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1. Introduction

The Cahn–Hilliard (CH) equation was originally proposed by
Cahn and Hilliard to model the spinodal decomposition and coars-
ening phenomena observed in binary alloys [1,2]. If m1 and m2 are
the local masses of the material components 1 and 2 their mass
concentrations are defined by c1 = m1/(m1 + m2) and c2 = m2/
(m1 + m2), respectively. The distributions of components in a bin-
ary mixture are described by the mass concentrations c1 and c2.
We use the difference of the concentrations / = c1 � c2 as an order
parameter. The CH equation is

@/ðx; tÞ
@t

¼ r � ½Mð/ðx; tÞÞrlð/ðx; tÞÞ�; x 2 X; 0 < t 6 T; ð1Þ

lð/ðx; tÞÞ ¼ F 0ð/ðx; tÞÞ � �2D/ðx; tÞ: ð2Þ

The typical bulk free energy F(/) = 0.25(/2 � 1)2, is considered to be
a double well potential [3] (Fig. 1). For simplicity, the mobility ten-
sor M is assumed to be isotropic and constant, i.e., the identity ma-
trix M = I. The homogenous Neumann boundary condition is set as
n � r/ = n � rl = 0, where n is the unit vector normal to @X.

The CH equation arises from the Ginzburg–Landau free energy

Eð/Þ :¼
Z

X
Fð/Þ þ �

2

2
jr/j2

� �
dx;
where X � Rd ðd ¼ 1;2;3Þ; Fð/Þ is a free energy function, and � is
the gradient interfacial energy coefficient. A chemical potential l
is the variational derivative of E with respect to /

l ¼ dE
d/
¼ F 0ð/Þ � �2D/:

Based on the law of mass conservation, we can derive the CH
equation

@/
@t
¼ �r � F ;

where the flux is given by F ¼ �Mrl with a mobility tensor M. We
refer readers to [4] for the detailed mathematical derivation of the
CH equation.

The CH equation is a prototypical model in theoretical materials
science and it has subsequently been adopted to model many phys-
ical phenomena, including phase transitions and interface dynamics
in multiphase fluids [5–12]. Other important applications of the CH
equation are flow visualization [13], image processing [14], and the
formation of quantum dots [15,16]. It has also been applied to stud-
ies of practical problems such as thermal decomposition in polymer
blends [17] and spinodal decomposition in solder balls [18]. Thus,
efficient and accurate numerical solutions of the equation are re-
quired to simulate large-scale dynamics.

Numerical approximations of the CH equation have been stud-
ied and developed by many authors using various numerical meth-
ods [3,7,11,19–21] including the finite difference, finite element,
and spectral methods. However, the CH equation is notoriously dif-
ficult to solve numerically because the equation is rigid due to its
biharmonic and nonlinear terms [22,23]. Because these terms
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Fig. 1. Free energy F(/) = 0.25(/2 � 1)2.
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degrade the numerical stability, it is computationally expensive to
reach the desired time scale where interesting dynamics occur [3].
Recently, an advanced discontinuous Galerkin method [24] and
isogeometric analysis [25] were developed to deal with the high-
order spatial derivatives present in the CH equation.

A parallel algorithm was also applied to solving many scientific
simulations, i.e., dendrite crystal growth [26–28], wetting phe-
nomena [27], phase separation [29], and block copolymer structure
[30,31] simulations. Many applied industrial sciences have over-
come the problem of large-scale applications using parallel com-
puting. Multigrid methods are generally accepted as being the
fastest numerical methods for solving elliptic partial differential
equations [32]. The multigrid method has been applied extensively
to solving the CH equation [7–9,19]. Only few studies have been
performed for solving the CH equation using parallel algorithms
with multigrid methods [33]. On the other hand, the authors in
[34] studied an efficient parallel multigrid method for solving the
biharmonic problem based on the finite element techniques. In this
paper, we present an unconditional stable scheme and implicit
parallel multigrid method for solving the CH equation based on
the finite difference scheme.

This paper is organized as follows. In Section 2, we present the
finite difference scheme, multigrid method, and parallel strategies
including the grid partitioning, data communication, and coarse le-
vel procedures. Numerical experiments that demonstrate the supe-
riority of our parallel method are presented in Section 3. We
present our conclusions in Section 4.

