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a b s t r a c t

We present a practically unconditionally gradient stable conservative nonlinear numerical
scheme for the N-component Cahn–Hilliard system modeling the phase separation of an
N-component mixture. The scheme is based on a nonlinear splitting method and is solved
by an efficient and accurate nonlinear multigrid method. The scheme allows us to convert
the N-component Cahn–Hilliard system into a system of N − 1 binary Cahn–Hilliard
equations and significantly reduces the required computer memory and CPU time. We
observe that our numerical solutions are consistent with the linear stability analysis
results.We also demonstrate the efficiency of the proposed schemewith various numerical
experiments.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Cahn–Hilliard (CH) equation is the prototypical continuum model of phase separation in a binary alloy. It was
originally derived by Cahn and Hilliard [1] to describe spinodal decomposition and has been widely adopted to model many
other physical phenomena such as contact angle and wetting problem [2–4], gravity and capillary waves [5,6], mixing [7],
pinchoff of liquid–liquid jets [8,9], Rayleigh–Taylor instability [10–13], solid tumor growth [14–16], thermocapillary
flow [17,18], and vesicle dynamics [19].

Most of the technologically important alloys are multi-component systems exhibiting multiple phases in their
microstructures. Moreover, one or more of these phases are formed as a result of phase transformations induced during
processing. Since performance of these multi-component alloys depends crucially on the morphology of the phases, a
fundamental understanding of the kinetics of phase transformations is important for controlling the microstructures of
these multi-phase alloys [20].

The generalization of the CH equation tomulti-component systems first appeared in the literature of De Fontaine [21] and
Morral and Cahn [22]. Hoyt [23] extended the CH continuum theory of nucleation to multi-component solutions. Elliott and
Luckhaus [24] gave a global existence result under constant mobility and specific assumptions. Eyre [25] studied differences
between multi-component and binary alloys and discussed the equilibrium and dynamic behavior of multi-component
systems. Elliot and Garcke [26] proved a global existence for multi-component systems when the mobility matrix depends
on a concentration. Maier-Paape et al. [27] explained the initial-stage phase separation process in multi-component CH
systems through spinodal decomposition.

There are many numerical studies with the binary CH equation [4,9,13,28–40], ternary [20,28,41–52], and quater-
nary [53–57] CH systems. One of themain difficulties in solving the CH system numerically is that the system is fourth-order
in spacewhichmakes difference stencils very large and introduces a severe time step restriction for stability, i.e.,1t ∼ (1x)4
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for explicit methods. And there is a nonlinearity at the lower order spatial derivatives which can also contribute to numer-
ical stability. Copetti [43] considered an explicit finite element approximation of a model for phase separation in a ternary
mixture and took1x = 1.0 and1t = 0.01 in numerical experiments. In [20], Bhattacharyya and Abinandanan used a semi-
implicit Fourier spectral method for solving the ternary CH equations. They treated the linear fourth-order terms implicitly
and the non-linear terms explicitly and simulations were carried out using 1x = 1.0 and 1t = 0.05. Ma [44] performed
numerical simulation of the phase separation kinetics in ternary mixtures with different interfacial properties by means of
the cell dynamics approach and in the literature1x and1t were both set to be unity. In [41],1x and1t were also both set to
be unity. Kim and Lowengrub [46] developed a stable, conservative, and second-order accurate fully implicit discretization
of the ternary CH system. The authors used a nonlinear multigrid method to efficiently solve the discrete ternary CH system
at the implicit time-level and a uniform time step1t ≤ 0.251x for a uniform mesh size1x. Boyer and Lapuerta [48] used
the implicit Galerkin finite elements method with1x = 8.33 × 10−4 and1t = 0.001 to solve the ternary CH system.

In numerous papers, there are stability restrictions on the time step which cause huge computational costs and make
the calculation very inefficient. Therefore we need a scheme that allows the use of a sufficiently large time step without
the technical limitations. But, though such an algorithm allows the use of a sufficiently large time step, it seems to be less
attractive, becauseweneed to invert an (N−1)×(N−1)matrix to obtain the solution of theN-component CH system (except
for the explicit method) and the matrix inversion becomes more and more complicated for increasing N . This problem was
shown in previous papers. The authors in [54] developed a nonlinear multigrid method to efficiently solve the discrete
N-component CH system at the implicit time level, but an iteration step for the nonlinear multigrid method consists of a
2(N − 1)× 2(N − 1)matrix inversion.

