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Abstract

A Cahn–Hilliard evolution equation possessing a source term is employed to study the
morphological evolution of a strained heteroepitaxial thin film, during continuous mass deposition,
on a substrate with an embedded coherent island. The elastic properties and the surface energy are
anisotropic, with the surface energy anisotropy being strong enough to result in missing orientations
and facets. A sophisticated finite-difference/multigrid method and an implicit time integration
scheme are combined to make an efficient numerical method, one which enables numerically
tractable computation in both two and three dimensions. Herein we present preliminary two-
dimensional results demonstrating the utility of our finite difference/multigrid algorithms. The strain
localization effects produced by a buried, coherent inclusion are shown to produce laterally organized
quantum dots during the morphological evolution of the film.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The relaxation of strain during heteroepitaxial growth by modification of surface
morphology provides a mechanism for influencing the self-organization of quantum dot
structures [1,2]. For example, the growth of SiGe on Si at elevated temperatures can lead
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to the formation of stressed islands [3]. The islands form with{510} facets [4] before
transitioning to a dome morphology with{310} facets at larger sizes [5]. At lower growth
temperatures and depending on the layer composition, different surface morphologies can
be observed including the formation of pits and quantum fortress structures [6]. Strain
energy stored in the initially planar epilayer can be partially relieved by perturbing the
surface morphology [7]. Although this process leads to an increase in the surface energy,
the net decrease in free (strain plus surface)energy of the layer is sufficient for the
development of islands, pits, or quantum fortress structures.

Strain has also been recognized as a possible mechanism to control both the lateral
and vertical self-organization of quantum dot superlattices [8,9]. The strain on the surface
induced by an embedded, coherent island affects the diffusion of atoms and the nucleation
of new islands on the surface. An embedded island with a positive misfit strain induces
a positive, tensile strain on the surface above the island. The elastic strain energy
density of the growing epilayer is reduced in this region as compared to unstressed
or to compressively stressed regions of the surface. Simple models predict that the
lateral spacing between islands becomes more regular as the number of island layers
increases [10].

Diffusion on the surface of a stressed thin film is strongly affected by the shape of the
surface. Material located in a crest on the surface will possess a more relaxed strain state
as compared to material located in a more constrained region such as a valley. These strain
gradients induce corresponding gradients in the chemical potential on the surface leading
to enhanced mass flow to the surface crests. This process tends to destabilize the surface
morphology leading to the growth of islands [7,11].

Recently, Liu, Zhang and Lu [12–15] have performed a series of interesting simulations
exploring surface morphological evolution during Stranski–Krastanov heteroepitaxial
growth assuming isotropic surface energies. They use a finite element/interface tracking
method to solve a surface diffusion problemwithout allowing for compositional demixing.
They show that, depending on various materials parameters, the surface evolves into ripples
which then break up into islands, before undergoing a coarsening process. The strain field
which arises from the island can permit some self-organization of the particles along
the elastically soft crystallographic directions. They also predict that the self-assembly
of quantum dots is strongly influenced by the magnitude of the deposition rate [16].
Strain localization effects have been simulated in [13], where the authors considered self-
organization of quantum superlattices, assuming isotropic surface energy of the film.

In this paper we present some preliminary, two-dimensional results from a phase field
model of quantum dot formation in a strained heteroepitaxial film during continuous mass
deposition. We investigate the effect of a strain center produced by an embedded misfitting
particle in the substrate. We use the phase field approach of Eggleston et al. [17–19]. We
assume that both the film–vapor surface energy and the elasticity of the film and substrate
are anisotropic. In fact, the surface energy anisotropy is strong enough to result in missing
orientations and facets.

We develop the phase-field equations in nondimensional form and connect the sharp
interface and phase-field model parameters. Our work represents an extensionof [17–19]
in two important ways: first we use an efficient, fully implicit method for integrating in
time the Cahn–Hilliard/elasticity system of equations [20–22]. This approach eliminates
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the high-order time step restriction for the explicit method used in [17–19], which is a
necessary first step towards feasibly performing physically-relevant simulations in three
dimensions. In addition, we use conservative, stable spatial discretizations that, unlike
the approach in [17], extend straightforwardly to three dimensions. Second, this model
allows us to consider both substrate patterning (e.g. mesas and vias) and strain patterning
(e.g. embedded particles).

