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Abstract In this paper, we present a high-order polynomial free energy for the phase-field model of two-
phase incompressible fluids. The model consists of the Navier–Stokes (NS) equation and the Cahn–Hilliard
(CH) equation with a high-order polynomial free energy potential. In practice, a quartic polynomial has been
used for the bulk free energy in the CH equation. It is well known that the CH equation does not satisfy the
maximum principle and the phase-field variable takes shifted values in the bulk phases instead of taking the
minimum values of the double-well potential. This phenomenon substantially changes the original volume
enclosed by the isosurface of the phase-field function. Furthermore, it requires fine resolution to keep small
shapes. To overcome these drawbacks, we propose high-order (higher than fourth order) polynomial free
energy potentials. The proposed model is tested for an equilibrium droplet shape in a spherical symmetric
configuration and a droplet deformation under a simple shear flow in a fully three-dimensional fluid flow.
The computational results demonstrate the superiority of the proposed model with a high-order polynomial
potential to the quartic polynomial function in volume conservation property.

1 Introduction

In the natural world or industrial fields, multi-phase flow phenomena are very common and their applications
are also important. In nature, the Rayleigh–Taylor instability (RTI) and Kelvin–Helmholtz instability (KHI)
are two famous phenomena of fluid interfacial instability; the RTI occurs when the heavier fluid locates
upon a lighter one, and then the disturbance on the interface grows in time. This phenomenon can be used
to interpret the phenomena of supernova explosions, supernova remnants, nuclear weapon explosions, etc.
For the simulations of RTI, please refer to [1]. The HKI usually occurs when the velocity difference exists
on the interface. In the HKI, the interface deforms and evolves into a spiral. One typical application of this
phenomenon is to explain the formation of a billow cloud. See [2] for the simulations of two-phase and multi-
phase KHI. Another important multi-phase fluid instability is called the Rayleigh–Plateau instability (RPI),
where the surface tension is a dominant disturbing force. The RPI can explain the formation of droplets from
a liquid film, and it also works during the single or double emulsion formations [3,4]. Moreover, the droplet
dynamics also belongs to the category of multi-phase flow with interfacial deformation. Recently, many works
have been done to model or simulate the problems related to the droplet dynamics. Hua et al. [5] used the
immersed boundary method to investigate the side wall effect on the single droplet deformation in shear flow
and also studied the compound droplet deformation in shear flow [6]. In turbulent flow, Soligo et al. [7] used
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the phase-field model to study the breakup and coalescence dynamics of the surfactant-laden droplet. By using
the volume-of-fluid method, Lunkad et al. [8] investigated the dynamics of droplet impact and spreading on
a slant solid plane. In the phase-field method, the topology change of interface can be implicitly captured by
solving the governing equation. We note that the Cahn–Hilliard–Navier–Stokes system is one of the popular
models in the phase-field method, where the mass conservation can be naturally satisfied. Recently, Song et
al. [9] have extended the Cahn–Hilliard–Navier–Stokes model to study the core-annular pipe flow.

In this study, we investigate the effect of a high-order polynomial free energy on the dynamics of the
Cahn–Hilliard (CH) equation [10,11]. The CH equation is given as

∂φ

∂t
(x, t) = �μ(x, t), x ∈ �, t > 0, (1)

μ(x, t) = F ′(φ(x, t)) − ε2�φ(x, t), (2)

n · ∇φ(x, t) = n · ∇μ(x, t) = 0, x ∈ ∂�, (3)

where the order parameter φ(x, t) is the difference of two concentrations in a binary mixture in a domain
� ⊂ R

d , (d = 1, 2, 3). F(φ) is the free energy density, ε is a positive parameter related to the interfacial
thickness, and n is the outward normal vector at the boundary. The CH equation was first introduced to model
phase separation phenomenon in binary alloys [10,11]. Recently, many researchers have proposed some novel
numerical schemes for solving the CH equation [12–14]. We note that the CH equation can be derived from
the following total energy functional:

E(φ) =
∫

�

[
F(φ) + ε2

2
|∇φ|2

]
dx. (4)

See the review paper [15] for the physical, mathematical, and numerical derivations of the CH equations. For
the basic principles and practical applications of the CH equation, see [16]. In the original model for the total
free energy functional, the following logarithmic free energy was used:

F(φ) = θ

2

[
(1 + φ) ln

(
1 + φ

2

)
+ (1 − φ) ln

(
1 − φ

2

)]
+ θc

2
(1 − φ2), (5)

where θ and θc are the absolute and the critical temperatures, respectively (see Fig. 1a). However, for compu-
tational efficiency, a quartic polynomial approximation F(φ) = 0.25(φ2 − 1)2 has been used for replacing the
logarithmic free energy function, which has singularities at φ = ±1. From Eq. (2), we note that the value of
F ′(φ) is needed in actual applications. In Fig. 1c, we plot the results of F ′(φ) in logarithmic form (solid line)
and quartic polynomial form (open circle) and we can find that the first derivative of the quartic polynomial
functional is indeed a good approximation even if the logarithmic and polynomial potential functionals F(φ)
have some differences.

