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Abstract

A Cahn-Hilliard evolution equation possessing a source term is employed to study the
morphological evolution foa strained heteroepitéal thin film, during continuous mass deposition,
on a substrate with an embedded coherent island. The elastic properties and the surface energy are
anisotropic, with the surface energy anisotropy being strong enough to result in missing orientations
and facets. A sophisticated finite-differenceltiguid method and an imit time integration
scheme are combined to make an efficient numerical method, one which enables numerically
tractable computation in both two and three dimensions. Herein we present preliminary two-
dimensional results demonstrating the utility of our finite difference/multigrid algorithms. The strain
localization effects produced by a buried, coherent inclusion are shown to produce laterally organized
guantum dots during the morphological evolution of the film.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The relaxation of strain during heteraggxial growth by modification of surface
morphology provides a mechanism for influencing the self-organization of quantum dot
strucures [L,2]. For example, the growth of SiGe on Si at elevated temperatures can lead
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to the formation of stressed island3.[The islands form with{510} facets #] before
transitioning to a dome morphology wif810} facets at larger size§][ At lower growth
temperatures and depending on the layer composition, different surface morphologies can
be observed including the formation of pits and quantum fortress structbiceStfain
energy stored in the initially planar epilayer can be partially relieved by perturbing the
suface morphologyT]. Although this process leads to an increase in the surface energy,
the net decrease in free (strain plus surfagegrgy of the layer is sufficient for the
development of islands, pits, or quantum fortress structures.

Strain has also been recognized as a possible mechanism to control both the lateral
and vertical self-organizatioof quantum dot superlattice8,p]. The strain on the surface
induced by an emlaigled, coherent island affects the diffusion of atoms and the nucleation
of new islands on the surface. An embedded island with a positive misfit strain induces
a positive, tende strain on the surface above the island. The elastic strain energy
density of the growing epilayer is reduced in this region as compared to unstressed
or to compressively stressed regions of the surface. Simple models predict that the
lateral spacing between islds becomes more regular as the number of island layers
increases1q].

Diffusion on the surface of a stressed thin film is strongly affected by the shape of the
suface. Material located in a crest on the surface will possess a more relaxed strain state
as compared to material located in a more camsed region such as a valley. These strain
gradients induce corresponding gradients in the chemical potential on the surface leading
to enhanced mass flow to the surface crests. This process tends to destabilize the surface
morphology leading to the growth of islandg11].

Recently, Liu, Zhang and Lulp—19 have peformed a series of interesting simulations
exploring surface morphological evolution during Stranski—Krastanov heteroepitaxial
growth assuming isotropic surface energies. They use a finite element/interface tracking
method to solve a surface diffusion problerthout allowing for @mpositional demixing.

They show that, depending on various material@meters, the surface evolves into ripples
which then break up into islands, before undergoing a coarsening process. The strain field
which arises from the island can permit some self-organization of the particles along
the elastically soft crystallographic directions. They also predict that the self-assembly
of quantum dots is stronglynfluenced by the magnitude of the deposition réité].[

Strain localization effects have been simulatedli] [where the authors considered self-
organization of quantum superlattices, assuming isotropic surface energy of the film.

In this paper we present some preliminary, two-dimensional results from a phase field
model of quantum dot formation in a strained heteroepitaxial film during continuous mass
depostion. We investigate the effect of a strain center produced by an embedded misfitting
particle in the substrate. We use the phase field approach of Egglestonlgt-dlg[ We
assume that both the film—vapor surface energy and the elasticity of the film and substrate
are anisotropic. In fact, the surface energy anisotropy is strong enough to result in missing
orientations and facets.

We develop the phase-field equations in nondimensional form and connect the sharp
interface and phase-field model paramet€ur work represeatan extesionof [17-19
in two important ways: first we use an efficient, fully implicit method for integrating in
time the Cahn—Hilliard/elasticity system of equatio26f23. This approach eliminates
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the high-order time step restriction for the explicit method usedlif+-19, which is a
necessary first step towards feasibly performing physically-relevant simulations in three
dimensions. In addition, we use conservative, stable spatial discretizations that, unlike
the gproach in 7], extend straightforwardly to three dimensions. Second, this model
allows us to consider both substrate patterning (e.g. mesas and vias) and strain patterning
(e.g. embeddpaticles).

