . This
implies that the magnitude of s(X) is maximum in poles and is minimum in equatorial
region. In Fig. 7b, we show that the strength of s(X) on the cell membrane by a stem
plot.

For a more mathematical argument, let us consider two astral centers, Y1 = (0,−d)

and Y2 = (0, d). Also, let the cell surface X = (r(θ) cos(θ), r(θ) sin(θ)) have more
general shapes, where −π/2 ≤ θ ≤ π/2 and r(θ) is a positive valued function. For
simplicity, let ε = 0, we have

s(X) = ∣∣|X − Y1| − |X − Y2|
∣∣

= ∣∣√(r(θ) cos θ)2 + (r(θ) sin θ − d)2 −
√(

r(θ) cos θ)2 + (r(θ) sin θ + d
)2∣∣

=
√(√

(r(θ) cos θ)2 + (r(θ) sin θ − d)2 −
√

(r(θ) cos θ)2 + (r(θ) sin θ + d)2
)2

=
√

2r(θ)2 + 2d2 − 2
√

r(θ)4 + d4 + 2r(θ)2d2 cos(2θ).
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(a) (b) (c)

Fig. 8 Effect of ε values for stiffness distribution on the cell boundary

(a) (b) (c) (d)

Fig. 9 Stiffness of the boundary with different shapes and aster locations. (a) a = b = 2 and d = 0.1b,
(b) a = b = 2 and d = 0.5b, (c) a = 1.2, b = 2.778, and d = 0.1b, and (d) a = 1.2, b = 2.778 and
d = 0.5b

Thus, if θ = 0, then s(X) = 0, else if θ = ±π/2, then s(X) = 2d, otherwise, then
by the triangle inequality, we get 0 < s(X) < 2d. Hence our proposed stimulus is
minimized at the cell equator and maximized at the cell poles.

In Fig. 8, we show the effect of ε values (ε = 0.01, 0.05, 0.5) for stiffness dis-
tribution on the cell boundary. We denote the magnitudes of the stimulus as arrows.
The result shows that smaller ε value has localized high stiffness values at the equato-
rial regions. Figure 9 shows stiffness distribution on the cell boundary with different
shapes and aster locations [(a) a = b = 2, d = 0.1b, (b) a = b = 2, d = 0.5b,
(c) a = 1.2, b = 2.778, d = 0.1b, and (d) a = 1.2, b = 2.778, d = 0.5b]. We
observe that the proposed stimulus works well with the different initial shapes and the
positions of astral centers.

3 Numerical method

A staggered marker-and-cell (MAC) mesh of Harlow and Welch (1965) is used in
which pressure is stored at cell centers and velocities are stored at cell interfaces (see
Fig. 10).

We consider an axisymmetric domain Ω = {(r, z) : 0 < r < R, − H/2 <

z < H/2}. Let a computational domain be partitioned in Cartesian geometry into
a uniform mesh with mesh spacing h. The center of each cell, Ωik , is located at
(ri , zk) = ((i − 0.5)h, (k − 0.5)h) for i = 1, . . . , Nr and k = 1, . . . , Nz , where
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Fig. 10 Velocities are defined at
cell boundaries, while the
pressure field is defined at the
cell centers

Nr , Nz are the numbers of cells in r, z-directions, respectively. The cell vertices are
located at (ri+ 1

2
, zk+ 1

2
) = (ih, kh). Then the fluid equations (2)–(4) in Eulerian form

are discretized on a fixed rectangular lattice at time t = n�t : xn
ik = x(ri , zk, n�t),

where n = 0, 1, . . .. The immersed boundary equations (8)–(11) in Lagrangian form
are discretized on a collection of moving points Xn

l = (Rn
l , Zn

l ) for l = 1, . . . , M ,
and two astral centers Y n

j = (Rn
j , Zn

j ) for j = 1, 2. And let �sn
l+1 = |Xn

l+1 − Xn
l | be

the distance between two points.
Our goal is to compute un+1,Xn+1,Y n+1 from given un,Xn,Y n . Detailed descrip-

tion for the numerical solution is described in Appendix.