In the literature [58–62], to overcome this problem, a variety of numerical approaches have been developed for a large
number of components. These approaches can significantly reduce the required computer memory and CPU time, but such
approaches are limited to the Allen–Cahn system. Adaptive mesh refinement (AMR) [16,33,38,63,64] has been used in the
CH simulations to increase computational efficiency, but implementation of AMR could be difficult and, in general, AMR is
employed only by a small number of components.

In this paper, we present a practically unconditionally gradient stable conservative numerical method for solving the
CH system representing a model for phase separation in an N-component mixture. This method allows us to solve the
N-component CH system in a decoupled way and significantly reduces the CPU time and memory requirements. We
emphasize that while the method will allow us to take arbitrarily large time steps, the accuracy of the numerical solution
depends on choosing a small enough time step to resolve the dynamics [65].

This paper is organized as follows. In Section 2, we briefly review the governing equations for phase separation in the
N-component CH system. In Section 3, we consider a nonlinear splitting finite difference scheme for the N-component CH
system. We present numerical experiments in Section 4. Finally, conclusions are drawn in Section 5.

2. Governing equations

We consider the evolution of the N-component CH system on a domainΩ ⊂ Rd, d = 1, 2, 3. Let c = (c1, . . . , cN) be the
phase variables (i.e., the mole fractions of different components). Clearly the total mole fractions must sum to 1, i.e.,

c1 + · · · + cN = 1,
so that, admissible states will belong to the Gibbs N-simplex

G :=


c ∈ RN

 N−
i=1

ci = 1, 0 ≤ ci ≤ 1


. (1)

Without loss of generality, we postulate that the free energy can be written as follows:

F (c) =

∫
Ω


F(c)+

ϵ2

2

N−
i=1

|∇ci|2


dx, (2)

where F(c) = 0.25
∑N

i=1 c
2
i (1 − ci)2 and ϵ > 0 is the gradient energy coefficient. The natural boundary condition for the

N-component CH system is the zero Neumann boundary condition:
∇ci · n = 0 on ∂Ω, (3)

where n is the unit normal vector to ∂Ω .
The time evolution of c is governed by the gradient of the energy with respect to the Ḣ−1 inner product under the

additional constraint (1). This constraint has to hold everywhere at any time. In order to ensure this last constraint, we
use a variable Lagrangian multiplier β(c) [66]. The time dependence of ci is given by the following CH equation:

∂ci
∂t

= M1µi, (4)

µi = f (ci)− ϵ21ci + β(c), for i = 1, . . . ,N, (5)

whereM is a mobility, f (c) = c(c − 0.5)(c − 1), and β(c) = −
1
N

∑N
i=1 f (ci). We takeM ≡ 1 for convenience.
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The mass conserving boundary condition for the N-component CH system is

∇µi · n = 0 on ∂Ω. (6)

We differentiate the energy F and the total mass of each phase,

Ω
ci dx, to get

d
dt

F (t) = −M
∫
Ω

N−
i=1

|∇µi|
2 dx ≤ 0 (7)

and

d
dt

∫
Ω

ci dx = 0, (8)

where we used the mass conserving boundary condition (6). For a more detailed description of derivations of (7) and (8),
please refer to Ref. [54]. Therefore, the total energy is non-increasing in time and the total mass of each phase is conserved.
That is

F (t) ≤ F (0) and
∫
Ω

ci(x, t) dx =

∫
Ω

ci(x, 0) dx for i = 1, . . . ,N.

3. Numerical solution

The numerical solution of the N-component CH system uses a second-order accurate spatial discretization and a
nonlinear splitting time stepping method. For simplicity and clarity of exposition, we will present the numerical method
in 2D, but the extension to 3D is straightforward. Note that we only need to solve equations with c1, c2, . . . , cN−1 since
cN = 1 − c1 − c2 − · · · − cN−1 for the N-component CH system. Let c = (c1, c2, . . . , cN−1) and µ = (µ1, µ2, . . . , µN−1).

3.1. Discretization

LetΩ = (a, b)× (c, d) be the computational domain in 2D, Nx and Ny be positive even integers, h = (b − a)/Nx be the
uniform mesh size, andΩh = {(xi, yj) : xi = (i − 0.5)h, yj = (j − 0.5)h, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny} be the set of cell-centers.