2. Thermodynamics

Herein we use theliffuse interface approach developed iv{19 for modeling the
morphological evolution of a strained epitaxial film on a compliant substrate. In this
approach, a conserved order parametéc = 1 in the film and sibstrate andc = 0
in the vapor) satisfying a generalized Cahn—Hilliard equation is used to describe the
interface between the film and vapor phas& gereralized chemical potential is used
that includes the effects of diffusion and elastic stresses due to the lattice mismatch between
the film and substrate. A stationary order parameteharacterizes the topography of the
film—substrate interface, whege = 1 in the sibstrate, ang = 0 in both he film and
vapor states. A degenerate mobility function is used to constrain diffusion to occur only
near the film—vapor interface and deposition is modeled through the inclusion of a source
term in the Cahn—Hilliard equation. In two dimensions, the model is given by

ct=V-(M(c. dVu) + S(c,0), @
n = f,C(C) + V\/,C(Cv ¢a E) -V. (62(95 ¢)VC + 6(97 ¢)6,9(97 ¢)Vlc)a (2)

whereS(c, 6) is the deposition functiorf] is the normal agle of the interface (measured
counterclockwise off thex axis), M(c, ¢) is the mobility, f (c) is the Helmholtz free
energy densityW(c, ¢, E) is the elastic energy densitl, is the linearly elastic strain
tenr, €(0, ¢) is the anisotropicurface energy an¥--c = (—Cy, c_yx)T is a vector in the
tangential direction to the interface. The unit normal vectee —Vc/|Vc| to the level
curves ofc is related tolie normal anglé by cog6) = ny and sin@) = ny. Anisatropic
interface energy is modeled using the four-fold symmetric function

€0, ¢) = eo(1+ ea(l — $)* cog49)), ®)

wheree, is a constat, ande, is the anisotropy parametddote tat for this form, the
substrate ¢ = 1) has isotropic interfacial energy, which results in the wetting of the
substrate by the film.

We take f () = wc?(1 — ¢)?/4, which has minima at = 0, 1, and take the = 1
state as the did phase both film and substrate) and tlee= O stde, the vaor phase.
The interface between the film and vapor is identified as the locus of powdtisfying
c(x) = 0.5. The positive constant sets the barrier light, and the relationship between
w andeg is the primary determinant of the intardfial thickness and interfacial energy.
In an infinite, one-dimensional, stress-free, isotropic system, Hyjjand @) admitthe
steady state solutioa(x) = [1 — tanh(x/(26))]/2 [23], with the interfacial “thickness”

8 = e0+/2/w, and irterfacial energy = eg/w/72.
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We assume that diffusion in the thin film system occurs mainly around the film—vapor
interface ¢ = 0.5) and is sfictly zero in the substrate and in the “bulk” film regions. An
appropriate functional form for the mobility is

M(c, ¢) = 6Msc?(1 — 0)%(1 — @), (4)

where Ms is the surface mobility which, as weillvsee later, can be connected to the
film—vapor surface diffusivityDs.

The deposition functiors models the flux of mass from the vapor phase to the film
interface. Due to gravity, deposition is assumed to occur irytdgedion so that we take

S(c, 6) = VgARC?(1 — ¢)°ny, (5)

whereVy is the (spatially constant) surface velocity due to deposithois a scale factor
chosen below to match the sharp interface re®is a random number (@ < R < 1.1)
andc?(1 — c)? localizes the flux at the film—vapor interface.

Elastic stresses arise in the system due to the lattice mismatch between the film
and substrate. Localization of stressesfieeed by a number of factors, including the
topography of the substrate, buried inclusions, defects in the substrate, and by loss of
coherence at the film—substrate interfaltethis effort we model the first two factors.
Consequently, the elastic energy has the form

2
W(c, ¢, E) == > Tij(Eij — Sije(c, ¢)), (6)
ij=1

NI =

where theEj; = (ui,j + uj,i)/2 ae the components of the linear strain tensec, ¢) is
the misfit strain, and th&; are the components of the stress tensor. The strain and stress
are related via Hooke’s law

2
Tij = Y Cijk (©)(Ex — Swe(c, ¢)), 7

k=1

whereC is the aubic elastic stiffness tensor and is assumed to depend only upon the order
parameterc. Thus, for simplicity, the film and substrate are taken to have equal elastic
stiffness co#ficients [L8,19]. Also following [18,19] we model the vapor as an elastic solid
with very weak elastic stiffness, i.&jx (c = 0) < Ciju (¢ = 1). Specifically, we use the
model R4]

Ciju (©) = Cﬂ k +4d(©) (Cilj K~ Ci(} ki)» (8)

whereq(c) = 3c? — 2¢8 is an interpolation function such thg{l) = 1,q(0) = 0 =
a'(1) = q'(0), andcﬂkI andCilj « are constants satisfyir@ﬂkI & Cilj - The misfit strain
is modeled as

e, ¢) =qenl—¢), 9

where  is the isotropic misfit strain of the film measured using the substrate as the
reference state. Fatly, we assume that elastic relaxation occurs on a much faster time
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scale than diffusion. Therefore, we use the quasi-static approximation
2
> Tijj=0i=12 (10)
j=1

where the stresses change in time as a result of the evolving concentration field in the misfit
stain.