4 Numerical experiments

In this section, we perform several numerical experiments such as the simulation of
cell proliferation, effect of interpolation, convergence test, effect of source positions,
various initial shapes, effects of viscosity μ and control parameter ε, and comparison
of our numerical result with the experimental data. We use the units of density, vis-
cosity, source, and surface tension in an arbitrary unit system except the test for the
comparison with experiment data. We use ς = 1, ρ = 1, and the number of immersed
boundary points M ≈ 4L B/h, where L B is the length of the initial immersed bound-
ary. The ’final shape’ of cell in our numerical experiments is defined when the distance
between the cell equator to the axis is smaller than tol. Here we set tol = 0.1.

4.1 Cell growth

In this experiment, we use computational domain (0, π) × (−π, π) with 64 × 128
mesh grids, time step �t = 0.75h2, μ = 0.2, σ1 = 0.05, α = 0.02, ε = 0.01,Y1 =
(0,−0.003), and Y2 = (0, 0.003) with an initial spherical shape (a = b = 1). A
process of cell proliferation is modeled by introducing two point sources inside the
cell. The sources correspond to two astral centers which are close enough to each
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(a) (b) (c)

(d) (e) (f)

Fig. 11 Temporal evolution of cell morphology. a Cell ready to proliferate. b–c Cell growth and elongation.
d–f Evolution of the contractile ring

other (Fig. 11a). Fluid flow created by both sources causes cell growth by pushing cell
membranes (Fig. 11b–c). Here, the velocity vector field is indicated as quiver. When
the volume of the cell becomes double, the sources are deactivated and the contracting
force is activated. The contracting force makes cleavage furrow for actual division
process (Fig. 11d–f).

4.2 Effect of interpolation

In order to study the effect of interpolation, a numerical experiment is performed on
the computational domain Ω = (0, π)× (−π, π) with a 64 × 128 grid. Here interpo-
lation means that we add or delete immersed boundary points based on interpolation.
The initial shape is given by setting a = 1.5 and b = 1.0 with Y1 = (0,−0.157) and
Y2 = (0, 0.157). The parameters are μ = 0.2, σ1 = 0.05, α = 0.02, ε = 0.01, and
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without interpolation
with interpolation

(a)

without interpolation
with interpolation

(b)

Fig. 12 a The comparison of cell growth simulation with and without interpolations. b Closeup view
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Fig. 13 Convergence of numerical results with refined spatial and temporal grids

�t = 0.75h2. Calculations are run up to time T = 9.04. In Fig. 12, we observe that
without the interpolation, the shape of cell suffers from poor resolution, while with
the interpolation, we have well resolved immersed boundary of the cell.

4.3 Convergence test

In this experiment, a numerical convergence test of cell growth is performed with
grids h = π/2n , and time steps, �t = 0.05 × 2n−5h2 up to the time T = 0.904 on
the computational domain Ω = (0, π) × (−π, π) for n = 5, . . . , 9. The parameters
μ = 0.2, σ1 = 0.05, ε = 0.01, and α = 0.02 are employed. Note that we use the
same immersed boundary points M = 2048 in this numerical test. As shown in Fig.
13, the convergence of the results under spatial and temporal refinements is evident.
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Table 1 Error and convergence results with various mesh grids

Case 32 × 64 Rate 64 × 128 Rate 128 × 256 Rate 256 × 512
(64 × 128) (128 × 256) (256 × 512) (512 × 1024)

l2 1.87E−3 1.63 6.07E−4 1.83 1.70E−4 1.73 5.13E−5

Here 32 × 64 (64 × 128) means ‖e
h/ h

2
‖2 with h = π/32

(a) (b)

=0.5
=1
=2

(c)

Fig. 14 Effect of source positions and strengths. a The evolution of cell growth by the position of two
sources Y1 = (0, −0.079) and Y2 = (0, 0.079). b The comparison of final cell shapes with initial source
positions. c The comparison of final cell shapes with different source strengths