2. Numerical scheme

We consider finite difference approximations to obtain a linear
discrete system from the CH equation. An unconditionally gradient
stable scheme, which was proposed by Eyre [20,23], is applied for
time discretization. A multigrid method is used to solve the result-
ing system at an implicit time level. A detailed description is pro-
vided in this section. In addition, we parallelize the multigrid
method to solve the system.
2.1. Discretization

We discretize the CH Eqs. (1) and (2) in two-dimensional space
X = (a,b) � (c,d). Let Nx = 2m and Ny = 2n be the numbers of mesh
points with integers m and n. The mesh sizes are defined as
Dx = (b � a)/Nx and Dy = (d � c)/Ny. We denote a discrete computa-
tional domain by Xm,n = {(xi,yj): xi = a + (i � 0.5)Dx, yj = -
c + (j � 0.5)Dy, 1 6 i 6 Nx, 1 6 j 6 Ny}, which is the set of cell-
centered points. In addition, /n
ij and ln

ij are approximations of /(xi, -
yj, tn) and l(xi,yj, tn), where tn = nDt and Dt is a temporal step. For
simplicity, we assume that the unit domain X = (0,1) � (0,1) and
Nx = Ny = 2m is used, i.e., the uniform mesh grid h = Dx = Dy. We de-
fine the domain by Xm = Xm,n if m = n.

Using the linearly stabilized splitting scheme [20], we imple-
ment an implicit time and centered difference space discretization
of the CH Eqs. (1) and (2).

/nþ1
ij � /n

ij

Dt
¼ Ddlnþ1

ij ; ð3Þ
lnþ1
ij ¼ 2/nþ1

ij � �2Dd/
nþ1
ij þ /n

ij

� �3
� 3/n

ij; ð4Þ

where the discrete Laplacian operator is defined by

Dd/
nþ1
ij ¼ /nþ1

iþ1;j þ /nþ1
i�1;j þ /nþ1

i;jþ1 þ /nþ1
i;j�1 � 4/nþ1

ij

� �
=h2.
2.2. Multigrid V-cycle algorithm

In this section, we present a multigrid method for solving the
discrete system (3) and (4) at the implicit time level. First, we rep-
resent the discrete CH system

Lhð/nþ1;lnþ1Þ ¼ ðnn;wnÞ;

where the linear operator Lh is defined as

Lhð/nþ1;lnþ1Þ ¼ /nþ1

Dt
� Ddlnþ1;�2/nþ1 þ �2Dd/

nþ1 þ lnþ1

 !
;

and the source term is denoted by (nn,wn) = (/n/Dt, (/n)3 � 3/n).
Next, we describe the multigrid method, which includes the pres-
moothing, coarse grid correction, and postsmoothing steps. We de-
note a mesh grid Xk as the discrete domain for each multigrid level
k. Note that a mesh grid Xk has 2k � 2k grid points. Let kmin be the
coarsest multigrid level. We now introduce the SMOOTH and V-cy-
cle functions. Given the number m1 of pre-smoothing and m2 of post-
smoothing relaxation sweeps, the V-cycle is used as an iteration
step in the multigrid method.
2.2.1. Smoothing
Compute ð�/k; �lkÞ by applying m smoothing procedures to

(/k,lk).

ð�/k; �lkÞ ¼ SMOOTHmð/k;lk; Lh; nk;wkÞ;

on a mesh grid Xk where h = 1/2k. The SMOOTHm function means
that it performs a SMOOTH relaxation operator with approxima-
tions /k and lk, and source terms nk and wk. The superscript m de-
notes how many times the given relaxation operator is applied to
obtain the updated approximations ð�/k; �lkÞ. Eqs. (3) and (4) are
rewritten to apply a relaxation operator

1
Dt

�/ij �
4

h2
�lij ¼ nij þ

li�1;j þ liþ1;j þ li;j�1 þ li;jþ1

h2 ; ð5Þ
� 2þ 4�2

h2

� �
�/ij þ �lij ¼ wij � �2 /i�1;j þ /iþ1;j þ /i;j�1 þ /i;jþ1

h2 : ð6Þ

Here, the subscript k is omitted. One SMOOTH relaxation operator
step is completed by solving the system (5) and (6) by a 2 � 2 ma-
trix inversion for each i and j. This relaxation step is evaluated using
pointwise Jacobi or Red–Black iterative methods. The degrees of
parallelism for the Jacobi and Red–Black relaxations are NxNy and
NxNy/2, respectively.
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2.2.2. V-cycle
One V-cycle step comprises the presmoothing, coarse grid cor-

rection, and postsmoothing steps. Please refer to the reference text
for additional details and background [32,35].