Let cij and µij be approximations of c(xi, yj) and µ(xi, yj). We first implement the zero Neumann boundary condition (3)
and (6) by requiring that

Dxc 1
2 ,j

= DxcNx+
1
2 ,j

= Dyci, 12 = Dyci,Ny+
1
2

= 0,

Dxµ 1
2 ,j

= DxµNx+
1
2 ,j

= Dyµi, 12
= Dyµi,Ny+

1
2

= 0,

where the discrete differentiation operators are

Dxci+ 1
2 ,j

= (ci+1,j − cij)/h and Dyci,j+ 1
2

= (ci,j+1 − cij)/h.

We then define the discrete Laplacian by

1hcij =


Dxci+ 1

2 ,j
− Dxci− 1

2 ,j
+ Dyci,j+ 1

2
− Dyci,j− 1

2


/h

and the discrete L2 inner product by

(c, d)h = h2
Nx−
i=1

Ny−
j=1

(c1ijd1 ij + c2ijd2 ij + · · · + cN−1ijdN−1ij). (9)

We also define a discrete norm associated with (9) as

‖c‖2
= (c, c)h.

We define f(c) and 1 to f(c) = (f (c1), f (c2), . . . , f (cN−1)) and 1 = (1, 1, . . . , 1) ∈ RN−1. We discretize Eqs. (4) and (5)
in time by a nonlinear splitting algorithm:

cn+1
ij − cnij
1t

= ∆hν
n+1
ij +∆h


β(cnij)1 −

1
4
cnij


, (10)

νn+1
ij = ϕ(cn+1

ij )− ϵ2∆hcn+1
ij , (11)

where the nonlinear function ϕ(c) = (ϕ1(c), ϕ2(c), . . . , ϕN−1(c)) = f(c)+ c/4.
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Table 1
The values of the maximum time step guaranteeing the stability of each scheme.

Case 32 × 32 64 × 64 128 × 128 256 × 256

EE 7.6 × 10−5 1.9 × 10−5 4.7 × 10−6 1.1 × 10−6

SIE 2.9 × 10−2 7.9 × 10−3 1.3 × 10−3 4.3 × 10−4

IE 3.2 × 10−2 7.8 × 10−3 1.7 × 10−3 4.4 × 10−4

CN 2.0 × 10−2 5.0 × 10−3 1.1 × 10−3 2.8 × 10−4

NS ∞ ∞ ∞ ∞

In Eq. (10), the variable Lagrangian multiplier β(c) is determined by the solutions at time level n. By treating β(c)
explicitly, there is no relation between the solutions at time level n+ 1. Thus the N-component CH system can be solved in
a decoupled way, i.e.,

ck,n+1
ij − ck,nij
1t

= ∆hνk,
n+1
ij +∆h


β(cnij)−

1
4
ck,nij


,

νk,
n+1
ij = ϕ(ck,n+1

ij )− ϵ2∆hck,n+1
ij , for k = 1, 2, . . . ,N − 1.

This means that we only solve the binary CH equation N −1 times to solve the N-component CH system. The above discrete
system is solved by a nonlinear multigrid method [67].

4. Numerical experiments

4.1. The stability of the proposed scheme

We investigate the stability of five different schemes for the quaternary CH system: the explicit Euler’s (EE), semi-
implicit Euler’s (SIE), implicit Euler’s (IE), Crank–Nicolson (CN), and nonlinear splitting (NS). For dissipative dynamics such
as the CH system, a discrete time stepping algorithm is defined to be gradient stable if the free energy is nonincreasing,
F (cn+1) ≤ F (cn), for each n. Define 1tmax as the largest possible time step which allows stable numerical computation.
In other words, if the time step is larger than 1tmax, then the algorithm is not gradient stable. To measure 1tmax for each
scheme, we perform a number of simulations for a sample initial problem on a set of increasingly finer grids. The initial
conditions are

c1(x, y, 0) = 0.25 + 0.1rand( ),
c2(x, y, 0) = 0.25 + 0.1rand( ),
c3(x, y, 0) = 0.25 + 0.1rand( )

on a domainΩ = (0, 1)×(0, 1). Here, rand( ) is a randomnumber between−1 and 1. The numerical solutions are computed
on the uniform grids, h = 1/2n for n = 5, 6, 7, and 8. For each case, ϵ = 0.64h is used. The values of 1tmax with different
schemes are listed in Table 1. From the results, we observe that EE, SIE, IE, and CN schemes are not gradient stable when we
use the time step larger than1tmax (see Fig. 1). However, our proposed scheme (NS) is gradient stable for time steps of any
size, i.e., the scheme is practically unconditionally gradient stable.