The CH equation has been applied to modeling and simulation for phase separation, medical image pro-
cessing, diblock copolymers, two-phase flows, tumor growth, microstructures with elastic inhomogeneity, and
topology optimization [17]. In particular, in this study, we focus on the multi-phase fluid flows using the
CH equation. The CH equation was used in modeling two-phase fluid flows with isogeometric analysis [18],
nematic liquid crystals [19], binary-fluid turbulence [20,21], quasi-incompressible system [22], ferrofluid [23],
fluid-surfactant system [24], 3D patterned substrate wetting problem [25], fluid-structure interactions [26], a
droplet impacting a solid surface [27], droplet formation in microfluidic flow [27], and viscoelastic fluids [28].
In all of the above-mentioned models, the quartic polynomial free energy function was used.

However, as pointed out by Yue et al. [29], if we use the quartic polynomial free energy function, then drops
with an initial radius below a critical radius will disappear. Furthermore, the total energy can be reduced by
shrinking the drop while simultaneously shifting the bulk phase values from the initial equilibrium minimum
values. To resolve these problems, in this paper, we propose a high-order polynomial free energy:

F(φ) = 0.25(φm − 1)2, (6)

wherem is an even integer. Figure 1b shows the polynomial free energy, F(φ) = 0.25(φm−1)2 form = 2, 4, 6,
and 20. As the value ofm increases, the bulk free energy steeply penalizes the shifting from the local minimum
values. The main purpose of this article is to investigate the effect of a high-order polynomial free energy on
the dynamics of the CH equation.

This paper is organized as follows. In Sect. 2, we describe the numerical solution algorithms of the spher-
ically symmetric CH equation. In Sect. 4, we describe the numerical solution algorithms of the fully three-
dimensional Navier–Stokes–Cahn–Hilliard (NSCH) system. Finally, conclusions are drawn in Sect. 5.
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(a) (b)

(c)

Fig. 1 a Logarithmic free energy with θ = 2/3 and θc = 1. b High-order polynomial free energy functions. c First derivative:
f (φ) = F ′(φ) of potential functional: F(φ) in logarithmic form (solid line) and polynomial form (open circle)

2 Spherically symmetric CH equation

In this section, we consider a numerical solution in spherically symmetric form of the CH equation:

φt (r, t) = 1

r2
[r2μr (r, t)]r , r ∈ �, t > 0, (7)

μ(r, t) = F ′(φ(r, t)) − ε2

r2
[r2φr (r, t)]r . (8)

We discretize the CH equation (7) and (8) in � = (0, a). Let Nr be a positive even integer, h = a/Nr the
uniform mesh size, and �h = {ri : ri = (i − 0.5)h, 1 ≤ i ≤ Nr } the discrete domain. Let φn

i and μn
i be

approximations of φ(ri , tn) and μ(ri , tn), respectively. Here, tn = n�t and �t is the time step. Let us split
Eq. (6) into the difference of two convex functions,

F(φ) = Fc(φ) − Fe(φ), (9)

where Fc(φ) = 0.25(φ2m+1) and Fe(φ) = 0.5φm . Then, F ′(φ) = F ′
c(φ)−F ′

e(φ) = 0.5mφ2m−1−0.5mφm−1.
Now, we discretize Eqs. (7) and (8) in time by a nonlinear splitting algorithm [30]:



2428 J. Shin et al.

Table 1 Thickness of the interface transition layer with for various m and ε values

Case ε = 0.5h ε = h ε = 2h ε = 4h ε = 8h

m = 2 2.3149h 4.3185h 8.4077h 17.0179h 36.7914h
m = 4 0.9780h 3.0569h 6.3130h 12.5800h 25.5724h
m = 6 0.9318h 2.8308h 5.6834h 11.4071h 23.0144h
m = 20 0.9024h 0.9137h 2.7742h 10.0797h 20.8595h

Here, h = 1/128

Fig. 2 The schematic diagram of the interface transition layer

φn+1
i − φn

i

�t
= �hμ

n+1
i , (10)

μn+1
i = 0.5m(φn+1

i )2m−1 − 0.5m(φn
i )m−1 − ε2�hφ

n+1
i , (11)

where �hφ
n+1
i = [r2i+1/2(φ

n+1
i+1 − φn+1

i ) − r2i−1/2(φ
n+1
i − φn+1

i−1 )]/(r2i h2). The contractive term Fc(φ) and
expansive Fe(φ) terms are treated implicitly and explicitly, respectively. We use the homogeneous Neumann
boundary conditions for bothφ andμ. The resulting system of discrete equations is solved by using amulti-grid
method [31].