/nþ1;mþ1
k ;lnþ1;mþ1

k

� �
¼ V-cycle k;/nþ1;m

k ;lnþ1;m
k ; Lh; n

n
k ;w

n
k ; m1; m2

� �
;

where /nþ1;mþ1
k ;lnþ1;mþ1

k

� �
and /nþ1;m

k ;lnþ1;m
k

� �
are the approxima-

tions of /nþ1
k and lnþ1

k before and after the V-cycle. Next, we define
the V-cycle.

2.2.3. Presmoothing
Compute �/nþ1;m

k ; �lnþ1;m
k

� �
by applying m1 smoothing procedures

to /nþ1;m
k ; lnþ1;m

k

� �
.

�/nþ1;m
k ; �lnþ1;m

k

� �
¼ SMOOTHm1 /nþ1;m

k ;lnþ1;m
k ; Lh; n

n
k ;w

n
k

� �
:

2.2.4. Coarse grid correction

(1) Find the defect:
�dm
1;k;

�dm
2;k

� �
¼ nn

k ;w
n
k

� �
� Lk

�/nþ1;m
k ; �lnþ1;m

k

� �
:

(2) Restrict the defect:
�dm
1;k�1 ¼ Ik�1

k
�dm

1;k;
�dm

2;k�1 ¼ Ik�1
k

�dm
2;k;
where the restriction operator Ik�1
k , mapping the k-level grid to the

(k � 1)-level grid, is defined by
dk�1ðxi; yjÞ ¼ Ik�1
k dk

¼ 1
4
½dkðx2i�1; y2j�1Þ þ dkðx2i�1; y2jÞ þ dkðx2i; y2j�1Þ

þ dkðx2i; y2jÞ�:
(3) Evaluate approximations v̂nþ1;m
1;k�1 ; v̂

nþ1;m
2;k�1

� �
of the following

coarse grid system on Xk�1:
L2h v̂nþ1;m
1;k�1 ; v̂

nþ1;m
2;k�1

� �
¼ �dm

1;k�1;
�dm

2;k�1

� �
:

If k > kmin + 1, then we can solve the coarse the grid system using
the zero grid functions as initial approximations and the defect
functions as source terms
v̂nþ1;m
1;k�1 ; v̂

nþ1;m
2;k�1

� �
¼ V

� cycle k� 1;0; 0; L2h;
�dm

1;k�1;
�dm

2;k�1; m1; m2

� �
:

If k = kmin, then we apply the smoothing procedure to obtain the
approximations.

(4) Interpolate (or prolongate) the correction:
v̂nþ1
1;k ¼ Ik

k�1v̂
nþ1;m
1;k�1 ; v̂

nþ1;m
2;k ¼ Ik

k�1v̂
nþ1;m
2;k�1 ;
where the prolongation operator Ik
k�1, mapping the (k � 1)-level grid

to the k-level grid, is defined by
vkðx2i�1; y2j�1Þ
vkðx2i�1; y2jÞ
vkðx2i; y2j�1Þ
vkðx2i; y2jÞ

9>>>=
>>>;
¼ Ik

k�1vk�1 ¼ vk�1ðxi; yjÞ:
(5) Compute the corrected approximation on Xk:
~/nþ1;m
k ; ~lnþ1;m

k

� �
¼ �/nþ1;m

k ; �lnþ1;m
k

� �
þ v̂nþ1;m

1;k ; v̂nþ1;m
2;k

� �
;

where ~/nþ1;m
k ; ~lnþ1;m

k

� �
is the approximation after coarse grid

correction.
2.2.5. Postsmoothing

Compute /nþ1;mþ1
k ;lnþ1;mþ1

k

� �
by applying the m2 smoothing pro-

cedures to ~/nþ1;m
k ; ~lnþ1;m

k

� �
.

/nþ1;mþ1
k ;lnþ1;mþ1

k

� �
¼ SMOOTHm2 ~/nþ1;m

k ; ~lnþ1;m
k ; Lh; n

n
k ;w

n
k

� �
:

This completes the description of the V-cycle.