2. Thermodynamics

Herein we use thediffuse interface approach developed in [17–19] for modeling the
morphological evolution of a strained epitaxial film on a compliant substrate. In this
approach, a conserved order parameterc (c = 1 in the film and substrate andc = 0
in the vapor) satisfying a generalized Cahn–Hilliard equation is used to describe the
interface between the film and vapor phases. A generalized chemical potentialµ is used
that includes the effects of diffusion and elastic stresses due to the lattice mismatch between
the film and substrate. A stationary order parameterφ characterizes the topography of the
film–substrate interface, whereφ = 1 in the substrate, andφ = 0 in both the film and
vapor states. A degenerate mobility function is used to constrain diffusion to occur only
near the film–vapor interface and deposition is modeled through the inclusion of a source
term in the Cahn–Hilliard equation. In two dimensions, the model is given by

c,t = ∇ · (M(c, φ)∇µ) + S(c, θ), (1)

µ = f,c(c) + W,c(c, φ, E) − ∇ · (ε2(θ, φ)∇c + ε(θ, φ)ε,θ (θ, φ)∇⊥c), (2)

whereS(c, θ) is the deposition function,θ is the normal angle of the interface (measured
counterclockwise off thex axis), M(c, φ) is the mobility, f (c) is the Helmholtz free
energy density,W (c, φ, E) is the elastic energy density,E is the linearly elastic strain
tensor, ε(θ, φ) is the anisotropic surface energy and∇⊥c = (−c,y, c,x )

T is a vector in the
tangential direction to the interface. The unit normal vectorn = −∇c/|∇c| to the level
curves ofc is related to the normal angleθ by cos(θ) = nx and sin(θ) = ny . Anisotropic
interface energy is modeled using the four-fold symmetric function

ε(θ, φ) = εo(1 + ε4(1 − φ)4 cos(4θ)), (3)

whereεo is a constant, andε4 is the anisotropy parameter. Note that for this form, the
substrate (φ = 1) has isotropic interfacial energy, which results in the wetting of the
substrate by the film.

We take f (c) = ωc2(1 − c)2/4, which has minima atc = 0, 1, and take thec = 1
state as the solid phase (both film and substrate) and thec = 0 state, the vapor phase.
The interface between the film and vapor is identified as the locus of pointsx satisfying
c(x) = 0.5. The positive constantω sets the barrier height, and the relationship between
ω and εo is the primary determinant of the interfacial thickness and interfacial energy.
In an infinite, one-dimensional, stress-free, isotropic system, Eqs. (1) and (2) admit the
steady state solutionc(x) = [1 − tanh(x/(2δ))]/2 [23], with the interfacial “thickness”
δ = εo

√
2/ω, and interfacial energyγ = εo

√
ω/72.
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We assume that diffusion in the thin film system occurs mainly around the film–vapor
interface (c = 0.5) and is strictly zero in the substrate and in the “bulk” film regions. An
appropriate functional form for the mobility is

M(c, φ) = 6Msc2(1 − c)2(1 − φ), (4)

where Ms is the surface mobility which, as we will see later, can be connected to the
film–vapor surface diffusivityDs .

The deposition functionS models the flux of mass from the vapor phase to the film
interface. Due to gravity, deposition is assumed to occur in they-direction so that we take

S(c, θ) = Vd ARc2(1 − c)2ny, (5)

whereVd is the (spatially constant) surface velocity due to deposition,A is a scale factor
chosen below to match the sharp interface result,R is a random number (0.9 ≤ R ≤ 1.1)
andc2(1 − c)2 localizes the flux at the film–vapor interface.