3. Nondimensionalization and sharp interface scaling

In this section, we present the nondimensional system of equations and discuss the sharp
interface limit. This enables us to connect tlaggmeters in the model described above with
the true physical constants characterizing the thin-film/vapor system.

Let L be a characterig length scale of the sample (elg.~ 200 nm). Letr be the
characteristic time scale for surface diffusion

t = L% Ds, (11)

and let nzcj4, using the “igt notation for the cubic elastic constants, be the
characteristic scale of the elastic energy dgn3he evolution is hen characterized by
the nondimensinal quantities
- 36Mgys - 8§ - L3V,
MSZ Syvaz_vvdz—d
Ds L Ds
Denoting the nondimensional variables by an overbar, the nondimensional evolution Egs.
(1) and @) become

Lr]ZC%4

, €4, and Z= (12)

Ct

v A
=V (M© o)V + ?“AS(C, 0), (13)
i fjc(c)+5§v‘v,c(c,¢, E) — 820 - (220, $)VC+ €0, $)20 (0, )V 0), (14)

whereA = A/§ and

M (c, ¢) = (1 — ©)2(L — ¢), S(c, #) = Rc?(1 — ¢)?sin(®) (15)
2

- 1 . 1 , )

f(c)= Ecz(l— )%, W(c, ¢, E) = > HXZ:lT”- (Eij — 8ij&(c, ¢)), (16)
- 2 - -

Tij = Z Cijki (©)(Ex — 8 &(C. 9)). Ciji = Cijia /Caas (17)

k=1
&c, ¢) =q)(1—¢), and &, ¢) =1+ es(1— p)* cog40). (18)

It remains to determin®ls (henceMs) and A to complete the description of the system. To
determine these parameters, vomsider the sharterface limits — 0. Under the above
scaling, the nondimensional sharp interface evolution equations governing the film—vapor
interface are
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ny

= —€(0(9)) ( + V4R sm(@(s))) (29)

. 9% o
wy = €+W Kk + 297, (20)

whereV is the normal velocityp(s) is the sharp interface normal anglgp) = 1 +
€4 €0949) is the anisotropic@face energyu 5; is the chemical potentiak, is the mean
curvature of the interface and

1 1
g¢ = ET“-l(E — 8j) — TOEO +TNE) — ED) (21)

is the local elastic energy density (e.g. s2g).

By combining the matched asymptotic expansion procedures outline@624]
and 7] to obtain the sharp interface limit, we finét the leading order normal velocity
of the fim—vapor interface from Eqs18) and (L4) is

V= —Msa BE 1 VgAR sin@(s)) (22)
92 Z 4
= (e(@(s))+ 892>K+Eg (23)
where
Ms = Ms / ME?(2), 0) dz, (24)
A=A / €91 — ¢9)2dz, (25)
- +o0
2 =E0() f (6©)2 dz, (26)

andé@(z) is the leading order inner solution wherés the normécoordinate across the
interface region. The leading order equation that deterndif@) is

52600

fe@) — 2(9(3)) =0. (27)
From this equation, together with far-field matching conditions and the definitidria@f
we obtainMs = €(§)Ms/6, A = €(0)A/6, andf2 = 1/6. Putting everything together,
matching the leadg order Egs. 22) and £3) with the corresponding sharp interface
Egs. (L9) and QO) requires thatA = 6 andMs = 36. This implies that the dimensional
mobhility Mg = Dg/(y$).

The matched asymptotic expansion resptssented above asse thatthe film—vapor
interface is smooth (which also implies that the anisotropic surface teasidrté /962 >
0). The details of the procedure will be presented in a forthcoming paper.
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4. Numerical methods

We solveZJZ=l Tij,j = 0 and the nondimensional evolution Eq4.3( and (L4) using
nonlinear multigrid methods oriigally developed for Cahn—Hilliard equations by Kim,
Kang and Lovengrub P0,21] and their extensins to elastic systems by Wise, Kim and
Johnson P2|. These algorithms are based on splitting the fourth order Cahn-Hilliard
equation into two second order equations and solving for the concentration and chemical
potential simultaneously using second ardecurate discretizations in time and space.
The spatial discretizations use centered differences and are conservative. The time
discretizations are based on generalizatafriise Crank—Nicholson algorithm and are fully
implicit, thus eliminating the high (fourth) order time step restrictions (ix.< CAXx?).