2.3. Parallel computation

Large-scale problems are solved using a fast and accurate solver,
and by parallelizing the solver as efficiently as possible. In this sec-
tion, we describe the parallel multigrid algorithm used to avoid a
long running time and to reduce the memory requirements on
an individual processor without losing any of the multigrid’s
advantages. This method is based on grid partitioning of the dis-
crete computational domain and data communication between
adjacent processors. These processes are at the heart of parallel
multigrid problem. In order to develop an efficient multigrid paral-
lel algorithm, we divide the domain into smaller blocks. This re-
duces the unprocessed pending events when applying the
multigrid method.

2.3.1. Grid partitioning
Grid partitioning is a strategy for parallelizing a mesh grid. To

improve the efficiency of the parallel algorithm, we use a uniform
distribution of processors based on the single program multiple
data (SPMD) structure [36]. Let P be the total number of processors.
The x and y directional numbers of the processors are denoted by Px

and Py such that P = Px � Py. In addition, Xk is the discrete domain
having 2k � 2k grid points and let Xr

k be its rth subdomain for
r = 0, 1, . . . , P � 1, where the subscript k is the multigrid level.
The discrete domain is divided and allocated to processors for col-
umn- or row-wise ordering (known as lexicographical ordering,
which starts at the upper left corner).

Fig. 2 shows examples of the grid partitioning strategy when P is
2, 4, 8, and 16. If the number of processors is P = 22p where p is a non-
negative integer, we select the strategy Px � Py = 2p � 2p as shown in
Fig. 2b and d. The coarsest multigrid level kmin is greater than or
equal to p, because the discrete domain at the coarsest level must
contain at least 2p � 2p grid points. However, if the number of pro-
cessors is P = 22p+1, we select the strategy Px � Py = 2{p+1} � 2p as
shown in Fig. 2a and c. The coarsest multigrid level kmin is greater
than or equal to p+1, because the discrete domain at the coarsest
level must contain 2p+1 � 2p+1 grid points. At the coarsest level, the
grid points for each processor are 1 � 2. For each processor, the ratio
of the discrete subdomain Xr

k is constant for all multigrid levels k.

2.3.2. Data communication
Data communication, i.e., exchange of data among adjacent pro-

cessors, is achieved by the synchronization process. This implies
that all communications are performed before the smoothing and
defect procedures because of the requirement for implementing
the discrete Laplacian operator. On the other hand, no data com-
munication is needed before restriction and prolongation in the
V-cycle. For example, if we take P = 22p, Fig. 3 shows the rth proces-
sor and its adjacent processors, r ± Px and r ± 1, which exchange
data between each other. The shaded layer in Fig. 3 is known as
the sub-boundary layer. This layer is used for exchanging data be-
tween the adjacent processors. Note that the Message Passing
Interface (MPI) [37] is used for interprocessor communications.
After finishing the data communications, the smoothing procedure
can sweep over the subdomains and the defects can be calculated
for each processor.



Fig. 2. Examples of strategies: (a) two subdomains Px � Py = 2 � 1, (b) four subdomains Px � Py = 2 � 2, (c) eight subdomains Px � Py = 4 � 2, and (d) 16 subdomains
Px � Py = 4 � 4.

Fig. 3. Data communication on the rth processor; (a) sending data to and (b) receiving data from adjacent processors.
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2.3.3. Coarse level procedure
The multigrid method is one of the fastest numerical algorithms

for solving elliptic partial differential equations. However, its effi-
cient parallelization is hampered by the poor computation-to-
computation ratio on coarse grids [38]. The efficiency of parallel-
ism becomes worse as lower multigrid levels k. In the worst case,
the discrete domain of each processor is a 1 � 1 mesh grid and
the communication data volume is larger than that of the compu-
tational data.

We propose a coarse level procedure that uses the residual er-
ror. Before progressing to a coarser level (after the defect proce-
dure during the coarse grid correction), the algorithm does not
move down to the next level if the maximum values of both the
residuals �dm

1;k and �dm
2;k are less than 0.001. This additional reduction

step avoids wasteful communications at the coarse levels and it
does not seriously affect the number of V-cycles required for
convergence.
3. Numerical results

We present typical numerical test results for the phase separa-
tion of the CH equation using large grid sizes, and demonstrate the
speed-up, efficiency, and scalability. We also propose a linearly sta-
bilized splitting method for the logarithmic free energy, and pres-
ent numerical results.