First, we study the relationship between ε value and thickness of interface transition layer for various m
values. We take an initial condition

φ(r, 0) =
{

1 if r ≤ qh,
−1 otherwise (12)

in the computational domain � = (0, 1) with 128 grid points. Here, we use q = 70, �t = 0.1h2. Let us
define a numerical equilibrium solution if the discrete l2-norm of the difference between the two consecutive
time step solutions is less than 10−6, i.e.,

∥∥φn+1 − φn
∥∥
2 < 10−6. Table 1 shows the thickness of the interface

transition layer for various m and ε values (Fig. 2).
If we fit the data by linear functions, then we have the following equations:

ε2(L) = 0.2168L + 0.0009, (13)

ε4(L) = 0.3080L + 0.0009, (14)

ε6(L) = 0.3430L + 0.0007, (15)

ε20(L) = 0.3541L + 0.0046. (16)

Figure 3 shows εm(L) with respect to L with linear fitting functions for m = 2, 4, 6, and 20. Figure 4a shows
the initial configuration with q = 30. Figures 4b–f show the equilibrium states with different values of q and
F(φ) = 0.25(φm − 1)2 for m = 2, 4, and 20, respectively. Here, we used ε = εm(4h). From Fig. 4b, we can
see that if q = 30, then almost constant solution is a numerical equilibrium solution. If q = 31, then we have
a stable spherical drop solution. From Figs. 4b–f, we can confirm that the minimum number q which makes a
non-flat solution decreases as m increases.
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Fig. 3 εm(L) with respect to L with linear fitting functions for m = 2, 4, 6, and 20

(a) (b)

(c) (d)

Fig. 4 a Initial configurationwithq = 30.b, c, and d are the equilibrium sateswith different values ofq and F(φ) = 0.25(φm−1)2

for m = 2, 4, and 20, respectively

3 Effect of exponent on the computation

In this section, we consider the effect of the exponent on the computation. For m = 2, the proposed scheme in
Eqs. (10) and (10) is unconditionally stable, i.e., there is no blow-up even if a large time step is used. Since in the
computation large exponents move the potential functional F(φ) away from the original form of double-well
potential (i.e.,m = 2), the available time step is restricted as we increase the exponent. In Table 2, we list the
available maximum time steps for different exponents with different mesh sizes: h = 1/16, 1/32, 1/64, and
1/128. Note that the following initial condition is used in the two-dimensional space � = (−1, 1) × (−1, 1):

φ(x, y, 0) =
{

1 if − 0.5 < x < 0.5 and − 0.5 < y < 0.5,
−1 otherwise. (17)

For m = 2 and 4, we can find that any large time step can be used. However, a smaller time step is needed if
we continue to increase the exponent.
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Table 2 Maximum time step for different exponents with different mesh sizes

Case h = 1/16 h = 1/32 h = 1/64 h = 1/128

m = 2 ∞ ∞ ∞ ∞
m = 4 ∞ ∞ ∞ ∞
m = 6 6.25e–5 3.12e–5 1.56e–5 7.81e–6
m = 20 2.50e–6 1.25e–6 6.25e–7 3.12e–7

Fig. 5 The schematic diagram of a droplet in shear flow

4 Navier–Stokes–Cahn–Hilliard equations

We consider two-phase fluid flows with the high-order polynomial CH equation. The Navier–Stokes–Cahn–
Hilliard (NSCH) system is

ut + u · ∇u = −∇ p + 1

Re
�u − 1

2We
∇ ·

( ∇φ

|∇φ|
)

∇φ, (18)

∇ · u = 0, (19)

φt + ∇ · (φu) = 1

Pe
�μ, (20)

μ = F ′(φ) − ε2�φ, (21)

where u = (u, v, w) is the velocity and p is the pressure. The dimensionless parameters are the Reynolds
number Re, Weber number We, and Peclet number Pe. In Eq. (18), the surface tension term can be rewritten
as

− 1

2We
∇ ·

( ∇φ

|∇φ|
)

∇φ = 1

We
∇ ·

(
− ∇φ

|∇φ|
) |∇φ|

2

∇φ

|∇φ| , (22)

where ∇ · (−∇φ/|∇φ|) is the curvature, |∇φ|/2 is the smoothed Dirac delta function [32], and ∇φ/|∇φ| is
the unit normal vector to the surface. Because the profile of the interfacial transition layer with m ≥ 4 is not
hyperbolic tangent, we use |∇φ|/2 for the smoothed Dirac delta function. Here, we view the phase-field model
as a computational method and define the surface tension effect using geometric feature of the interface.