In certain cases, it is possible to rigorously prove that the resulting numerical schemes
converge and that the schemes inherit a diss@ sion of the continuous energy functional
for any time and space step sizes.

To solve thenonlinear discrete system, a nonlinear full approximation storage (FAS)
method is used. In the FAS method, as in lineattigrid methods, the errors in the solution
are smoothed so that they may be approximated on a coarser grid. An analogue of the
linear defect equation is transformed to therseagrid. The coarse grid corrections are
interpolated back to the fine grid where threogs are then smoothed. Because the system
is nonlinearpne does not work directly with the errors but rather with full approximations
to the discrete solution on the coarse grid. The nonlinearity is treated using one step of
Newton'’s iteréion. A pointwise Gauss—Seidel relaxation scheme is used as the smoother
in the multigrid method. This corresponds toacdl instead of global linearization of
the nonlinear scheme and isuoh more efficient than standard Newton—Gauss—Seidel
linearization schemes.

The convergence of our multigrid algorithms is achieved with < Atg, whereAtg
depends only on the physical parameters and not on the mesh size. Typically we find that
our algorithms are 100 times faster than corresponding explicit methods.

The conservative algorithms described above perform very well, even in the presence of
strong interfacl anisotropy. In particular, it can be shown that the conservative spatial
discretization enhances stability and that it is possible to construct schemes that have
discrete (anisotropic) energy functionals. Interestingly, we find that when the anisotropy is
such that the sharp interface surface tengiany2¢ /06 < 0 for somed, the @nservative
discretization remains stable even without convexification of thedlot as was done
by Eggleston, McFadden and Voorhees V][ This is surprisingbecause linearizing
the gquations about these values ®fleads to terms involving backwards fourth order
diffusion in Egs. 13) and (L4). However, an analysis shows that there are other potentially
stabilizing fourth order terms in the equation. Indeed, due to the energy functional, the
ewlution is highly constrained. For example, it can be shown that the stability of the
discrete conservative algorithm even in the presence of such strong anisotropy follows
directly from the presence of the discrete myyefunctional. Using cetered diferences
in the multigrid scheme adds some numerical diffusion to the algorithm, which results in
same rounding of the corners, regularizing (smoothing) the numerical solution. In some
cases it is desirable to add some further smoothing in the form of a sixth-order diffusion
term, although this is not necessary for the dations presented in the following section.
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Fig. 1. Evolution from an initially circular particle (I§fand the resulting equilibrium shape (right) with the Wulff
shape (dtied). The surface anisotropy factoreis= 0.2 and there i@ no ebstic forces Z = 0).

We plan to discuss the numerical issues and the full details of the conservative multigrid
algorithm in a forthcoming article.

5. Preliminary simulation results

We begin with a validation of our numerical algorithm for strongly anisotropic systems.
In Fig. 1, we present the evolution from an initiallyr@ular particle under strong interfacial
anisotropy,ea = 0.2, and in the absence of elastic forced & 0). In particular,
§ = 0.0053,Ny = Ny = 128 and the computational domain is the unit square. In
the left-hand figure, the evolution is shown with the evolution direction being indicated
by the arrows. Thel1) orientations have the lowest energy. At early stages, the particle
develops a wave-pattern witth1) facets on those surfaces possessing an approxif@te
orientation. During the later stages of evolution, the waves disappear and a notch develops
along(10). Thisnotch grows outward, eventually leading to the development of the convex,
facetted equilibrium particle shape shown on the right. Also plotted on the right-hand side
as a dotted line is the corresponding Wulff shape. There is excellent agreement between
the calculated Wulff shape and the particlegl obtained by numerical evolution. The
calculated evolution shown ifig. 1 is quite similar to that calculated by Eggleston,
McFadden and Voorheeg 7], although the exact wave pattern at early times is slightly
different, due principally to the fact that we do not convexify thie flot.