3.1. Phase separations

We simulate the dynamics of a droplet pattern and co-continu-
ous network, which are typical cases in the evolution of the CH
equation. The mesh size 211 � 211, spatial step size h = 1/211,
� = 0.0014, and temporal step size Dt = 0.1h are used as parame-
ters. First, the initial condition is a random perturbation where
the average is �0.3 and the amplitude is 0.01: /
(x,y,0) = �0.3 + 0.01rand(x,y), where rand(x,y) is a random value
between�1 and 1. Second, the initial condition is a random pertur-
bation where the average is zero and the amplitude is 0.01: /
(x,y,0) = 0.01rand(x,y). We use 28 processors for the simulations.

Figs. 4 and 5 correspond to the first and second cases, respec-
tively. The two general features of the CH equation are a rapid
phase separation followed by a slower coarsening process. Fig. 4
shows the droplet pattern, i.e., dark regions, in which one of the
components, is nucleated and the regions grow. Fig. 5 shows the
highly inter-connected pattern; after the phase separation, where
the dark and light regions have a co-continuous phase, the coars-
ening process starts.
3.2. Speed-up and efficiency

The parallel performance is usually evaluated based on speed-
up and the efficiency. The value of the speed-up is used to measure
the ratio of the time spent in the serial mode and that spent in the
parallel mode. Let T(P) be the execution time, i.e., the computa-
tional time, using P processors. The speed-up S(P) is defined as
S(P) = T(1)/T(P). However, the efficiency of the parallel algorithm
is measured based on the processor utilization. The efficiency
E(P) is defined as E(P) = S(P)/P, which is the speed-up divided by
the number of processors. Ideally, the algorithm aim to achieve
S(P) � P, or equivalently E(P) � 1.



Fig. 4. Evolution of the average concentration 35% using a 211 � 211 mesh grid.

J. Shin et al. / Computational Materials Science 71 (2013) 89–96 93
Tables 1–3 show the execution time T(P), speed-up S(P), and
efficiency E(P) with different mesh sizes. The discrete computa-
tional domains Nx � Ny = 2p � 2p are simulated using
Fig. 5. Evolution of the average concentra
� = 0.0038 � 29�p for p = 9, 10, 11. The execution time is the
elapsed time taken to reach t = 100Dt. All of the calculations are
performed relative to with the initial data /(x,y,0) = �0.3 + rand
tion 50% using a 211 � 211 mesh grid.
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(x,y). The spatial step size h = 1/Nx and temporal step size Dt = h are
the other parameters. The number of processors P is varied from 1
to 64 and increased by a factor of 2.

The speed-up increases as the number of processors increases.
On the other hand, the efficiency decreases as the number of pro-
cessors increases. If E(P) > 0.9, we can regard the parallel comput-
ing as performing properly. Tables 1–3 demonstrate that the
speed-up S(P) and efficiency E(P) are the best when the number
of processors P is relatively small. For 211 � 211 mesh grid, in Ta-
ble 3, the execution time decreases almost linearly as the number
of processors increases. The parallel performance is good until
using 64 processors are used. For the mesh grids of 210 � 210 and
29 � 29, however, the parallel computing performance is good until
32 and 8 processors are used (Tables 1 and 2). The relatively small
size after grid partitioning degrades the performance.
3.3. Scalability

The parallel performance is also evaluated based on scalability.
Fig. 6 shows the execution time versus the number of mesh sizes.
The solid lines shows the ideal trends which are determined by the
execution time of the discrete domain 211 � 211 multiplied by Nx -
Table 1
Execution time (s), speed-up, and efficiency using a mesh size 29 � 29.

P 1 2 4 8 16 32 64

T(P) 115.3 58.4 30.0 15.2 8.1 4.5 2.8
S(P) 1 1.97 3.85 7.59 14.27 25.90 41.63
E(P) 1 0.99 0.96 0.95 0.89 0.81 0.65

Table 2
Execution time (s), speed-up, and efficiency using a mesh size 210 � 210.

P 1 2 4 8 16 32 64

T(P) 479.6 239.7 120.1 60.6 30.4 15.9 8.8
S(P) 1 2.00 3.99 7.91 15.77 30.08 54.47
E(P) 1 1.00 0.99 0.98 0.98 0.94 0.85

Table 3
Execution time (s), speed-up, and efficiency using a mesh size 211 � 211.