Elastic stresses arise in the system due to the lattice mismatch between the film
and substrate. Localization of stresses is affected by a number of factors, including the
topography of the substrate, buried inclusions, defects in the substrate, and by loss of
coherence at the film–substrate interface.In this effort we model the first two factors.
Consequently, the elastic energy has the form

W (c, φ, E) = 1

2

2∑
i, j=1

Ti j (Eij − δi j e(c, φ)), (6)

where theEij = (ui, j + u j,i )/2 are the components of the linear strain tensor,e(c, φ) is
the misfit strain, and theTi j are the components of the stress tensor. The strain and stress
are related via Hooke’s law

Ti j =
2∑

k,l=1

Ci j kl (c)(Ekl − δkl e(c, φ)), (7)

whereC is the cubic elastic stiffness tensor and is assumed to depend only upon the order
parameterc. Thus, for simplicity, the film and substrate are taken to have equal elastic
stiffness coefficients [18,19]. Also following [18,19] we model the vapor as an elastic solid
with very weak elastic stiffness, i.e.,Ci j kl (c = 0) � Ci j kl (c = 1). Specifically, we use the
model [24]

Ci j kl (c) = C0
i j kl + q(c)(C1

i j kl − C0
i j kl ), (8)

whereq(c) = 3c2 − 2c3 is an interpolation function such thatq(1) = 1, q(0) = 0 =
q ′(1) = q ′(0), andC0

i j kl andC1
i j kl are constants satisfyingC0

i j kl � C1
i j kl . The misfit strain

is modeled as

e(c, φ) = q(c)η(1 − φ), (9)

where η is the isotropic misfit strain of the film measured using the substrate as the
reference state. Finally, we assume that elastic relaxation occurs on a much faster time



S.M. Wise et al. / Superlattices and Microstructures 36 (2004) 293–304 297

scale than diffusion. Therefore, we use the quasi-static approximation

2∑
j=1

Ti j, j = 0, i = 1, 2, (10)

where the stresses change in time as a result of the evolving concentration field in the misfit
stain.

3. Nondimensionalization and sharp interface scaling

In this section, we present the nondimensional system of equations and discuss the sharp
interface limit. This enables us to connect the parameters in the model described above with
the true physical constants characterizing the thin-film/vapor system.

Let L be a characteristic length scale of the sample (e.g.L ≈ 200 nm). Letτ be the
characteristic time scale for surface diffusion

τ = L4/Ds , (11)

and let η2C1
44, using the Voigt notation for the cubic elastic constants, be the

characteristic scale of the elastic energy density. The evolution is then characterized by
the nondimensional quantities

M̄s = 36Msγ δ

Ds
, δ̄ = δ

L
, V̄d = L3Vd

Ds
, ε4, and Z = Lη2C1

44

γ
. (12)

Denoting the nondimensional variables by an overbar, the nondimensional evolution Eqs.
(1) and (2) become

c,t̄ = M̄s

δ̄2
∇̄ · (M̄(c, φ)∇̄µ̄) + V̄d

δ̄
ĀS̄(c, θ), (13)

µ̄ = f̄,c(c) + δ̄
Z

6
W̄,c(c, φ, E) − δ̄2∇̄ · (ε̄2(θ, φ)∇c + ε̄(θ, φ)ε̄,θ (θ, φ)∇̄⊥c), (14)

whereA = Ā/δ and

M̄(c, φ) = c2(1 − c)2(1 − φ), S̄(c, θ) = Rc2(1 − c)2 sin(θ) (15)

f̄ (c) = 1

2
c2(1 − c)2, W̄ (c, φ, E) = 1

2

2∑
i, j=1

T̄i j (Eij − δi j ē(c, φ)), (16)

T̄i j =
2∑

k,l=1

C̄i j kl (c)(Ekl − δkl ē(c, φ)), C̄i j kl = Ci j kl/C1
44, (17)

ē(c, φ) = q(c)(1− φ), and ε̄(θ, φ) = 1 + ε4(1 − φ)4 cos(4θ). (18)