Since there is no analytical solution, we define the error of the boundary location
as the discrete l2-norm of the distance between the points in the successively finer
grids: eh/ h

2 ,l = |Xh,l − Xh/2,l |. The rate of convergence is defined as the ratio of

successive errors: log2(‖eh/ h
2
‖2/‖e h

2 / h
4
‖2), where the discrete l2-norm is defined as

‖eh/ h
2
‖2 =

√
1
M

∑M
l=1 e2

h/ h
2 ,l

. Using these definitions, the errors and rates of conver-

gence are given in Table 1. The results suggest that the convergence rate with respect
to spatial and temporal refinements is higher than the first order as we expect from the
first order time stepping numerical scheme.

4.4 Effect of source positions and strengths

In Fig. 14, we show the effect of source positions for the cell growth. The numerical
experiments are set on the computational domain Ω = (0, π) × (−π, π) with the
64 × 128 mesh grids. We also take �t = h2 and σ1 = 0.02 with the initial unit spher-
ical shape (dashed line). We run the simulation until the volume of cell is doubled.
Figure 14a shows the evolution of cell growth with two moving sources. The initial
source positions are open square boxes with d = 0.05π . The arrows inside the cell
show the directions of the moving two sources. In Fig. 14b, we consider two different
source positions; open square box (d = 0.05π ) and triangle symbol (d = 0.2π ).
The final shapes of cell are plotted with corresponding initial position symbols. It
was found numerically that the relation between location of sources and the final cell
shape elongation is nonlinear. Moreover, we consider the source strength, ς . The final
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(a) (b)

(c) (d)
Fig. 15 The simulations with the different initial shapes marked with dashed. a–c The simulation with the
initial shapes as circle, short oval, and lager oval, respectively. d The complex case drawn in Fig. 7a

shapes with ς = 0.5, ς = 1, and ς = 2 are shown in Fig. 14c. We observe that as ς

increases, the elongation goes further.

4.5 Effect of initial cell shapes

In this section, we claim that our proposed method for cell growth works well for
different initial cell shapes. Numerical simulations are performed to demonstrate this
claim. �t = 0.75h2, μ = 0.2, σ1 = 0.05, α = 0.03, and ε = 0.01 are used on the
domain (0, π) × (−π, π) with 64 × 128 mesh grids. Four different initial cell shapes
are tested: a = 1 and b = 1 (Fig. 15a), a = 0.8 and b = 1.563 (Fig. 15b), a = 1.118
and b = 0.8 (Fig. 15c), and complex cell shape in Fig.7a (Fig. 15d), respectively.
Here Y1 = (0,−0.157) and Y2 = (0, 0.157) are used. These results suggest that our
proposed mathematical model is robust in applying the stimulus algorithm to various
cell shapes.
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Fig. 16 Effect of μ with three
different values of
μ = 1, 10, 100

Initial shape
μ=100
μ=10
μ=1

4.6 Effect of viscosity μ

In this experiment, we investigate the effect of viscosity μ for the simulation of cell
growth and division with three different values of μ = 1, 10, 100. The initial cell
shape is the unit circle on the domain Ω = (0, π) × (−π, π) with the 64 × 128
mesh grids, and astral centers Y1 = (0,−0.314) and Y2 = (0, 0.314). We take �t =
0.02h2, σ1 = 1, ε = 0.3, and α = 2 for the parameters. From the results shown in
Fig. 16, we observe that the larger μ makes the daughter cell more spherical shape.
When the viscosity is large, the inertia force is negligible, therefore the fluid system
becomes Stokes flow which makes the cell shapes spherical.