4.2. Linear stability analysis

In this section, we study the short-time behavior of a quaternary mixture. The partial differential equations (4) and (5)
we wish to solve may be written as

∂c(x, t)
∂t

= ∆

ψ(c)− ϵ21c


, for (x, t) ∈ Ω × (0, T ], (12)

where ψ(c) = f(c)+ β(c)1. Let the mean concentration take the formm = (m1,m2,m3). We seek a solution of the form

c(x, t) = m +

∞−
k=1

cos(kπx)(αk(t), βk(t), γk(t)), (13)

where |αk(t)|, |βk(t)|, and |γk(t)| ≪ 1. After linearizing ψ(c) aboutm, we have

ψ(c) ≈ ψ(m)+ (c − m)


∂c1ψ1(m) ∂c1ψ2(m) ∂c1ψ3(m)
∂c2ψ1(m) ∂c2ψ2(m) ∂c2ψ3(m)
∂c3ψ1(m) ∂c3ψ2(m) ∂c3ψ3(m)


. (14)
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Fig. 1. The maximum time step (1tmax) guaranteeing the stability of each scheme.

Substituting (14) into (12) and lettingm1 = m2 = m3 = m for simplicity, then, up to first order, we have

∂c
∂t

= 1c



18m2
− 9m + 1
2

3m(4m − 1)
2

3m(4m − 1)
2

3m(4m − 1)
2

18m2
− 9m + 1
2

3m(4m − 1)
2

3m(4m − 1)
2

3m(4m − 1)
2

18m2
− 9m + 1
2

− ϵ2∆2c. (15)

After substituting c(x, t) from Eq. (13) into (15), we get
αk(t)
βk(t)
γk(t)

′

= A


αk(t)
βk(t)
γk(t)


, A =

a b b
b a b
b b a


, (16)

where ′ indicates the time derivative and

a =
−k2π2

2
(18m2

− 9m + 1)− ϵ2k4π4, b =
−3k2π2m(4m − 1)

2
.

The eigenvalues of A are

λ1 = −
k2π2

2
(42m2

− 15m + 1 + 2ϵ2k2π2),

λ2 = λ3 = −
k2π2

2
(6m2

− 6m + 1 + 2ϵ2k2π2).

The solution to the system of ODEs (16) is given by
αk(t)
βk(t)
γk(t)


=
αk(0)+ βk(0)+ γk(0)

3

1
1
1


eλ1t +

−αk(0)− βk(0)+ 2γk(0)
3


−1
0
1


eλ2t

+
−αk(0)+ 2βk(0)− γk(0)

3


−1
1
0


eλ2t .

In Fig. 2, we plot the evolution of the amplitudes as a function of time. The symbols ‘-◦-’, ‘-�-’, and ‘-△-’ are numerical
results that are comparedwith the theoretical values αk(t) (point), βk(t) (star), and γk(t) (plus), respectively, with the initial
conditions:

c1(x, 0) = 0.25 + 0.001 cos(3πx), (17)
c2(x, 0) = 0.25 + 0.002 cos(3πx), (18)
c3(x, 0) = 0.25 + 0.003 cos(3πx). (19)
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Fig. 2. The symbols ‘-◦-’, ‘-�-’, and ‘-△-’ are numerical results that are compared with the theoretical values αk(t) (point), βk(t) (star), and γk(t) (plus),
respectively, with the initial conditions of Eqs. (17)–(19).

Table 2
Average CPU times (s) for different numbers of components.

N 3 4 5 6 7 8 9 10
Average CPU time 2.060 2.990 4.070 5.028 5.791 6.686 7.492 8.533

Here, we used k = 3,m = 0.25, ϵ = 0.005, h = 1/256,1t = 0.1h, and T = 2001t . The numerical amplitudes are defined
by

αn
k =


max
1≤i≤Nx

cn1 (xi)− min
1≤i≤Nx

cn1 (xi)

/2,

βn
k =


max
1≤i≤Nx

cn2 (xi)− min
1≤i≤Nx

cn2 (xi)

/2,

γ n
k =


max
1≤i≤Nx

cn3 (xi)− min
1≤i≤Nx

cn3 (xi)

/2.