It remains to determinēMs (henceMs ) andĀ to complete the description of the system. To
determine these parameters, we consider the sharpinterface limitδ̄ → 0. Under the above
scaling, the nondimensional sharp interface evolution equations governing the film–vapor
interface are
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V = −ε̃(θ(s))

(
∂2µΣ

∂s2
+ V̄dR sin(θ(s))

)
, (19)

µΣ =
(

ε̃ + ∂2ε̃

∂θ2

)
κ + Zgel, (20)

whereV is the normal velocity,θ(s) is the sharp interface normal angle,ε̃(θ) = 1 +
ε4 cos(4θ) is the anisotropic surface energy,µΣ is the chemical potential,κ is the mean
curvature of the interface and

gel = 1

2
T 1

i j (E1
i j − δi j ) − 1

2
T 0

i j E0
i j + T 0

i j (E0
i j − E1

i j ) (21)

is the local elastic energy density (e.g. see [25]).
By combining the matched asymptotic expansion procedures outlined in [26,24]

and [27] to obtain the sharp interface limit, we find that the leading order normal velocity
of the film–vapor interface from Eqs. (13) and (14) is

V = −M̂s
∂2µΣ

∂s2 + V̄d ÂR sin(θ(s)) (22)

µΣ = Ω

(
ε̃(θ(s)) + ∂2ε̃

∂θ2

)
κ + Z

6
gel (23)

where

M̂s = M̄s

∫ +∞

−∞
M̄(ĉ(0)(z), 0) dz, (24)

Â = Ā
∫ +∞

−∞
(ĉ(0)(1 − ĉ(0)))2 dz, (25)

Ω = ε̃(θ(s))
∫ +∞

−∞
(ĉ(0))2 dz, (26)

andĉ(0)(z) is the leading order inner solution wherez is the normal coordinate across the
interface region. The leading order equation that determinesĉ(0)(z) is

f̄ ′(ĉ(0)) − ε̃2(θ(s))
∂2ĉ(0)

∂z2
= 0. (27)

From this equation, together with far-field matching conditions and the definition off̄ (c),
we obtain M̂s = ε̃(θ)M̄s/6, Â = ε̃(θ) Ā/6, andΩ = 1/6. Putting everything together,
matching the leading order Eqs. (22) and (23) with the corresponding sharp interface
Eqs. (19) and (20) requires thatĀ = 6 andM̄s = 36. This implies that the dimensional
mobility Ms = Ds/(γ δ).

The matched asymptotic expansion resultspresented above assume thatthe film–vapor
interface is smooth (which also implies that the anisotropic surface tensionε̃ + ∂2ε̃/∂θ2 ≥
0). The details of the procedure will be presented in a forthcoming paper.
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4. Numerical methods

We solve
∑2

j=1 T̄i j, j = 0 and the nondimensional evolution Eqs. (13) and (14) using
nonlinear multigrid methods originally developed for Cahn–Hilliard equations by Kim,
Kang and Lowengrub [20,21] and their extensions to elastic systems by Wise, Kim and
Johnson [22]. These algorithms are based on splitting the fourth order Cahn–Hilliard
equation into two second order equations and solving for the concentration and chemical
potential simultaneously using second order accurate discretizations in time and space.
The spatial discretizations use centered differences and are conservative. The time
discretizations are based on generalizationsof the Crank–Nicholson algorithm and are fully
implicit, thus eliminating the high (fourth) order time step restrictions (i.e.,�t ≤ C�x4).
In certain cases, it is possible to rigorously prove that the resulting numerical schemes
converge and that the schemes inherit a discreteversion of the continuous energy functional
for any time and space step sizes.

To solve thenonlinear discrete system, a nonlinear full approximation storage (FAS)
method is used. In the FAS method, as in linear multigrid methods, the errors in the solution
are smoothed so that they may be approximated on a coarser grid. An analogue of the
linear defect equation is transformed to the coarse grid. The coarse grid corrections are
interpolated back to the fine grid where the errors are then smoothed. Because the system
is nonlinear,one does not work directly with the errors but rather with full approximations
to the discrete solution on the coarse grid. The nonlinearity is treated using one step of
Newton’s iteration. A pointwise Gauss–Seidel relaxation scheme is used as the smoother
in the multigrid method. This corresponds to a local instead of global linearization of
the nonlinear scheme and is much more efficient than standard Newton–Gauss–Seidel
linearization schemes.