4.7 Effect of control parameter ε

In Fig. 17, a computational experiment is performed to study the effect of control
parameter ε during the cell division. The domain Ω = (0, π) × (−π, π) with the
64 × 128 mesh grids, �t = 0.5h2, μ = 0.25, σ1 = 0.05, and α = 0.03 are used
with the initial condition a = b = 1. Here Y1 = (0,−0.157) and Y2 = (0, 0.157)

are used. Figure 17 shows that intercellular bridge is getting longer with respect to
the increasing values of ε. This conclusion has been investigated experimentally in
biological process of cytokinesis by Gabriel et al. (2006).

4.8 Comparison with the experimental data

Finally, we compare our numerical simulation with experimental data in Boucrot and
Kirchhausen (2007). The physical parameters in computational experiment are from
the following references: viscosity μ = 100 g/(cm s) (Laurent et al. 2003; Rejniak
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Fig. 17 The finial shape with
three different control ε values ε=0.1

ε=0.01
ε=0.001

2005, 2007; Rejniak and Anderson 2008), density ρ = 1.35 g/(cm3) (Dembo and
Harlow 1986; Rejniak 2005, 2007; Rejniak and Anderson 2008), and the average
diameter of cell 10 μm (Rejniak 2005, 2007; Rejniak and Anderson 2008). It should
be pointed that since there is no real physical parameters for stiffness coefficients
σ1 and α, we simply choose those computational parameters as σ1 = 5 × 106 g/s2

and α = 1 × 107 g/s2 in order to get the appropriate numerical results and to match
the experimental data. Furthermore, we set ε = 0.3 on the computational domain
Ω = (0, 10 μm)×(−10 μm,10 μm) with a 64 × 128 mesh. Calculation is run up to
time T = 0.688 s with a time step �t = 1.22 × 10−5 s. Here, Y1 = (0,−1 μm) and
Y2 = (0, 1 μm) are used. For the initial cell shape, we use the image segmentation
algorithm in Li and Kim (2010) to get the edges of the cell. Figure 18a is the evolution
of cell division and the arrows show the direction of the evolution. Figure 18b–d are the
overlapped simulations of cell division by comparing with the experiment data. These
results demonstrate that our computational results are in good qualitative agreement
with the experimental data.

5 Conclusion and discussion

In this paper, we have presented a mathematical modeling with an efficient and accu-
rate numerical method to investigate morphological transition while an animal cell
undergoes cytokinesis. The proposed model is robust and realistic in locating the
position of the cleavage furrow and in applying the contractile force. We have used an
immersed boundary method to numerically track the morphology of cell membrane
during the cytokinesis. For numerical approaches, we have employed an adaptive
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(a) (b)

(c) (d)

Fig. 18 a Evolution of cell division. b–d The overlapped simulations of cell division by comparing with
the experiment data

immersed boundary method to have efficient and accurate results. We have performed
numerical simulations on the axisymmetric domain to use sufficient resolution and to
see three-dimensional effects such as anisotropic surface tensions. We also have inves-
tigated the effects of each model parameter and have compared a numerical result with
the experimental data.

We have presented here a simple mathematical model in axisymmetric domain. But
as the axisymmetric model has physical limitation, that is, direction of the cell division
process is limited, we are currently working on a fully three-dimensional single cell
model to investigate the more realistic cell division process. In the immersed bound-
ary method, the pinch-off process is performed when the opposite boundary points
are within a small distance (Rejniak and Anderson 2008). This pinch-off process is
more or less numerical technique. We need to develop more realistic pinch-off process.
For this purpose, we are currently working on a hybrid method, where the immersed
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boundary method and the phase-field method are combined to simulate the topological
transition smoothly.