The results in Fig. 2 show that the linear stability analysis and numerical solutions are in good agreement in a linear regime.

4.3. The efficiency of the proposed scheme

Asmentioned in Section 3.1, we can solve theN-component CH system in a decoupledway by using our scheme. In order
to show the efficiency of the proposed scheme, we consider phase separation of N = 3, 4, . . . , 10 components in the unit
square domainΩ = (0, 1)×(0, 1). For each number of components, the initial condition is a randomly chosen superposition
of circles. We choose h = 1/128,1t = 10h, and ϵ = 0.0047 and perform 4000 time steps. The evolution of the interface
is shown in Fig. 3. Rows 1 and 2 correspond to t = 101t and 40001t , respectively. Table 2 provides the average CPU time
(in seconds) during 4000 time steps for each number of components. The average CPU time versus number of components
is shown in Fig. 4. The results suggest that the convergence rate of average CPU time is linear with respect to number of
components.

4.4. Spinodal decomposition—phase separation of a ten-component mixture

Weconsider phase separation of a ten-componentmixture by spinodal decomposition. The initial condition is a randomly
chosen superposition of circles. A 128 × 128 mesh is used on the domainΩ = (0, 1) × (0, 1) and we take 1t = 10h and
ϵ = 0.0038. We compute until the solution becomes numerically stationary. Fig. 5 shows the evolution of the interface
at different times. We observe that three phases meet at one point and the angles between them approach 120° as they
approach local equilibrium states. This is due to the fact that in the total energy functional equation (2), F (c(x, t)) is
symmetric and the interaction parameter ϵ is constant. This result is in good agreement with the theory in [66].



H.G. Lee et al. / Physica A 391 (2012) 1009–1019 1015

Fig. 3. Phase separation of N = 3, 5, 8, and 10 components. Rows 1 and 2 correspond to t = 101t and 40001t , respectively. Numbers in row 2 indicate
the number of components.

Fig. 4. Average CPU time versus number of components.

4.5. Phase separation of a five-component mixture in a gravitational field

We consider multi-component incompressible viscous fluid flow. The fluid dynamics is described by the
Navier–Stokes–Cahn–Hilliard (NSCH) equations [3,7,9–13,30,46,48,56,68–70]:

ρ(c)

∂u
∂t

+ u · ∇u


= −∇p + η1u + ρ(c)g, (20)

∇ · u = 0, (21)
∂c
∂t

+ u · ∇c = M1µ, (22)

µ = f(c)− ϵ21c + β(c), (23)
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(a) t = 1t . (b) t = 201t . (c) t = 2001t .

(d) t = 5001t . (e) t = 10001t . (f) t = 40001t .

Fig. 5. Temporal evolution of a ten-component system. Times are shown below each figure. Numbers in (d), (e), and (f) indicate the number of components.

where u is the velocity, p is the pressure, ρ(c) is the density, η is the viscosity, g = (0,−g) is the gravity,M is the mobility,
and µ is the generalized chemical potential. In this paper, the effect of the surface tension is negligible. We note that even
though our phase-field model can deal with a variable viscosity case straightforwardly, we focus on the viscosity matched
case.

To make Eqs. (20)–(23) dimensionless, we choose the following definitions:

x′
=

x
Lc
, u′

=
u
Uc
, t ′ =

tUc

Lc
, ρ ′

=
ρ

ρc
, p′

=
p

ρcU2
c
, g′

=
g
g
, µ′

=
µ

µc
,

where the primed quantities are dimensionless and Lc is the characteristic length, Uc is the characteristic velocity, ρc is the
characteristic density and is defined as that of fluid 1, g is the gravitational acceleration, andµc is the characteristic chemical
potential. Substituting these variables into Eqs. (20)–(23) and dropping the primes, we have

ρ(c)

∂u
∂t

+ u · ∇u


= −∇p +
1
Re
1u +

ρ(c)
Fr2

g, (24)

∇ · u = 0, (25)
∂c
∂t

+ u · ∇c =
1
Pe
1µ, (26)