The convergence of our multigrid algorithms is achieved with�t ≤ �t0, where�t0
depends only on the physical parameters and not on the mesh size. Typically we find that
our algorithms are 100 times faster than corresponding explicit methods.

The conservative algorithms described above perform very well, even in the presence of
strong interfacial anisotropy. In particular, it can be shown that the conservative spatial
discretization enhances stability and that it is possible to construct schemes that have
discrete (anisotropic) energy functionals. Interestingly, we find that when the anisotropy is
such that the sharp interface surface tensionε̃ + ∂2ε̃/∂θ2 < 0 for someθ , the conservative
discretization remains stable even without convexification of the 1/ε̃ plot as was done
by Eggleston, McFadden and Voorhees in [17]. This is surprisingbecause linearizing
the equations about these values ofθ leads to terms involving backwards fourth order
diffusion in Eqs. (13) and (14). However, an analysis shows that there are other potentially
stabilizing fourth order terms in the equation. Indeed, due to the energy functional, the
evolution is highly constrained. For example, it can be shown that the stability of the
discrete conservative algorithm even in the presence of such strong anisotropy follows
directly from the presence of the discrete energy functional. Using centered differences
in the multigrid scheme adds some numerical diffusion to the algorithm, which results in
some rounding of the corners, regularizing (smoothing) the numerical solution. In some
cases it is desirable to add some further smoothing in the form of a sixth-order diffusion
term, although this is not necessary for the simulations presented in the following section.
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Fig. 1. Evolution from an initially circular particle (left) and the resulting equilibrium shape (right) with the Wulff
shape (dotted). The surface anisotropy factor isε4 = 0.2 and there are no elastic forces (Z = 0).

We plan to discuss the numerical issues and the full details of the conservative multigrid
algorithm in a forthcoming article.

5. Preliminary simulation results

Webegin with a validation of our numerical algorithm for strongly anisotropic systems.
In Fig. 1, we present the evolution from an initially circular particle under strong interfacial
anisotropy,ε4 = 0.2, and in the absence of elastic forces (Z = 0). In particular,
δ̄ = 0.0053, Nx = Ny = 128 and the computational domain is the unit square. In
the left-hand figure, the evolution is shown with the evolution direction being indicated
by the arrows. The〈11〉 orientations have the lowest energy. At early stages, the particle
develops a wave-pattern with〈11〉 facets on those surfaces possessing an approximate〈10〉
orientation. During the later stages of evolution, the waves disappear and a notch develops
along〈10〉. Thisnotch grows outward, eventually leading to the development of the convex,
facetted equilibrium particle shape shown on the right. Also plotted on the right-hand side
as a dotted line is the corresponding Wulff shape. There is excellent agreement between
the calculated Wulff shape and the particle shape obtained by numerical evolution. The
calculated evolution shown inFig. 1 is quite similar to that calculated by Eggleston,
McFadden and Voorhees [17], although the exact wave pattern at early times is slightly
different, due principally to the fact that we do not convexify the 1/ε plot.

Figures 2and3 show the morphological evolution of a strained thin film on a substrate
during continuous mass deposition. Parameters for the simulations are given inTable 1.
The sizes of the computational domains are 6.4L × 3.2L, whereL = 50 nm, and the
grid resolution for both simulations is 128× 64. The initial conditions for the simulations
in Figs. 2 and 3 are the same, but for the addition of a coherent embedded inclusion
((c, φ) = (1, 0)) in Fig. 3. The embedded inclusion and the deposited film have the same
misfit strain. Periodic boundaryconditions are assumed on the right and left sides of the
computational domain. InFig. 3, these boundary conditions simulate a periodic array of
buriedinclusions.
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Fig. 2. Evolution of a strained epitaxial thin film to nondimensional timet = 105. The parameters for the
simulation are given inTable 1. Shownare thec = 0.5 andφ = 0.5 level sets. From topto bottom the regions
represented are the vapor ((c, φ) = (0, 0)), film ((c, φ) = (1, 0)), and substrate ((c, φ) = (1, 1)) phases. Due to
the misfit between film and substrate and the surface anisotropy, the film’s surface becomes unstable and islands
form uniformly along the substrate. Subsequent to islandformation, coarsening occurs on a very long time scale.