Finally, when the cell-to-cell interactions and a lifespan of the cell are considered,
the multicelluar model can be modeled, like previous other authors’ work (Rejniak
2007; Rejniak and Anderson 2008; Dillon et al. 2007; Shirinifard et al. 2009). For the
future work, we will incorporate theses cell-to-cell interactions in our model for the
growth and division process of the tissue cells.
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Appendix

The algorithm of our proposed method will be described as following steps:
Step 1. Find the force f n on the immersed boundary from the given boundary

configuration Xn .

f n
l = (σ1κ1l + σ2(s, t)κ2l) nl for l = 1, . . . , M,

σ2(s, t) = αH(t − t0)∣∣|Xl − Y1| − |Xl − Y2|
∣∣ + ε

+ σ1(1 − H(t − t0))

κ1l = (Rn
s )l(Zn

ss)l − (Rn
ss)l(Zn

s )l√
(Rn

s )2
l + (Zn

s )2
l

3 , κ2l = (Zn
s )l

Rn
l

√
(Rn

s )2
l + (Zn

s )2
l

,

where nl = (ml , nl) is the unit normal vector and calculated by using three points
Xl−1,Xl , and Xl+1 with the following quadratic polynomial approximations.

R(t) = α1t2 + β1t + γ1 and Z(t) = α2t2 + β2t + γ2.

Assume Xl−1 = (R(0), Z(0)),Xl = (R(�sl), Z(�sl)), and Xl+1 = (R(�sl +
�sl+1), Z(�sl +�sl+1)), then the parameters α1, β1, and γ1 can be calculated by the
following equations.

⎛
⎝α1

β1
γ1

⎞
⎠ =

⎛
⎝ 0 0 1

�s2
l �sl 1

(�sl + �sl+1)
2 �sl + �sl+1 1

⎞
⎠

−1 ⎛
⎝ R(0)

R(�sl)

R(�sl + �sl+1)

⎞
⎠ .

α2, β2, and γ2 are calculated similarly. Now we get the unit normal vector as

nl =

⎛
⎜⎜⎝

d Z(�sl )
dt√(

d R(�sl )
dt

)2 +
(

d Z(�sl )
dt

)2
,

− d R(�sl )
dt√(

d R(�sl )
dt

)2 +
(

d Z(�sl )
dt

)2

⎞
⎟⎟⎠ .
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Fig. 19 a One- and b two-dimensional Dirac delta functions

And also for (Rn
s )l and (Rn

ss)l , we use the following discretization:

(Rn
s )l =

(
�sn

l (Rn
l+1 − Rn

l )

2�sn
l+1

+ �sn
l+1(Rn

l − Rn
l−1)

2�sn
l

) /
�sn

l+1/2,

(Rn
ss)l =

(
Rn

l+1 − Rn
l

�sn
l+1

− Rn
l − Rn

l−1

�sn
l

) /
�sn

l+1/2,

where �sn
l+1/2 = (�sn

l + �sn
l+1)/2.

Step 2. Spread the boundary force into the nearby grid points of the fluid.

F n
ik =

M∑
l=1

f n
l δ2

h(xik − Xn
l )�sn

l+1/2 for i = 1, . . . , Nr and k = 1, . . . , Nz,

where δ2
h is a smoothed approximation to the two-dimensional Dirac delta function:

δ2
h(x) = 1

h2 φ
( r

h

)
φ

( z

h

)
,

where

φ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
3 − 2|x | + √

1 + 4|x | − 4x2
)
/8 if |x | ≤ 1,

(
5 − 2|x | − √−7 + 12|x | − 4x2

)
/8 if 1 < |x | ≤ 2,

0 if 2 < |x |.

One- and two-dimensional Dirac delta functions are shown in Fig. 19. The motivation
for this particular choice of φ(x) is given in Peskin and Mcqueen (1995).

123



672 Y. Li et al.

Step 3. Solve the Navier–Stokes equations Eqs. (2) and (3) on the rectangular grid
to get un+1 and pn+1 from un and F n :

ρ

(
un+1 − un

�t
+ unun

r + wnun
z

)
= −pn+1

r + μ

[
1

r
(run

r )r + un
zz − un

r2

]

+ μ

3ρ
Sn

r + Fn
1 , (15)

ρ

(
wn+1 − wn

�t
+ unwn

r + wnwn
z

)
= −pn+1

z + μ

[
1

r
(rwn

r )r + wn
zz

]
(16)

+ μ

3ρ
Sn

z + Fn
2 ,

ρ∇d · un+1 = Sn . (17)

Where Sn = (Sn
r , Sn

z ) = ∑2
j=1 Sn

j δ
2(xik − Y n

j ) and Sn
j is ς until the mass of cell is

double, and Sn
j is zero when t ≥ t0.