P 1 2 4 8 16 32 64

T(P) 1964.0 974.7 495.1 245.9 123.3 63.4 33.9
S(P) 1 2.02 3.97 7.99 15.93 30.97 57.96
E(P) 1 1.00 0.99 0.99 0.99 0.97 0.91

Fig. 6. Parallel scalability. Execution time versus the number of mesh sizes with
different numbers of processors.
� Ny/222. Symbols indicate the number of processors. The scalabil-
ity is high because the execution times are similar to the associated
ideal lines. When the number of processors P range from 1 to 8, the
execution times are almost ideal. When the number of processors
range from 16 to 64, there are differences between the execution
time and the ideal line in some cases. However, this is expected be-
cause the parallel method is not improved with a large number of
processors when simulating a relatively small mesh size.

3.4. Logarithmic free energy

We now consider the symmetric logarithmic free energy

Fð/Þ ¼ hðð1� /Þ lnð1� /Þ þ ð1þ /Þ lnð1þ /ÞÞ � v/2;

where h and v are positive constant values. Fig. 7 shows an example
of the logarithmic free energy F(/) for h = 5 and v = 8. We denote
the local minima by /a and /b for /a < /b.

Eyre reported that, if the free energy functional of the CH equa-
tion is split into contractive and expansive parts, the splitting
method becomes an unconditionally gradient stable scheme [20].
Thus, we propose a splitting method for the logarithmic free en-
ergy as follows: Eð/Þ ¼ Ecð/Þ � Eeð/Þ and F(/) = Fc(/) � Fe(/),
where

Ecð/Þ¼
Z

X

�2

2
jr/j2þFcð/Þdx¼

Z
X

�2

2
jr/j2þav/2dx;

Eeð/Þ¼
Z

X
Feð/Þdx;

¼�
Z

X
hðð1�/Þ lnð1�/Þþð1þ/Þ lnð1þ/ÞÞ�ð1þaÞv/2dx:

Ecð/Þ and Eeð/Þ are the contractive and expansive parts, respec-
tively. For a sufficiently large number a, Fc(/) and Fe(/) are convex
functions on the interval [/a,/b]. We then treat the contractive part
Ecð/Þ implicitly and the expansive part Eeð/Þ explicitly. The linear
operator Lh is defined as

Lhð/nþ1;lnþ1Þ ¼ /nþ1

Dt
� Ddlnþ1;�2av/nþ1 þ �2Dd/

nþ1 þ lnþ1

 !
;

and the source term is denoted by

ðnn;wnÞ ¼ /n

Dt
; h ln

1þ /n

1� /n

� �
� 2ð1þ aÞv/n

� �
:
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Fig. 7. Logarithmic free energy F(/) = 5((1 � /) ln(1 � /) + (1 + /) ln(1 + /)) � 8/2.



Fig. 8. Evolution of the average concentration 50% using a 211 � 211 mesh grid mesh grid with the logarithmic free energy.
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We then solve the linear system Lh(/n+1,ln+1) = (nn,wn) by using the
multigrid method. We refer the reader to [39] for a nonlinear split-
ting scheme of a logarithmic free energy.

Fig. 8 shows the spinodal decomposition of a binary mixture
with the logarithmic free energy. The initial condition is /
(x,y,0) = 0.01rand(x,y). In this simulation, we use a 211 � 211 mesh
grid with spatial step size h = 1/211, and temporal step size
Dt = 0.1h. The other parameters are � = 0.0019, h = 5, v = 8, and
a = 2. Fig. 8 shows the evolution at different times. The results of
Fig. 8 also show the inter-connected patterns of the spinodal
decomposition, which are similar to the results shown in Fig. 5.
4. Conclusion

In this paper, we presented a parallel multigrid scheme for solv-
ing the CH equation. We partitioned the discrete domain to mini-
mize interprocessor communications when the number of
processors is known and each partitioned domain is assigned to
a different processor. We reduced computational costs by using
an unconditionally stable splitting scheme and a parallel multigrid
method. With a larger computational discrete domain, the pro-
posed method is efficient and saves computational time. In addi-
tion, we proposed the linearly stabilized splitting scheme for
solving the CH equation with logarithmic free energy. Our future
studies will focus on extending this parallel scheme to complex
applications such as multi-component multi-phase systems or
the dynamics of red blood cells in blood vessels.
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