Fig. 3. The evolution of a strained thin film above a buried circular inclusion to nondimensional timet = 5×105.
The simulation parameters are given inTable 1. The dynamics at early times are similar to those inFig. 2. But,
since the inclusion ((c, φ) = (1, 0)) has the same misfit strain as the film, a large, isolated dot grows preferentially
above the embedded inclusion, at the expense of nearby neighboring islands.

At very early times, the film evolutions are similar. The anisotropic surface energy
initially destabilizes the flat film–vapor interface leading to the formation of islands on the
substrate. The islands develop〈11〉 facets due to the strong anisotropy of the surface energy.
Subsequently, inFig. 2, rapid coarsening occurs until the islands reach an intermediate
size determined by the competition between elastic and surface forces. After this stage
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Table 1
Parameters for the simulations shownFigs. 2and3

Physical Nondimensional

C1
11 3.31× 1011 Pa M̄s 36

C1
12 1.25× 1011 Pa Ā 6

C1
44 1.58× 1011 Pa δ̄ 0.025

γ 1.602 J/m2 Z 5.8
δ 1.24× 10−9 m V̄d 1.26
ε4 0.15
η 0.0347
L 50× 10−9 m
Vd 1.008× 1022Ds m3

of evolution, coarsening continues on a very long time scale, and the wavelength of the
surface pattern slowly increases in time [18,19].

After the initial formation of islands, the evolution depicted inFig. 3 is significantly
different from that shown inFig. 2. Theburied inclusion expands and stresses the lattice
of the substrate above it, due the positive misfit strain (same as film). Thus it requires less
elastic energy to nucleate and grow an islandabove the inclusion, compared to anywhere
else on the substrate. Consequently, mass accumulates above the misfitting particle and
a large, isolated dot grows preferentially at the expense of its nearest neighbors. Smaller
satellite islands far from the isolated dot persist, although their stability at long times under
continued deposition needs to be further investigated. Note that the film wets the substrate
between the islands, due to the assumed form of the interfacial energy coefficientε(θ, φ).

6. Summary and future work

In this paper we have given some preliminary, two-dimensional results from a
phase field model of quantum dot formation in a strained epitaxial film. We developed
the equations in nondimensional form and connected the sharp interface and phase-
field model parameters. We demonstrated the feasibility of our highly efficient finite
difference/multigrid algorithms for solving the phase-field equations numerically. These
methods, which rely on conservative spatial discretizations and implicit time integration,
are typically 100 times faster than corresponding explicit methods. We showed that
our algorithms accurately calculate the proper morphological evolution and equilibrium
shapes resulting from high interfacial anisotropy, without the need for regularizing the
1/ε plot and without resorting to one-sided differentiation. We then demonstrated the
localizing effects of a buried, coherent inclusion on the morphological evolution of the
film. The corresponding morphological evolution (Fig. 3) is quite complex. In particular,
the evolution of the film depends on a number of parameters specific to the inclusion,
including the particle’s radius, misfit, depth, etc.

The localizing effects of the embedded particle (strain patterning) are expected to be
qualitatively similar to those of the substrate “mesa” (topographical patterning) considered
in [18,19]. The localizing effects that arise in both approaches can yield a more ordered
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array of islands than in a film without such patterning. There may be cases where modifying
the substrate topography is undesirable or impractical. In such cases strain patterning
may be the only viable method for effecting organized formation of quantum dots.
An in-depth study of strain patterning, in combination with topographic substrate
patterning, is underway for both two- and three-dimensional systems.
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