First, solve an intermediate velocity field, ũ, which does not satisfy the incompress-
ible condition, without the pressure gradient term,

ρ

(
ũ − un

�t
+ unun

r + wnun
z

)
= μ

[
1

r
(run

r )r + un
zz − un

r2

]
+ μ

3ρ
Sn

r + Fn
1 ,

ρ

(
w̃ − wn

�t
+ unwn

r + wnwn
z

)
= μ

[
1

r
(rwn

r )r + wn
zz

]
+ μ

3ρ
Sn

z + Fn
2 ,

The resulting finite difference equations are written out explicitly. They take the form

ũi+ 1
2 ,k = un

i+ 1
2 ,k

− �t (uur + wuz)
n
i+ 1

2 ,k
+ μ

3ρ2h
(Sn

i+1, j − Sn
i, j ) + �t

ρ
Fr−edge

i+ 1
2 ,k

+μ�t

ρ

⎛
⎜⎜⎝

ri+ 1
2

(
un

i+ 3
2 ,k

− un
i+ 1

2 ,k

)
− ri− 1

2

(
un

i+ 1
2 ,k

− un
i− 1

2 ,k

)

ri h2

−
un

i+ 1
2 ,k

r2
i

+
un

i+ 1
2 ,k+1

− 2un
i+ 1

2 ,k
+ un

i+ 1
2 ,k−1

h2

⎞
⎠ , (18)

w̃i,k+ 1
2

= wn
i,k+ 1

2
− �t (uwr + wwz)

n
i,k+ 1

2
+ μ

3ρ2h
(Sn

i, j+1 − Sn
i, j ) + �t

ρ
Fz−edge

i,k+ 1
2

+μ�t

ρ

⎛
⎜⎜⎝

ri+ 1
2

(
wn

i+1,k+ 1
2

− wn
i,k+ 1

2

)
− ri− 1

2

(
wn

i,k+ 1
2

− wn
i−1,k+ 1

2

)

ri h2

+
wn

i,k+ 3
2

− 2wn
i,k+ 1

2
+ wn

i,k− 1
2

h2

⎞
⎠ , (19)

123



An immersed boundary method for simulating a single cell growth and division 673

where the advection terms, (uur + wuz)
n
i+ 1

2 ,k
and (uwr + vwz)

n
i,k+ 1

2
are defined by

(uur + wuz)
n
i+ 1

2 ,k
= un

i+ 1
2 ,k

ūn
r

i+ 1
2 ,k

+
wn

i,k− 1
2

+ wn
i+1,k− 1

2
+ wn

i,k+ 1
2

+ wn
i+1,k+ 1

2

4
ūn

z
i+ 1

2 ,k
,

(uwr + wwz)
n
i,k+ 1

2
= wn

i,k+ 1
2
w̄n

z
i,k+ 1

2

+
un

i− 1
2 ,k

+ un
i− 1

2 ,k+1
+ un

i+ 1
2 ,k

+ un
i+ 1

2 ,k+1

4
w̄n

r
i,k+ 1

2

.

The values ūn
r

i+ 1
2 ,k

and ūn
z

i+ 1
2 ,k

are computed by using the upwind procedure. The

procedure is

ūn
r

i+ 1
2 ,k

=
{

(un
i+ 1

2 ,k
− un

i− 1
2 ,k

)/h if un
i+ 1

2 ,k
> 0

(un
i+ 3

2 ,k
− un

i+ 1
2 ,k

)/h otherwise

and

ūn
z

i+ 1
2 ,k

=
⎧⎨
⎩

(un
i+ 1

2 ,k
− un

i+ 1
2 ,k−1

)/h if wn
i,k− 1

2
+ wn

i+1,k− 1
2

+ wn
i,k+ 1

2
+ wn

i+1,k+ 1
2

> 0

(un
i+ 1

2 ,k+1
− un

i+ 1
2 ,k

)/h otherwise.