µ = f(c)− ϵ21c + β(c), (27)

where g = (0,−1) and ϵ is redefined according to the scaling. The dimensionless parameters are the Reynolds number,
Re = ρcUcLc/η, Froude number, Fr = Uc/

√
gLc , and Peclet number, Pe = UcLc/(Mµc). Using Uc =

√
gLc , we have

Re = ρcUcLc/η = ρcg1/2Lc3/2/η and Fr = Uc/
√
gLc =

√
gLc/

√
gLc = 1. By applying our scheme, we can solve the

multi-component advective CH system (26) and (27) in a decoupled way and solving the multi-component NSCH system
(24)–(27) becomes solving the binary NSCH system. For a detailed description of the numerical method used in solving the
binary NSCH system, please refer to Ref. [13].

To model phase separation of a five-component mixture in a gravitational field, we take an initial velocity field as zero,
u = 0, and the initial conditions for c are randomly distributed between 0 and 1. ρ(c) =

∑5
i=1 ρici (c5 = 1−c1−c2−c3−c4

and ρi is the ith fluid density) and ρi = 6−i for i = 1, . . . , 5. Amesh size 128×128 is used on the unit square domain andwe
choose1t = 2.0 × 10−3, ϵ = 0.0047, Re = 3000, and Pe = 0.1/ϵ. Fig. 6 shows the time evolution of the five-component
mixture system in a gravitational field. Fluid 1 is represented by the black region, fluid 2 by the dark gray region, fluid 3 by
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Fig. 6. Phase separation of a five-component mixture in a gravitational field. Fluid 1 is represented by the black region, fluid 2 by the dark gray region,
fluid 3 by the gray region, fluid 4 by the light gray region, and fluid 5 by the white region. Times are shown below each figure.

a b c d e gf

Fig. 7. The Rayleigh–Taylor instability of a five-component mixture. Times are t = 0, 3, 6, 10, 20, 40, and 160 (left to right).

the gray region, fluid 4 by the light gray region, and fluid 5 by the white region. From Fig. 6 we see that the gravity affects a
multi-component simulation by pulling the heavy fluid to the bottom of the computational domain.

4.6. The Rayleigh–Taylor instability of a five-component mixture

When a heavy fluid is superposed over a light fluid in a gravitational field, the fluid interface is unstable. Any perturbation
of this interface tends to grow with time, producing the phenomena known as the Rayleigh–Taylor instability. The
phenomena are the penetration of both heavy and light fluids into each other. The Rayleigh–Taylor instability for a fluid
in a gravitational field was originally introduced by Rayleigh [71] and later applied to all accelerated fluids by Taylor [72].

In this section, we study the Rayleigh–Taylor instability of a five-component mixture. In the simulations, we have two
initial states as shown in Figs. 7(a) and 8(a). The initial velocity is zero. ρ(c) =

∑5
i=1 ρici (c5 = 1 − c1 − c2 − c3 − c4 and

ρi is the ith fluid density) and ρi = 6 − i for i = 1, . . . , 5. A mesh size 128 × 512 is used on a domainΩ = (0, 1)× (0, 4)
and we choose1t = 2.0 × 10−3, ϵ = 0.0047, Re = 3000, and Pe = 0.1/ϵ. The results are presented in Figs. 7(b)–(g) and
8(b)–(g). The area shown by black indicates the fluid 1 region, while the dark gray, gray, light gray, and white color regions
stand for the fluid 2, 3, 4, and 5 domains, respectively. We observe that our proposed method is a powerful tool to simulate
the Rayleigh–Taylor instability between multi-component fluids.

5. Conclusions

We presented a practically unconditionally gradient stable conservative nonlinear numerical scheme for the
N-component Cahn–Hilliard system modeling the phase separation of an N-component mixture. The scheme is based on a
nonlinear splitting method and is solved by an efficient and accurate nonlinear multigrid method. The scheme allows us to
convert the N-component Cahn–Hilliard system into a system of N − 1 binary Cahn–Hilliard equations and significantly
reduces the required computer memory and CPU time. We observed that our numerical solutions are consistent with
the linear stability analysis results. We also demonstrated the efficiency of the proposed scheme with various numerical
experiments.
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Fig. 8. The Rayleigh–Taylor instability of a five-component mixture. Times are t = 0, 3, 6, 10, 30, 50, and 200 (left to right).
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