We consider a droplet evolution under simple shear flow. The schematic diagram of a droplet under shear
flow is shown in Fig. 5.

4.1 Two-dimensional droplet deformation in shear flow

First, the two-dimensional droplet deformation in shear flow is investigated for different values of m. The
numerical parameters are h = 1/128,�t = 0.005h2,Re = 500,We = 100. The initial condition is given as
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t = 0

t = 0.036

t = 0.061

t = 0.122

(a) m = 2 (b) m = 6 (c) m = 20

Fig. 6 Temporal evolutions of droplet for a m = 2, b m = 6, c m = 20. The dimensionless times from the top to bottom are:
t = 0, 0.036, 0.061, 0.122

Fig. 7 Temporal evolutions of droplet with a r = 0.2 and b r = 0.22. The dimensionless times from the left to right are:
t = 0, 2.4414, 6.1035, 125.7324

φ(x, y, 0) = tanh

(
0.2 − √

(x − 1)2 + (y − 0.25)2√
2ε

)
, (23)

u(x, y, 0) = 16(y − 0.25), v(x, y, 0) = 0, p(x, y, 0) = 0 (24)

on the computational domain � = [0, 2] × [0, 0.5]. Figures 6a–c show the temporal evolutions of a droplet
in shear flow for m = 2, 6, 20. We can find that the interface of the droplet becomes rough and twisted as
m = 20.

4.2 Three-dimensional CH dynamics without flow

Next, we investigate the dynamics of the CH equation for m = 2, and a droplet is located in the domain
� = (−0.5, 0.5) × (−0.5, 0.5) × (−0.5, 0.5) without fluid flow. Here, h = 1/64,�t = 100h2, and Pe = 1
are used. Figure 7 shows the temporal evolutions of droplet for different initial radii. The droplet with radius
r = 0.2 vanishes gradually. However, the droplet with radius r = 0.22 exists for a long time.

To compare the equilibrium profiles under different exponents, we consider the CH dynamics without flow
in three-dimensional space. The initial condition is a sphere with radius r = 0.22. Here, different exponents
(m = 2, 4, 6, and 20) are used to perform the simulation until the numerical equilibrium state is reached. The
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Fig. 8 Equilibrium profiles at y = 0 with respect to different exponents

equilibrium profiles at y = 0 are illustrated in Fig. 8a, and Figs. 8b, c show the locally enlarged views at
the right end and the top end, respectively. Here, the solid line represents the initial profile; the dashed line,
dash-dotted line, dotted line, and the line with circle markers are the equilibrium profiles with m = 20, 6, 4,
and 2, respectively. As we can observe, the shrinking of the droplet is suppressed as the exponent increases.
However, a much larger exponent (m = 20) leads to a non-circular profile. Therefore, the exponent m = 6 is
a proper choice.

4.3 Three-dimensional droplet deformation in shear flow

We consider the shear flow governed by the NSCH system on the computational domain � = (−1, 1) ×
(−0.5, 0.5) × (−0.5, 0.5). The parameters used are h = 1/64,�t = 5h2,Re = 500, and We = 100. We take
the following initial condition:

φ(x, y, z, 0) = tanh

(
0.22 − √

x2 + y2 + z2√
2ε

)
,

(u, v, w) = (z, 0, 0).

Figure 9 shows the temporal evolution of the droplet under simple shear flow in three-dimensional space. In
this test, we use ε = εm(4h) and Pe = 1/ε4(4h). Figures 9a–c represent the results with m = 2, 6, and 20,
respectively. We can find that the droplet with m = 2 is vanishing as time evolves. Meanwhile, the droplets
with m = 6, 20 always exist. Next, we check the temporal evolution of the discrete volume of a droplet with
different m values. The detailed definition of the discrete volume can be found in [33]. Figure 10 shows the
temporal evolution of the discrete volume of a droplet, and we can find that a largerm value effectively prevents
the decrease in the discrete volume of the droplet. In the two-dimensional case, we found that the interface of
the droplet will become rough and twisty with m = 20. Although the volume can be better conserved with
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Fig. 9 Temporal evolutions of droplet for a m = 2, b m = 6, and c m = 20. The dimensionless times from the top to bottom
are: t = 0, 6.1035, 12.2070, 21.3623, 30.5176

m = 20, the rough interface can also be found in Fig. 11c. Moreover, we can find that the evolution is delayed
with m = 20 by comparing the results in Figs. 11a–c; therefore, m = 6 is a better choice for the simulation.