Figures 2and3 show the morphological evolution of a strained thin film on a substrate
during continuous mass deposition. Pargerefor the simulations are given ifable 1
The sizes of the computational domains arél6x 3.2L, whereL = 50 nm, and the
grid resolution for both simulations is 12864. The initial conditions for the simulations
in Figs. 2and 3 are the same, but for the addition of a coherent embedded inclusion
((c, ¢) = (1,0) in Fig. 3 The enbedded inclusion and the deposited film have the same
misfit strain. Periodic boundagonditions are assumed on the right and left sides of the
computational domain. Ikig. 3, these boundary conditions sitate a periodic array of
buriedinclusons.
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t=10000 t=100000

Fig. 2. Evolution of a strained epitaxial thin film to nondimensional time= 10°. The parameters for the
simuldion are gven in Table 1 Shownare thec = 0.5 and¢ = 0.5 level sets. From tofo bottom the regions
repregnted are the vapord, ¢) = (0, 0)), film ((c, ) = (1, 0)), and subsate (c, ) = (1, 1)) phass. Due to

the misfit between film and substrate and the surfacetingy, the film’s surface becomes unstable and islands
form uniformly along the substrate. Subsequent to isfanchation, coarseningazurs on a very long time scale.

PN

O O
t=10000 t=50000

O O
t=100000 t=500000

Fig. 3. The evolution of a strained thin film aboveuied circular inclusion to nondimensional tire= 5 x 10°.

The simuldion parameters are given fable 1 The dynamics at early times are similar to thos&ig. 2 But,
since he inclusion (c, ¢) = (1, 0)) has the ame misfit strain as the film, a large, isolated dot grows preferentially
above the embedded inclusion, at the expense of nearby neighboring islands.

At very early times, the film evolutions are similar. The anisotropic surface energy
initially destabilizes the flat film—vapor interface leading to the formation of islands on the
substrate. The islands devel@l) facets due to the strong anisotropy of the surface energy.
Subsequently, irFig. 2, rapid coarsening occurs untilghislands reach an intermediate
size determined by the competition between elastic and surface forces. After this stage
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Table 1

Parametes for the simulations showligs. 2and3
Physical Nondimensional
ct 331x 10 Pa Ms 36
ci, 125x 10t Pa A 6
C 158 x 10t Pa 8 0.025
y 1.602 Jm? z 5.8
s 1.24x 1079 m \ 1.26
€4 0.15
n 0.0347
L 50x 10 9m
A 1.008 x 10?2Dg m3

of evolution, coarsening continues on a very long time scale, and the wavelength of the
surface pattern slowly increases in tind&[L9].

After the initial formation of islands, the evolution depictedFfiyg. 3 is significantly
different from that shown irfrig. 2 The buried inclusion expands and stresses the lattice
of the substrate above it, due the positive misfit strain (same as film). Thus it requires less
elastic energy to nucleate and grow an islabdve the inclusion, compared to anywhere
else on the substrate. Consequently, mass accumulates above the misfitting particle and
a large, isolated dot grows preferentially at the expense of its nearest neighbors. Smaller
saellite islands far from the isolated dot persist, although their stability at long times under
continued deposition needs to be further investigated. Note that the film wets the substrate
between the islands, due to the assumed form of the interfacial energy coetfiéigpy.

6. Summary and futurework

In this paper we have given some preliminary, two-dimensional results from a
phase field model of quantum dot formation in a strained epitaxial film. We developed
the equations in nondimensional form and connected the sharp interface and phase-
field model parameters. We demonstrated the feasibility of our highly efficient finite
difference/multigrid algorithms for solving the phase-field equations numerically. These
methods, which rely on conservative spatial discretizations and implicit time integration,
are typically 100 times faster than corresponding explicit methods. We showed that
our algorithms accurately calculate the prop@rphological evolution and equilibrium
shapes resulting from high interfacial anisgpy, without the need for regularizing the
1/¢ plot and without resorting to one-sided differentiation. We then demonstrated the
localizing effects of a buried, coherent inclusion on the morphological evolution of the
film. The corresponding morphological evolutidfid. 3) is quite complex. In particular,
the evolution of the film dep®ls on a number of parameters specific to the inclusion,
including the particle’s radius, misfit, depth, etc.

The localizing effects of the embedded pddistrain patterning) are expected to be
gualitatively similar to those of the substrataésa” (topographical pierning) considered
in [18,19). The localizing effects that arise in both approaches can yield a more ordered
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array of islands than in a film without such patterning. There may be cases where modifying
the aubstrate topography is undesirable or impractical. In such cases strain patterning
may be the only viable method for effecting organized formation of quantum dots.
An in-depth study of strain patterning, in combination with topographic substrate
patterning, is underway for both two- and three-dimensional systems.
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