The quantities w̄n
r

i,k+ 1
2

and w̄n
z

i,k+ 1
2

are computed in a similar manner. Then, we

solve the following equations for the advanced pressure field at (n + 1) time step.

ρ
un+1 − ũ

�t
= −∇d pn+1, (20)

ρ∇d · un+1 = Sn . (21)

With application of the divergence operator to Eq. (20), we find that the Poisson
equation for the pressure at the advanced time (n + 1).

�d pn+1 = 1

�t

(
ρ∇d · ũ − Sn)

, (22)

where we have substituted Eq. (21). The terms are defined as the following:

�d pn+1
ik =

ri+ 1
2
(pn+1

i+1,k − pn+1
ik ) − ri− 1

2
(pn+1

ik − pn+1
i−1,k)

ri h2

+ pn+1
i,k+1 − 2pn+1

ik + pn+1
i,k−1

h2 ,

∇d · ũik =
ri+ 1

2
ũi+ 1

2 ,k − ri− 1
2
ũi− 1

2 ,k

ri h
+

w̃i,k+ 1
2

− w̃i,k− 1
2

h
.
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The resulting linear system Eq. (22) is solved using a multigrid method, specifically,
V-cycles with a Gauss–Seidel relaxation. Then the updated velocities un+1 and wn+1

are defined by

un+1 = ũ − �t

ρ
∇d pn+1, that is,

un+1
i+ 1

2 ,k
= ũi+ 1

2 ,k − �t

ρh
(pi+1,k − pik), wn+1

i,k+ 1
2

= w̃i,k+ 1
2

− �t

ρh
(pi,k+1 − pik).

Step 4. Once the updated fluid velocity un+1, has been determined, we can find the
velocity on the immersed boundary Un+1, with these, then we have the new immersed
boundary points Xn+1, and the new center positions, Y n+1. This is done using a
discretization of Eqs. (8)–(11). The difference approximations to the interpolation
equation are expressed as follows:

Un+1
l =

Nr −1∑
i=0

Nz−1∑
k=0

un+1
ik δ2

h(xik − Xn
l )h2 for l = 1, . . . , M, (23)

Xn+1
l = Xn

l + �tUn+1
l , (24)

Un+1
j =

Nr −1∑
i=0

Nz−1∑
k=0

un+1
ik δ2

h(xik − Y n
j )h2 for j = 1, 2, (25)

Y n+1
j = Y n

j + �tUn+1
j , (26)

where un+1
ik = ((un+1

i−1/2,k + un+1
i+1/2,k)/2, (wn+1

i,k−1/2 + wn+1
i,k+1/2)/2).

Following the Step 1–Step 4, one iteration of computational simulation is completed.
During the simulation, some interfaces are stretched and some are compressed. To

accurately and efficiently calculate interface forces, we need uniformly distributed
immersed boundary points. In this section, we present a numerical algorithm which
adds and deletes points during the simulation.

For an interval size with �sl+1 > 0.5h, we insert a boundary point X∗ = 0.5(X̄1 +
X̄2). Here X̄ j ( j = 1, 2) are calculated by using three points Xl+ j−2,Xl+ j−1, and
Xl+ j with the quadratic polynomial approximation. Let the quadratic polynomial
approximation for the three points Xl−1,Xl , and Xl+1 be

R(t) = α1t2 + β1t + γ1, and Z(t) = α2t2 + β2t + γ2.

We define

X̄1 = (R(�sl + 0.5�sl+1), Z(�sl + 0.5�sl+1)) .

X̄2 is similarly calculated. In case of the given position Xl satisfies that �sl +
�sl+1 < 0.25h, we delete this position from the surface boundary in order to get the
effectiveness and robustness in our computational experiments.
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