We should note that the disappearance of small drops is not necessarily wrong, as it is experimentally
observed that drops must be larger than a certain minimum size; otherwise, they are reabsorbed into the
surrounding continuous phase. Nevertheless, the phase-field model emphasizes this effect too much; together
with the fact that the composition inside a drop remains too far from its equilibrium value, this effect is
attributed to non-equilibrium surface tension, see [34] for more details.

4.4 Comparison with Taylor’s theory

Here, we consider the three-dimensional droplet deformation in shear flow. This is a classical problem that was
solved analytically in the creeping flow condition by Taylor [35], and he found that when the droplet arrives at
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Fig. 10 Temporal evolutions of the discrete volume of a droplet for m = 2, 6, and 20
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Fig. 11 The cross-profiles of three-dimensional droplet at t = 2.7466 for a m = 2, b m = 6, and c m = 20

Fig. 12 Snapshots of droplet at equilibrium state with respect to different capillary numbers: a Ca = 0.1, b Ca = 0.2, c Ca = 0.3

the dynamics equilibrium state, i.e., the externally imposed shear flow balances with the interface relaxation,
the deformation parameter D = (L + B)/(L − B) is related to the capillary number Ca = ηγ r/σ , where L
and B are the maximum and minimum deformation length, respectively, η is the viscosity of the ambient fluid,
γ is the local shear rate, r is the radius of the droplet, and σ is the surface tension coefficient. Later, Shapira
and Haber [36] further investigated the wall effects on the droplet deformation in the low Reynolds condition.
In this work, we compare the numerical results with the following Taylor formula:

D = 19λ + 16

16λ + 16
Ca, (25)
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Table 3 Comparisons of deformation parameter D obtained by Taylor’s theory and numerical simulation

Case Ca = 0.1 Ca = 0.2 Ca = 0.3

Taylor’s theory 0.1094 0.2188 0.3281
Numerical results 0.1138 0.2186 0.3288

where λ is the viscosity ratio. In the simulation, we consider the following initial conditions:

φ(x, y, z, 0) = tanh

(
0.5 − √

x2 + y2 + z2√
2ε

)
, (26)

u(x, y, z, 0) = z, v(x, y, z, 0) = w(x, y, z, 0) = 0 (27)

in the domain � = (−1, 1) × (−1, 1) × (−1, 1). The numerical parameters: h = 1/32,�t = h2,m = 6, ε =
ε6(4h), η = 1, γ = 1, λ = 1, and Pe = 1/ε4(4h) are used. The simulations for Ca = 0.1, 0.2, and 0.3 are
computed until the numerical equilibrium state is reached. Figures 12a–c show the snapshots of the droplet at
equilibrium states with Ca = 0.1, 0.2, and 0.3, respectively. Table 3 illustrates comparisons of the deformation
parameter obtained by Taylor’s theory and numerical simulation. We can find that the numerical results and
analytical results are in good agreement.

5 Conclusions

In this work, we presented a high-order polynomial free energy for the NSCH system in simulating two-phase,
incompressible flow. In the classical NSCH system, to study droplet dynamics, the initial droplet radius has to
be larger than a critical radius in order to get a non-vanishing result. The proposed newmodel reduces this limit
in the same condition. The numerical results showed the effectiveness of the proposed method. In the test of the
spherically symmetric CH equation, a small m value needs a large q value to get a non-flat solution, while the
limited q value becomes smaller when we choose a larger m value. Moreover, the treatment of our method is
simple because it only needs to increase the parameterm value to achieve the modification. The newmodel can
be used in many application areas using the phase-field method, such as the compound droplet deformation,
bubble falling and raising, droplet motion in a capillary device and a droplet impacting a solid surface. In future
work, the proposed model can also be used in the Lattice–Boltzmann method for the CH equation [37–40].
Regular mixtures have a log-dependent free energy, such as Eq. (5). Then, in the vicinity of the critical point,
it can be expanded in power series, obtaining a quartic polynomial. This is particularly important for van der
Waals fluids because Landau’s phase field is a generalization of van der Waals’ theory [41]. However, if we
want to model a polymer blend, then the free energy must include the degree of polymerization [42], and we
may apply the proposed high-order polynomial free energy. This would be another interesting future work.
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